306
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

A combination strategy of structure-based virtual screening, MM-GBSA, cross docking, molecular dynamics and metadynamics simulations used to investigate natural compounds as potent and specific inhibitors of tumor linked human carbonic anhydrase IX

&
Pages 5465-5480 | Received 23 Aug 2021, Accepted 03 Jun 2022, Published online: 23 Jun 2022

References

  • Afzal, O., Kumar, S., Haider, M. R., Ali, M. R., Kumar, R., Jaggi, M., & Bawa, S. (2015). A review on anticancer potential of bioactive heterocycle quinoline. European Journal of Medicinal Chemistry, 97, 871–910. https://doi.org/10.1016/j.ejmech.2014.07.044
  • Aggarwal, M., Boone, C. D., Kondeti, B., & McKenna, R. (2013). Structural annotation of human carbonic anhydrases. Journal of Enzyme Inhibition and Medicinal Chemistry, 28(2), 267–277. https://doi.org/10.3109/14756366.2012.737323
  • Alterio, V., Di Fiore, A., D'Ambrosio, K., Supuran, C. T., & De Simone, G. (2012). Multiple binding modes of inhibitors to carbonic anhydrases: How to design specific drugs targeting 15 different isoforms? Chemical Reviews, 112(8), 4421–4468. https://doi.org/10.1021/cr200176r
  • Aly, A. A., Ramadan, M., Abuo-Rahma, G. E. D. A., Elshaier, Y. A., Elbastawesy, M. A., Brown, A. B., & Bräse, S. (2021). Quinolones as prospective drugs: Their syntheses and biological applications. In Advances in heterocyclic chemistry (Vol. 135, pp. 147–196). Academic Press.
  • Aslam, M. S., Naveed, S., Ahmed, A., Abbas, Z., Gull, I., & Athar, M. A. (2014). Side effects of chemotherapy in cancer patients and evaluation of patients opinion about starvation based differential chemotherapy. Journal of Cancer Therapy, 05(08), 817–822. https://doi.org/10.4236/jct.2014.58089
  • Barreiro, G., Guimarães, C. R., Tubert-Brohman, I., Lyons, T. M., Tirado-Rives, J., & Jorgensen, W. L. (2007). Search for non-nucleoside inhibitors of HIV-1 reverse transcriptase using chemical similarity, molecular docking, and MM-GB/SA scoring. Journal of Chemical Information and Modeling, 47(6), 2416–2428. https://doi.org/10.1021/ci700271z
  • Bernardini, S., Tiezzi, A., Laghezza Masci, V., & Ovidi, E. (2018). Natural products for human health: An historical overview of the drug discovery approaches. Natural Product Research, 32(16), 1926–1950. https://doi.org/10.1080/14786419.2017.1356838
  • Bowers, K. J., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D., Salmon, J. K., Shan, Y., & Shaw, D. E. (2006, November 11–17). Scalable algorithms for molecular dynamics simulations on commodity clusters [Paper presentation]. Proceedings of the ACM/IEEE Conference on Supercomputing (SC06), Tampa, Florida.
  • Carter, G. T. (2011). Natural products and Pharma 2011: Strategic changes spur new opportunities. Natural Product Reports, 28(11), 1783–1789. https://doi.org/10.1039/c1np00033k
  • Chahal, V., Nirwan, S., & Kakkar, R. (2020a). A comparative study of the binding modes of SLC-0111 and its analogues in the hCA II and hCA IX active sites using QM/MM, molecular docking, MM-GBSA and MD approaches. Biophysical Chemistry, 265, 106439. https://doi.org/10.1016/j.bpc.2020.106439
  • Chahal, V., Nirwan, S., Pathak, M., & Kakkar, R. (2020b). Identification of potent human carbonic anhydrase IX inhibitors: A combination of pharmacophore modeling, 3D-QSAR, virtual screening and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2020.1860132
  • Du, J., Sun, H., Xi, L., Li, J., Yang, Y., Liu, H., & Yao, X. (2011). Molecular modeling study of checkpoint kinase 1 inhibitors by multiple docking strategies and prime/MM-GBSA calculation. Journal of Computational Chemistry, 32(13), 2800–2809. https://doi.org/10.1002/jcc.21859
  • Eriksson, A. E., Jones, T. A., & Liljas, A. (1988). Refined structure of human carbonic anhydrase II at 2.0 A resolution. Proteins, 4(4), 274–282. https://doi.org/10.1002/prot.340040406
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shaw, D. E., Shelley, M., Perry, J. K., Francis, P., & Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision Glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Fusani, L., Palmer, D. S., Somers, D. O., & Wall, I. D. (2020). Exploring ligand stability in protein crystal structures using binding pose metadynamics. Journal of Chemical Information and Modeling, 60(3), 1528–1539. https://doi.org/10.1021/acs.jcim.9b00843
  • Guimarães, C. R., & Cardozo, M. (2008). MM-GB/SA rescoring of docking poses in structure-based lead optimization. Journal of Chemical Information and Modeling, 48(5), 958–970. https://doi.org/10.1021/ci800004w
  • Güttler, A., Theuerkorn, K., Riemann, A., Wichmann, H., Kessler, J., Thews, O., Bache, M., & Vordermark, D. (2019). Cellular and radiobiological effects of carbonic anhydrase IX in human breast cancer cells. Oncology Reports, 41, 2585–2594.
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759. https://doi.org/10.1021/jm030644s
  • Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J. Y., Wang, L., Lupyan, D., Dahlgren, M. K., Knight, J. L., Kaus, J. W., Cerutti, D. S., Krilov, G., Jorgensen, W. L., Abel, R., & Friesner, R. A. (2016). OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation, 12(1), 281–296. https://doi.org/10.1021/acs.jctc.5b00864
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51(1), 69–82. https://doi.org/10.1021/ci100275a
  • Jain, S., Chandra, V., Jain, P. K., Pathak, K., Pathak, D., & Vaidya, A. (2019). Comprehensive review on current developments of quinoline-based anticancer agents. Arabian Journal of Chemistry, 12(8), 4920–4946. https://doi.org/10.1016/j.arabjc.2016.10.009
  • Janoniene, A., & Petrikaite, V. (2020). In search of advanced tumor diagnostics and treatment: Achievements and perspectives of Carbonic Anhydrase IX targeted delivery. Molecular Pharmaceutics, 17(6), 1800–1815. https://doi.org/10.1021/acs.molpharmaceut.0c00180
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Jorgensen, W. L., & Duffy, E. M. (2000). Prediction of drug solubility from Monte Carlo simulations. Bioorganic & Medicinal Chemistry Letters, 10(11), 1155–1158. https://doi.org/10.1016/S0960-894X(00)00172-4
  • Jorgensen, W. L., & Duffy, E. M. (2002). Prediction of drug solubility from structure. Advanced Drug Delivery Reviews, 54(3), 355–366. https://doi.org/10.1016/S0169-409X(02)00008-X
  • Kakkar, R. (2011). Structure-based design of PDHK2 inhibitors from docking studies. International Research Journal of Pharmacy, 1, 50–58.
  • Kashyap, K., & Kakkar, R. (2020). Pharmacophore-enabled virtual screening, molecular docking and molecular dynamics studies for identification of potent and selective histone deacetylase 8 inhibitors. Computers in Biology and Medicine, 123, 103850. https://doi.org/10.1016/j.compbiomed.2020.103850
  • Kumar, M., Nagpal, R., Kumar, R., Hemalatha, R., Verma, V., Kumar, A., Chakraborty, C., Singh, B., Marotta, F., Jain, S., & Yadav, H. (2012). Targeted cancer therapies: The future of cancer treatment. Acta Biomed, 2012, 1–233. https://doi.org/10.1155/2012/902917
  • Kumar, V., Krishna, S., & Siddiqi, M. I. (2015). Virtual screening strategies: Recent advances in the identification and design of anti-cancer agents. Methods, 71, 64–70. https://doi.org/10.1016/j.ymeth.2014.08.010
  • Lau, J., Lin, K. S., & Bénard, F. (2017). Past, present, and future: Development of theranostic agents targeting carbonic anhydrase IX. Theranostics, 7(17), 4322–4339. https://doi.org/10.7150/thno.21848
  • Lipinski, C. A. (2000). Drug-like properties and the causes of poor solubility and poor permeability. Journal of Pharmacological and Toxicological Methods, 44(1), 235–249. https://doi.org/10.1016/S1056-8719(00)00107-6
  • Lipinski, C. A. (2004). Lead-and drug-like compounds: The rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1–3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
  • Lyne, P. D., Lamb, M. L., & Saeh, J. C. (2006). Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring. Journal of Medicinal Chemistry, 49(16), 4805–4808. https://doi.org/10.1021/jm060522a
  • Martyna, G. J., Klein, M. L., & Tuckerman, M. (1992). Nosé-Hoover chains: The canonical ensemble via continuous dynamics. The Journal of Chemical Physics, 97(4), 2635–2643. https://doi.org/10.1063/1.463940
  • Martyna, G. J., Tobias, D. J., & Klein, M. L. (1994). Constant pressure molecular dynamics algorithms. The Journal of Chemical Physics, 101(5), 4177–4189. https://doi.org/10.1063/1.467468
  • McDonald, P. C., Chia, S., Bedard, P. L., Chu, Q., Lyle, M., Tang, L., Singh, M., Zhang, Z., Supuran, C. T., Renouf, D. J., & Dedhar, S. (2020). A phase 1 study of SLC-0111, a novel inhibitor of carbonic anhydrase IX, in patients with advanced solid tumors. American Journal of Clinical Oncology, 43(7), 484–490. https://doi.org/10.1097/COC.0000000000000691
  • Newman, D. J., & Cragg, G. M. (2012). Natural products as sources of new drugs over the 30 years from 1981 to 2010. Journal of Natural Products, 75(3), 311–335. [Database] https://doi.org/10.1021/np200906s
  • Özcan, E., Ökten, S., & Eren, T. (2020). Decision making for promising quinoline‐based anticancer agents through combined methodology. Journal of Biochemical and Molecular Toxicology, 34, e22522.
  • Pacchiano, F., Carta, F., McDonald, P. C., Lou, Y., Vullo, D., Scozzafava, A., Dedhar, S., & Supuran, C. T. (2011). Ureido-substituted benzenesulfonamides potently inhibit carbonic anhydrase IX and show antimetastatic activity in a model of breast cancer metastasis. Journal of Medicinal Chemistry, 54(6), 1896–1902. https://doi.org/10.1021/jm101541x
  • Pastorekova, S., & Gillies, R. J. (2019). The role of carbonic anhydrase IX in cancer development: Links to hypoxia, acidosis, and beyond. Cancer Metastasis Reviews, 38(1–2), 65–77. https://doi.org/10.1007/s10555-019-09799-0
  • Schirrmacher, V. (2019). From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). International Journal of Oncology, 54(2), 407–419. https://doi.org/10.3892/ijo.2018.4661
  • Schuell, B., Gruenberger, T., Kornek, G. V., Dworan, N., Depisch, D., Lang, F., Schneeweiss, B., & Scheithauer, W. (2005). Side effects during chemotherapy predict tumour response in advanced colorectal cancer. British Journal of Cancer, 93(7), 744–748. https://doi.org/10.1038/sj.bjc.6602783
  • Senerovic, L., Opsenica, D., Moric, I., Aleksic, I., Spasić, M., & Vasiljevic, B. (2019). Quinolines and quinolones as antibacterial, antifungal, anti-virulence, antiviral and anti-parasitic agents. Advances in Microbiology, Infectious Diseases and Public Health (vol. 1282, pp. 37–69). Cham: Springer. https://doi.org/10.1007/5584_2019_428.
  • Sissi, C., Andreolli, M., Cecchetti, V., Fravolini, A., Gatto, B., & Palumbo, M. (1998). Mg(2+)-mediated binding of 6-substituted quinolones to DNA: Relevance to biological activity. Bioorganic & Medicinal Chemistry, 6(9), 1555–1561. https://doi.org/10.1016/s0968-0896(98)00086-8
  • Sousa, S. F., Cerqueira, N. M. F. S. A., Fernandes, P. A., & Ramos, M. J. (2010). Virtual screening in drug design and development. Combinatorial Chemistry & High Throughput Screening, 13(5), 442–453. https://doi.org/10.2174/138620710791293001
  • Sterling, T., & Irwin, J. J. (2015). ZINC 15-Ligand Discovery for Everyone. Journal of Chemical Information and Modeling, 55(11), 2324–2337. https://doi.org/10.1021/acs.jcim.5b00559
  • Sun, H., Li, Y., Tian, S., Xu, L., & Hou, T. (2014). Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDB bind data set. Physical Chemistry Chemical Physics, 16(31), 16719–16729. https://doi.org/10.1039/C4CP01388C
  • Supuran, C. T. (2012). Structure-based drug discovery of carbonic anhydrase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 27(6), 759–772. https://doi.org/10.3109/14756366.2012.672983
  • Supuran, C. T. (2018a). Carbonic anhydrase inhibitors and their potential in a range of therapeutic areas. Expert Opinion on Therapeutic Patents, 28(10), 709–712. https://doi.org/10.1080/13543776.2018.1523897
  • Supuran, C. T. (2018b). Carbonic anhydrase inhibitors as emerging agents for the treatment and imaging of hypoxic tumors. Expert Opinion on Investigational Drugs, 27(12), 963–970. https://doi.org/10.1080/13543784.2018.1548608
  • Tashima, T. (2015). The structural use of carbostyril in physiologically active substances. Bioorganic & Medicinal Chemistry Letters, 25(17), 3415–3419. https://doi.org/10.1016/j.bmcl.2015.06.027
  • Thomford, N. E., Senthebane, D. A., Rowe, A., Munro, D., Seele, P., Maroyi, A., & Dzobo, K. (2018). Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. International Journal of Molecular Sciences, 19(6), 1578–1606. https://doi.org/10.3390/ijms19061578
  • Toukmaji, A. Y., & Board, J. A. Jr. (1996). Ewald summation techniques in perspective: A survey. Computer Physics Communications, 95(2–3), 73–92. https://doi.org/10.1016/0010-4655(96)00016-1
  • Tsimberidou, A. M. (2015). Targeted therapy in cancer. Cancer Chemotherapy and Pharmacology, 76(6), 1113–1132. https://doi.org/10.1007/s00280-015-2861-1
  • Wani, M. C., Taylor, H. L., Wall, M. E., Coggon, P., & McPhail, A. T. (1971). Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. Journal of the American Chemical Society, 93(9), 2325–2327. https://doi.org/10.1021/ja00738a045
  • Winum, J. Y., Rami, M., Scozzafava, A., Montero, J. L., & Supuran, C. T. (2008). Carbonic anhydrase IX: A new druggable target for the design of antitumor agents. Medicinal Research Reviews, 28(3), 445–463. https://doi.org/10.1002/med.20112
  • Wu, H. C., Chang, D. K., & Huang, C. T. (2006). Targeted therapy for cancer. Journal of Molecular Cancer, 2, 57–66.
  • Yang, L., Wang, H., Zu, Y. G., Zhao, C., Zhang, L., Chen, X., & Zhang, Z. (2011). Ultrasound-assisted extraction of the three terpenoid indole alkaloids vindoline, catharanthine and vinblastine from Catharanthus roseus using ionic liquid aqueous solutions. Chemical Engineering Journal, 172(2–3), 705–712. https://doi.org/10.1016/j.cej.2011.06.039
  • Yernale, G. (2021). A comprehensive review on the biological interest of quinoline and its derivatives. Bioorganic & Medicinal Chemistry, 32, 115973.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.