144
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Affinity variation in the interactions of tryptophan- β-cyclodextrin-platinum complex with G-quadruplex and duplex DNAs

, , , , & ORCID Icon
Pages 5538-5547 | Received 22 Mar 2022, Accepted 11 Jun 2022, Published online: 21 Jun 2022

References

  • Alves, P. S., Mesquita, O. N., & Rocha, M. S. (2015). Controlling cooperativity in β-cyclodextrin-DNA binding reactions. The Journal of Physical Chemistry Letters, 6(18), 3549–3554. https://doi.org/10.1021/acs.jpclett.5b01603
  • Arshad, N., Mir, M. I., Perveen, F., Javed, A., Javaid, M., Saeed, A., Channar, P. A., Farooqi, S. I., Alkahtani, S., & Anwar, J. (2022). Investigations on anticancer potentials by binding and cytotoxicity studies for newly synthesized and characterized imidazolidine and thiazolidine-based derivatives. Molecules, 27(2), 354. https://doi.org/10.3390/molecules27020354
  • Ashjaee, Y., & Zandi, H. (2021). Molecular Analysis of 5-COR Derivatives of uracil and evaluating their affinity against the MPro target of COVID-19. Advanced Journal of Science and Engineering, 2, 79–85. https://doi.org/10.22034/advjscieng21022079
  • Baguley, B. C., Drummond, C. J., Chen, Y. Y., & Finlay, G. J. (2021). DNA-binding anticancer drugs: one target, two actions. Molecules, 26(3), 552. https://doi.org/10.3390/molecules26030552
  • Blackledge, M. S., & Melander, C. (2013). Programmable DNA-binding small molecules. Bioorganic & Medicinal Chemistry, 21(20), 6101–6114. https://doi.org/10.1016/j.bmc.2013.04.023
  • Chandrasekaran, S., Sameena, Y., & Enoch, I. V. (2014). Tuning the binding of coumarin 6 with DNA by molecular encapsulators: effect of β‐cyclodextrin and C‐hexylpyrogallol[4]arene. Journal of Molecular Recognition: JMR, 27(11), 640–652. https://doi.org/10.1002/jmr.2387
  • Chandrasekaran, S., Sameena, Y., & Enoch, I. V. M. V. (2015). Modulation of the interaction of Coumarin 7 with DNA by β-cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 81(1–2), 225–236. https://doi.org/10.1007/s10847-014-0451-1
  • Enoch, I. V. M. V., & Yousuf, S. (2013). β-Cyclodextrin inclusion complexes of 2-hydroxy-9-fluorenone: differences in stoichiometry and excited state prototropic equilibrium. Journal of Solution Chemistry, 42(2), 470–484. https://doi.org/10.1007/s10953-013-9965-1
  • Franco Pinto, J., Fillion, A., Duchambon, P., Bombard, S., & Granzhan, A. (2022). Acridine-O6-benzylguanine hybrids: synthesis, DNA binding, MGMT inhibition and antiproliferative activity. European Journal of Medicinal Chemistry, 227, 113909. https://doi.org/10.1016/j.ejmech.2021.113909
  • Jafri, M. A., Ansari, S. A., Alqahtani, M. H., & Shay, J. W. (2016). Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Medicine, 8(1), 69. https://doi.org/10.1186/s13073-016-0324-x
  • Jansson, L. I., Hentschel, J., Parks, J. W., Chang, T. R., Lu, C., Baral, R., Bagshaw, C. R., & Stone, M. D. (2019). Telomere DNA G-quadruplex folding within actively extending human telomerase. Proceedings of the National Academy of Sciences of the United States of America, 116(19), 9350–9359. https://doi.org/10.1073/pnas.1814777116
  • Khalifa, M. M., Al-Karmalawy, A. A., Elkaeed, E. B., Nafie, M. S., Tantawy, M. A., Eissa, I. H., & Mahdy, H. A. (2022). Topo II inhibition and DNA intercalation by new phthalazine-based derivatives as potent anticancer agents: design, synthesis, anti-proliferative, docking and in vivo studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 37(1), 299–314. https://doi.org/10.1080/14756366.2021.2007905
  • Kreft, D., Wang, Y., Rattay, M., Toensing, K., & Anselmetti, D. (2018). Binding mechanism of anti-cancer therapeutic drug mitoxantrone to DNA characterized by magnetic tweezers. Journal of Nanobiotechnology, 16(1), 56. https://doi.org/10.1186/s12951-018-0381-y
  • Loskotova, H., & Brabec, V. (1999). DNA intercalation of cisplatin tethered to the DNA minor groove binder distamycin. European Journal of Biochemistry, 266(2), 392–402. https://doi.org/10.1046/j.1432-1327.1999.00866.x
  • Mahmoodpoor, F., Hosseini, S. H., Ahmadian, E., Ardalan, M., Kamali, K., Sardari, S., & Khavasi, N. (2022). Hydroalcoholic extract of Capparis spinosa seeds reduces cisplatin-induced nephrotoxicity in rats. Eurasian Chemical Communications, 4, 263–271. https://doi.org/10.22034/ecc.2022.325465.1309
  • Malik, M. S., Farooq Adil, S., Moussa, Z., Altass, H. M., Althagafi, I. I., Morad, M., Ansari, M. A., Sajid Jamal, Q. M., Obaid, R. J., Al-Warthan, A. A., Shaik, T. B., & Ahmed, S. A. (2021). Rational design and synthesis of naphthalene diimide linked Bis-naphthalimides as DNA intercalative agents. Frontiers in Chemistry, 9, 630357. https://doi.org/10.3389/fchem.2021.630357
  • Meier, J. L., Yu, A. S., Korf, I., Segal, D. J., & Dervan, P. B. (2012). Guiding the design of synthetic DNA-binding molecules with massively parallel sequencing. Journal of the American Chemical Society, 134(42), 17814–17822. https://doi.org/10.1021/ja308888c
  • Mirzaei, M. (2020). Hydrogen bond interactions of nucleobases: a quick review. Lab-In-Silico, 1, 61–66. https://doi.org/10.22034/labinsilico20012061
  • Mirzaei, M., Gülseren, O., & Hadipour, N. (2016). DFT explorations of quadrupole coupling constants for planar 5-fluorouracil pairs. Computational and Theoretical Chemistry, 1090, 67–73. https://doi.org/10.1016/j.comptc.2016.06.004
  • Mirzaei, M., & Hadipour, N. L. (2008). A computational NQR study on the hydrogen-bonded lattice of cytosine-5-acetic acid. Journal of Computational Chemistry, 29(5), 832–838. https://doi.org/10.1002/jcc.20845
  • Mirzaei, M., Hadipour, N., & Gulseren, O. (2020). DNA codon recognition by a cubane wire: In silico approach. Turkish Computational and Theoretical Chemistry, 5, 13–19. https://doi.org/10.33435/tcandtc.828634
  • Mirzaei, M., Yousefi, M., & Mirzaei, M. (2011). Computational study of a CNT-uracil-CNT compound. Modern Physics Letters B, 25(15), 1335–1341. https://doi.org/10.1142/S0217984911026292
  • Poomalai, S., Govindaraj, T. S., Soundrapandian, S., Paulraj, M. S., & Enoch, I. V. M. V. (2018). A new fluorescent chemosensor for cadmium(II) based on a pyrene-appended piperidone derivative and its β-cyclodextrin complex. Luminescence: The Journal of Biological and Chemical Luminescence, 33(3), 538–544. https://doi.org/10.1002/bio.3443
  • Shen, D.-W., Pouliot, L. M., Hall, M. D., & Gottesman, M. M. (2012). Cisplatin resistance: a self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacological Reviews, 64(3), 706–721. https://doi.org/10.1124/pr.111.005637
  • Sischka, A., Toensing, K., Eckel, R., Wilking, S. D., Sewald, N., Ros, R., & Anselmetti, D. (2005). Molecular mechanisms and kinetics between DNA and DNA binding ligands. Biophysical Journal, 88(1), 404–411. https://doi.org/10.1529/biophysj.103.036293
  • Soundarapandian, S., Alexander, A., Pillai, A. S., Enoch, I. V. M. V., & Yousuf, S. (2021). G-Quadruplex binding of cavity-containing anthraquinonesulfonyl-β-cyclodextrin conjugate. Effect of encapsulation of ethidium bromide and berberine. Journal of Biomolecular Structure and Dynamics, 1–11. https://doi.org/10.1080/07391102.2021.1911849
  • Sowrirajan, C., Yousuf, S., & Enoch, I. V. M. V. (2014). The unusual fluorescence quenching of Coumarin 314 by β-cyclodextrin and the effect of β-cyclodextrin on its binding with calf-thymus DNA. Australian Journal of Chemistry, 67(2), 256–265. https://doi.org/10.1071/CH13364
  • Suganthi, S., Sivaraj, R., & Enoch, I. V. M. V. (2019a). Molecular encapsulation of berberine by a modified β-cyclodextrin and binding of host: guest complex to G-quadruplex DNA. Nucleosides, Nucleotides & Nucleic Acids, 38(11), 858–873. https://doi.org/10.1080/15257770.2019.1618469
  • Suganthi, S., Sivaraj, R., Selvakumar, P. M., & Enoch, I. V. M. V. (2019b). Supramolecular complex binding to G-quadruplex DNA: berberine encapsulated by a planar side-arm tethered β-cyclodextrin. Journal of Biomolecular Structure & Dynamics, 37(13), 3305–3313. https://doi.org/10.1080/07391102.2018.1512420
  • Suntharalingam, K., Mendoza, O., Duarte, A. A., Mann, D. J., & Vilar, R. (2013). A platinum complex that binds non-covalently to DNA and induces cell death via a different mechanism than cisplatin. Metallomics: Integrated Biometal Science, 5(5), 514–523. https://doi.org/10.1039/c3mt20252f
  • Vianney, Y. M., & Weisz, K. (2022). Indoloquinoline ligands favor intercalation at quadruplex-duplex interfaces. Chemistry (Weinheim an Der Bergstrasse, Germany), 28(7), e202103718. https://doi.org/10.1002/chem.202103718.
  • Yousuf, S., Alex, R., Selvakumar, P. M., Enoch, I. V. M. V., Subramanian, P. S., & Sun, Y. (2015). Picking out logic operations in a naphthalene β-diketone derivative by using molecular encapsulation, controlled protonation, and DNA binding. ChemistryOpen, 4(4), 497–508. https://doi.org/10.1002/open.201500034
  • Yousuf, S., & Enoch, I. V. M. V. (2012). Spectroscopic investigation of interaction of 6-methoxyflavone and its β-cyclodextrin complex with calf thymus DNA. Chemical Papers, 66(8), 787–794. https://doi.org/10.2478/s11696-012-0180-0
  • Yousuf, S., & Enoch, I. V. M. V. (2013). Binding interactions of naringenin and naringin with calf-thymus DNA and the role of β-cyclodextrin in the binding. AAPS PharmSciTech, 14(2), 770–781. https://doi.org/10.1208/s12249-013-9963-z
  • Yousuf, S., D., Radhika, D., Enoch, I. V. M. V., & Easwaran, M. (2012). The influence of β-cyclodextrin encapsulation on the binding of 2′-hydroxyflavanone with calf thymus DNA. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 98, 405–412. https://doi.org/10.1016/j.saa.2012.08.068

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.