439
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Integrated multi-omic data analysis and validation with yeast model show oxidative phosphorylation modulates protein aggregation in amyotrophic lateral sclerosis

ORCID Icon, , ORCID Icon, , , , & show all
Pages 5548-5567 | Received 06 Nov 2021, Accepted 11 Jun 2022, Published online: 24 Jun 2022

Reference

  • Abel, O., Powell, J. F., Andersen, P. M., & Al‐Chalabi, A. (2012). ALSoD: A user‐friendly online bioinformatics tool for amyotrophic lateral sclerosis genetics. Human Mutation, 33(9), 1345–1351. https://doi.org/10.1002/humu.22157
  • Abramov, A. Y., Smulders-Srinivasan, T. K., Kirby, D. M., Acin-Perez, R., Enriquez, J. A., Lightowlers, R. N., Duchen, M. R., & Turnbull, D. M. (2010). Mechanism of neurodegeneration of neurons with mitochondrial DNA mutations. Brain, 133(3), 797–807. https://doi.org/10.1093/brain/awq015
  • Al Mahi, N., Najafabadi, M. F., Pilarczyk, M., Kouril, M., & Medvedovic, M. (2019). GREIN: An interactive web platform for re-analyzing GEO RNA-seq data. Science Report, 9, 1–9.
  • Angelova, P. R., & Abramov, A. Y. (2018). Role of mitochondrial ROS in the brain: From physiology to neurodegeneration. FEBS Letters, 592(5), 692–702. https://doi.org/10.1002/1873-3468.12964
  • Aronica, E., Baas, F., Iyer, A., ten Asbroek, A. L. M. A., Morello, G., & Cavallaro, S. (2015). Neurobiology of Disease Molecular classi fi cation of amyotrophic lateral sclerosis by unsupervised clustering of gene expression in motor cortex. Neurobiology of Disease, 74, 359–376. https://doi.org/10.1016/j.nbd.2014.12.002
  • Beal, M. F. (2004). Therapeutic effects of coenzyme Q10 in neurodegenerative diseases. Methods in Enzymology, 382, 473–487. https://doi.org/10.1016/S0076-6879(04)82026-3
  • Belly, A., Moreau-Gachelin, F., Sadoul, R., & Goldberg, Y. (2005). Delocalization of the multifunctional RNA splicing factor TLS/FUS in hippocampal neurones: Exclusion from the nucleus and accumulation in dendritic granules and spine heads. Neuroscience Letters, 379(3), 152–157. https://doi.org/10.1016/j.neulet.2004.12.071
  • Bernardini, C., Censi, F., Lattanzi, W., Barba, M., Calcagnini, G., Giuliani, A., Tasca, G., Sabatelli, M., Ricci, E., & Michetti, F. (2013). Mitochondrial network genes in the skeletal muscle of amyotrophic lateral sclerosis patients. PLoS One, 8(2), e57739. https://doi.org/10.1371/journal.pone.0057739
  • Blokhuis, A. M., Groen, E. J. N., Koppers, M., Van Den Berg, L. H., & Pasterkamp, R. J. (2013). Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathologica, 125(6), 777–794. https://doi.org/10.1007/s00401-013-1125-6
  • Braun, R. J., Sommer, C., Carmona-Gutierrez, D., Khoury, C. M., Ring, J., Büttner, S., & Madeo, F. (2011). Neurotoxic 43-kDa TAR DNA-binding protein (TDP-43) triggers mitochondrion-dependent programmed cell death in yeast. The Journal of Biological Chemistry, 286(22), 19958–19972.
  • Brooks, B. R. (1994). El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial “Clinical limits of amyotrophic lateral sclerosis” workshop contributors. Journal of the Neurological Sciences, 124, 96–107. https://doi.org/10.1016/0022-510X(94)90191-0
  • Cardol, P., Figueroa, F., Remacle, C., Franzén, L.-G., & González-Halphen, D. (2009). Chapter 13 - oxidative phosphorylation: Building blocks and related components. In Harris, E. H., Stern, D. B. & Witman, G. B. B. T.-T. C. S. (Eds.), (2nd ed., pp. 469–502). Academic Press. https://doi.org/10.1016/B978-0-12-370873-1.00021-6.
  • Chaprov, K., Rezvykh, A., Funikov, S., Ivanova, T. A., Lysikova, E. A., Deykin, A. V., Kukharsky, M. S., Yu Aksinenko, A., Bachurin, S. O., Ninkina, N., & Buchman, V. L. (2021). A bioisostere of Dimebon/Latrepirdine delays the onset and slows the progression of pathology in FUS transgenic mice. CNS Neuroscience & Therapeutics, 27(7), 765–775. https://doi.org/10.1111/cns.13637
  • Chen, Edward Y, Tan, Christopher M, Kou, Yan, Duan, Qiaonan, Wang, Zichen, Meirelles, Gabriela Vaz, Clark, Neil R, Ma'ayan, Avi,. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14,128–14 (2013). https://doi.org/10.1186/1471-2105-14-128
  • Chen, Y., Liu, X.-H., Wu, J.-J., Ren, H.-M., Wang, J., Ding, Z.-T., & Jiang, Y.-P. (2016). Proteomic analysis of cerebrospinal fluid in amyotrophic lateral sclerosis. Experimental and Therapeutic Medicine, 11(6), 2095–2106. https://doi.org/10.3892/etm.2016.3210
  • Chen-Plotkin, A. S., Lee, V. M.-Y., & Trojanowski, J. Q. (2010). TAR DNA-binding protein 43 in neurodegenerative disease. Nature Reviews. Neurology, 6(4), 211–220. https://doi.org/10.1038/nrneurol.2010.18
  • Chernova, T. A., Chernoff, Y. O., & Wilkinson, K. D. (2019). Yeast models for amyloids and prions: Environmental modulation and drug discovery. Molecules, 24(18), 3388. https://doi.org/10.3390/molecules24183388
  • Clark, W., & Kendall, M. J. (1996). Therapeutic advances: Riluzole for the treatment of motor neurone disease. Journal of Clinical Pharmacy and Therapeutics, 21(6), 373–376. https://doi.org/10.1111/j.1365-2710.1996.tb00035.x
  • Colombrita, C., Onesto, E., Megiorni, F., Pizzuti, A., Baralle, F. E., Buratti, E., Silani, V., & Ratti, A. (2012). TDP-43 and FUS RNA-binding proteins bind distinct sets of cytoplasmic messenger RNAs and differently regulate their post-transcriptional fate in motoneuron-like cells. The Journal of Biological Chemistry, 287(19), 15635–15647. https://doi.org/10.1074/jbc.M111.333450
  • D'Ambrosi, N., & Apolloni, S. (2020). Fibrotic scar in neurodegenerative diseases. Frontiers in Immunology, 11, 1394. https://doi.org/10.3389/fimmu.2020.01394
  • Das, B., Ray, P., & Raut, S. (2021). Impaired mitochondrial energy metabolism: Etiologies and implications in neurodegenerative disease. In Clinical Bioenergetics. 93–118 (Elsevier.
  • Dash, R. P., Babu, R. J., & Srinivas, N. R. (2018). Two decades-long journey from riluzole to edaravone: Revisiting the clinical pharmacokinetics of the only two amyotrophic lateral sclerosis therapeutics. Clinical Pharmacokinetics, 57(11), 1385–1398. https://doi.org/10.1007/s40262-018-0655-4
  • Durrenberger, P. F., Fernando, F. S., Kashefi, S. N., Bonnert, T. P., Seilhean, D., Nait-Oumesmar, B., Schmitt, A., Gebicke-Haerter, P. J., Falkai, P., Grünblatt, E., Palkovits, M., Arzberger, T., Kretzschmar, H., Dexter, D. T., & Reynolds, R. (2015). Common mechanisms in neurodegeneration and neuroinflammation: A BrainNet Europe gene expression microarray study. Journal of Neural Transmission (Vienna, Austria : 1996), 122(7), 1055–1068. https://doi.org/10.1007/s00702-014-1293-0
  • Durrenberger, P. F., Fernando, F. S., Magliozzi, R., Kashefi, S. N., Bonnert, T. P., Ferrer, I., Seilhean, D., Nait-Oumesmar, B., Schmitt, A., Gebicke-Haerter, P. J., Falkai, P., Grünblatt, E., Palkovits, M., Parchi, P., Capellari, S., Arzberger, T., Kretzschmar, H., Roncaroli, F., Dexter, D. T., & Reynolds, R. (2012). Selection of novel reference genes for use in the human central nervous system: A BrainNet Europe Study. Acta Neuropathologica, 124(6), 893–903. https://doi.org/10.1007/s00401-012-1027-z
  • Dwivedi, D., Megha, K., Mishra, R., & Mandal, P. K. (2020). Glutathione in brain: overview of its conformations, functions, biochemical characteristics, quantitation and potential therapeutic role in brain disorders. Neurochemical Research, 45(7), 1461–1480. https://doi.org/10.1007/s11064-020-03030-1
  • Emerit, J., Edeas, M., & Bricaire, F. (2004). Neurodegenerative diseases and oxidative stress. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 58(1), 39–46. https://doi.org/10.1016/j.biopha.2003.11.004
  • Evans, C. S., & Holzbaur, E. L. F. (2019). Autophagy and mitophagy in ALS. Neurobiology of Disease, 122, 35–40. https://doi.org/10.1016/j.nbd.2018.07.005
  • Ferri, A., & Coccurello, R. (2017). What is ‘hyper’ in the ALS Hypermetabolism? Mediators of Inflammation, 2017, 7821672. https://doi.org/10.1155/2017/7821672
  • Gandhi, S., & Abramov, A. Y. (2012). Mechanism of oxidative stress in neurodegeneration. Oxidative Medicine and Cellular Longevity, 2012, 428010. https://doi.org/10.1155/2012/428010
  • Ghiasi, P., Hosseinkhani, S., Noori, A., Nafissi, S., & Khajeh, K. (2012). Mitochondrial complex I deficiency and ATP/ADP ratio in lymphocytes of amyotrophic lateral sclerosis patients. Neurological Research, 34(3), 297–303. https://doi.org/10.1179/1743132812Y.0000000012
  • Greenamyre, J. T., Sherer, T. B., Betarbet, R., & Panov, A. V. (2001). Complex I and Parkinson’s disease. IUBMB Life, 52(3-5), 135–141. https://doi.org/10.1080/15216540152845939
  • He, L., He, T., Farrar, S., Ji, L., Liu, T., & Ma, X. (2017). Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cellular Physiology and Biochemistry : international Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 44(2), 532–553. https://doi.org/10.1159/000485089
  • Hedl, T. J., San Gil, R., Cheng, F., Rayner, S. L., Davidson, J. M., De Luca, A., Villalva, M. D., Ecroyd, H., Walker, A. K., & Lee, A. (2019). Proteomics approaches for biomarker and drug target discovery in ALS and FTD. Frontiers in Neuroscience, 13, 548. https://doi.org/10.3389/fnins.2019.00548
  • Ioannides, Z. A., Ngo, S. T., Henderson, R. D., McCombe, P. A., & Steyn, F. J. (2016). Altered metabolic homeostasis in amyotrophic lateral sclerosis: Mechanisms of energy imbalance and contribution to disease progression. Neuro-Degenerative Diseases, 16(5-6), 382–397. https://doi.org/10.1159/000446502
  • Ishpekova, B., & Milanov, I. (2000). Differential diagnosis of amyotrophic lateral sclerosis and Electromyography and Clinical Neurophysiology, 40(3), 145–149.
  • Jonnalagadda, D., Kihara, Y., Rivera, R., & Chun, J. (2021). S1P2-Gα12 signaling controls astrocytic glutamate uptake and mitochondrial oxygen consumption. Eneuro, 8(4), ENEURO.0040-21.2021. https://doi.org/10.1523/ENEURO.0040-21.2021
  • Kametani, F. (2016). Mass spectrometric analysis of accumulated TDP-43 in amyotrophic lateral sclerosis brains. Sci. Rep., 6, 1–15.
  • Kaminska, J., & Zoladek, T. (2021). Yeast models and molecular mechanisms of neurodegenerative diseases. International Journal of Molecular Sciences, 22(16), 8775. https://doi.org/10.3390/ijms22168775
  • Kaur, S. J., McKeown, S. R., & Rashid, S. (2016). Mutant SOD1 mediated pathogenesis of amyotrophic lateral sclerosis. Gene, 577(2), 109–118. https://doi.org/10.1016/j.gene.2015.11.049
  • Kawamata, H., & Manfredi, G. (2017). Proteinopathies and OXP HOS Dysfunction in Neurodegenerative Diseases. Journal of Cell Biology, 216(12), 3917-3929.
  • Kim, J., Hughes, E. G., Shetty, A. S., Arlotta, P., Goff, L. A., Bergles, D. E., & Brown, S. P. (2017). Changes in the excitability of neocortical neurons in a mouse model of amyotrophic lateral sclerosis are not specific to corticospinal neurons and are modulated by advancing disease. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 37(37), 9037–9053. https://doi.org/10.1523/JNEUROSCI.0811-17.2017
  • Krähenbühl, S., Talos, C., Fischer, S., & Reichen, J. (1994). Toxicity of bile acids on the electron transport chain of isolated rat liver mitochondria. Hepatology (Baltimore, Md.), 19(2), 471–479. https://doi.org/10.1002/hep.1840190228
  • Krishna, S., Bhagavatham, S., Khanchandani, P., & Kannan, V. (2021). Adenosine deaminase modulates metabolic remodeling and orchestrates joint destruction in rheumatoid arthritis. Science Report, 1–22. https://doi.org/10.1038/s41598-021-94607-5
  • Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang, Z., Koplev, S., Jenkins, S. L., Jagodnik, K. M., Lachmann, A., McDermott, M. G., Monteiro, C. D., Gundersen, G. W., & Ma'ayan, A. (2016). Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Research, 44(W1), W90–W97. https://doi.org/10.1093/nar/gkw377
  • Ladd, A. C., Keeney, P. M., Govind, M. M., & Bennett, J. P. (2014). Mitochondrial oxidative phosphorylation transcriptome alterations in human amyotrophic lateral sclerosis spinal cord and blood. NeuroMolecular Medicine, 16(4), 714–726. https://doi.org/10.1007/s12017-014-8321-y
  • Lagier-Tourenne, C., Polymenidou, M., Hutt, K. R., Vu, A. Q., Baughn, M., Huelga, S. C., Clutario, K. M., Ling, S.-C., Liang, T. Y., Mazur, C., Wancewicz, E., Kim, A. S., Watt, A., Freier, S., Hicks, G. G., Donohue, J. P., Shiue, L., Bennett, C. F., Ravits, J., Cleveland, D. W., & Yeo, G. W. (2012). Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nature Neuroscience, 15(11), 1488–1497. https://doi.org/10.1038/nn.3230
  • Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923
  • Lanznaster, D., Veyrat-Durebex, C., Vourc’h, P., Andres, C. R., Blasco, H., & Corcia, P. (2020). Metabolomics: A tool to understand the impact of genetic mutations in amyotrophic lateral sclerosis. Genes (Basel), 11(5), 537. https://doi.org/10.3390/genes11050537
  • Lee, S. Y., Hunte, C., Malaney, S., & Robinson, B. H. (2001). The N-terminus of the Qcr7 protein of the cytochrome bc1 complex in S. cerevisiae may be involved in facilitating stability of the subcomplex with the Qcr8 protein and cytochrome b. Archives of Biochemistry and Biophysics, 393(2), 215–221. https://doi.org/10.1006/abbi.2001.2498
  • Lerman, B. J., Hoffman, E. P., Sutherland, M. L., Bouri, K., Hsu, D. K., Liu, F.-T., Rothstein, J. D., & Knoblach, S. M. (2012). Deletion of galectin‐3 exacerbates microglial activation and accelerates disease progression and demise in a SOD1 G93A mouse model of amyotrophic lateral sclerosis. Brain and Behavior, 2(5), 563–575. https://doi.org/10.1002/brb3.75
  • Lesnick, T. G., Papapetropoulos, S., Mash, D. C., Ffrench-Mullen, J., Shehadeh, L., de Andrade, M., Henley, J. R., Rocca, W. A., Ahlskog, J. E., & Maraganore, D. M. (2007). A genomic pathway approach to a complex disease: Axon guidance and Parkinson disease. PLoS Genetics, 3(6), e98. https://doi.org/10.1371/journal.pgen.0030098
  • Levy, G. (2006). A two-stage design for a phase ii clinical trial of coenzyme Q10 in ALS, 48125
  • Li, X., Fang, P., Mai, J., Choi, E. T., Wang, H., & Yang, X-f. (2013). Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. Journal of Hematology & Oncology, 6, 19–19.
  • Liang, W. S., Reiman, E. M., Valla, J., Dunckley, T., Beach, T. G., Grover, A., Niedzielko, T. L., Schneider, L. E., Mastroeni, D., Caselli, R., Kukull, W., Morris, J. C., Hulette, C. M., Schmechel, D., Rogers, J., & Stephan, D. A. (2008). Alzheimer’s disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proceedings of the National Academy of Sciences of the United States of America, 105(11), 4441–4446. https://doi.org/10.1073/pnas.0709259105
  • Lin, L., Park, J. W., Ramachandran, S., Zhang, Y., Tseng, Y.-T., Shen, S., Waldvogel, H. J., Curtis, M. A., Faull, R. L. M., Troncoso, J. C., Pletnikova, O., Ross, C. A., Davidson, B. L., & Xing, Y. (2016). Transcriptome sequencing reveals aberrant alternative splicing in Huntington’s disease. Human Molecular Genetics, 25(16), 3454–3466. https://doi.org/10.1093/hmg/ddw187
  • Love, M. I., Anders, S., & Huber, W. (2016). Differential analysis of count data – The DESeq2 package.
  • Mathis, S., Goizet, C., Soulages, A., Vallat, J. M., & Masson, G. L. (2019). Genetics of amyotrophic lateral sclerosis: A review. Journal of the Neurological Sciences, 399, 217–226. https://doi.org/10.1016/j.jns.2019.02.030
  • Mathis, S., Goizet, C., Soulages, A., Vallat, J.-M., & Le Masson, G. (2019). Genetics of amyotrophic lateral sclerosis: A review. Journal of the Neurological Sciences, 399, 217–226. https://doi.org/10.1016/j.jns.2019.02.030
  • Miller‐Fleming, L., Giorgini, F., & Outeiro, T. F. (2008). Yeast as a model for studying human neurodegenerative disorders. Biotechnology Journal, 3(3), 325–338. https://doi.org/10.1002/biot.200700217
  • Morello, G. (2020). From multi-omics approaches to precision medicine in amyotrophic lateral sclerosis, 14(2020), 577755.
  • Naik, A. A., Narayanan, A., Khanchandani, P., & Sridharan, D. (2020). Systems analysis of avascular necrosis of femoral head using integrative data analysis and literature mining delineates pathways associated with disease. Science Report, 10(1),1–20. https://doi.org/10.1038/s41598-020-75197-0
  • Nalini, A., Thennarasu, K., Gourie-Devi, M., Shenoy, S., & Kulshreshtha, D. (2008). Clinical characteristics and survival pattern of 1153 patients with amyotrophic lateral sclerosis: Experience over 30 years from India. Journal of the Neurological Sciences, 272(1–2), 60–70. https://doi.org/10.1016/j.jns.2008.04.034
  • Neelagandan, N., Gonnella, G., Dang, S., Janiesch, P. C., Miller, K. K., Küchler, K., Marques, R. F., Indenbirken, D., Alawi, M., Grundhoff, A., Kurtz, S., & Duncan, K. E. (2019). TDP-43 enhances translation of specific mRNAs linked to neurodegenerative disease. Nucleic Acids Research, 47(1), 341–361. https://doi.org/10.1093/nar/gky972
  • Newington, J. T., Harris, R. A., & Cumming, R. C. (2013). Reevaluating metabolism in Alzheimer’s disease from the perspective of the astrocyte-neuron lactate shuttle model. Journal of Neurodegenerative Diseases, 2013, 1–13. https://doi.org/10.1155/2013/234572
  • Niemann, S., Joos, H., Meyer, T., Vielhaber, S., Reuner, U., Gleichmann, M., Dengler, R., & Müller, U. (2004). Familial ALS in Germany: Origin of the R115G SOD1 mutation by a founder effect. Journal of Neurology, Neurosurgery, and Psychiatry, 75(8), 1186–1188. https://doi.org/10.1136/jnnp.2003.028324
  • Oeckl, P., Weydt, P., Thal, D. R., Weishaupt, J. H., Ludolph, A. C., & Otto, M. (2020). Proteomics in cerebrospinal fluid and spinal cord suggests UCHL1, MAP2 and GPNMB as biomarkers and underpins importance of transcriptional pathways in amyotrophic lateral sclerosis. Acta Neuropathologica, 139(1), 119–134. https://doi.org/10.1007/s00401-019-02093-x
  • Pathways, C. (2020). Flavonoids and mitochondria : Activation of cytoprotective pathways ?.
  • Patterson, T. E., & Poyton, R. O. (1986). COX8, the structural gene for yeast cytochrome c oxidase subunit VIII. DNA sequence and gene disruption indicate that subunit VIII is required for maximal levels of cellular respiration and is derived from a precursor which is extended at both its NH2 and COOH termini. The Journal of Biological Chemistry, 261(36), 17192–17197. https://doi.org/10.1016/S0021-9258(19)76018-9
  • Pereira, C., Bessa, C., Soares, J., Leao, M., & Saraiva, L. (2012). Contribution of yeast models to neurodegeneration research. Journal of Biomedicine & Biotechnology, 2012, 941232. (). https://doi.org/10.1155/2012/941232
  • Pfister, J. A., Ma, C., Morrison, B. E., & D'Mello, S. R. (2008). Opposing effects of sirtuins on neuronal survival: SIRT1-mediated neuroprotection is independent of its deacetylase activity. PLoS One, 3(12), e4090. https://doi.org/10.1371/journal.pone.0004090
  • Prasad, A., Bharathi, V., Sivalingam, V., Girdhar, A., & Patel, B. K. (2019). Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis. Frontiers in Molecular Neuroscience, 12, 25. https://doi.org/10.3389/fnmol.2019.00025
  • Predeus, A. (2017). Global transcriptional network reveals that tocopherols rescue TREM2-driven microglial dysfunction in vivo. In Moscow Conference on Computational Molecular Biology (MCCMB 2017) (Vol. 2)
  • Prudencio, M., Belzil, V. V., Batra, R., Ross, C. A., Gendron, T. F., Pregent, L. J., Murray, M. E., Overstreet, K. K., Piazza-Johnston, A. E., Desaro, P., Bieniek, K. F., DeTure, M., Lee, W. C., Biendarra, S. M., Davis, M. D., Baker, M. C., Perkerson, R. B., van Blitterswijk, M., Stetler, C. T., … Petrucelli, L. (2015). Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS. Nature Neuroscience, 18(8), 1175–1182. https://doi.org/10.1038/nn.4065
  • Prudencio, M., Gonzales, P. K., Cook, C. N., Gendron, T. F., Daughrity, L. M., Song, Y., Ebbert, M. T. W., van Blitterswijk, M., Zhang, Y.-J., Jansen-West, K., Baker, M. C., DeTure, M., Rademakers, R., Boylan, K. B., Dickson, D. W., Petrucelli, L., & Link, C. D. (2017). Repetitive element transcripts are elevated in the brain of C9orf72 ALS/FTLD patients. Human Molecular Genetics, 26(17), 3421–3431. https://doi.org/10.1093/hmg/ddx233
  • Pulukool, S. K., Krishna, S., Bhagavatham, S., & Kannan, V. (2021). Elevated dimethylarginine, ATP, cytokines, metabolic remodeling involving tryptophan metabolism and potential microglial inflammation characterize primary open angle glaucoma. Science Report, 11(1), 1–19. https://doi.org/10.1038/s41598-021-89137-z
  • Quinlan, A. R., & Hall, I. M. (2010). BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics (Oxford, England), 26(6), 841–842. https://doi.org/10.1093/bioinformatics/btq033
  • Ramirez-Gonzalez, R. H., Bonnal, R., Caccamo, M., & MacLean, D. (2012). Bio-samtools: Ruby bindings for SAMtools, a library for accessing BAM files containing high-throughput sequence alignments. Source Code for Biology and Medicine, 7(1), 6–6.
  • Ramzan, R., Napiwotzki, J., Weber, P., Kadenbach, B., & Vogt, S. (2021). Cholate Disrupts Regulatory Functions of Cytochrome c Oxidase, Cells, 1–14.
  • Ranganayaki, S. (2021). Inhibition of mitochondrial complex II in neuronal cells triggers unique pathways culminating in autophagy with implications for neurodegeneration. Sci. Rep, 11, 1–23.
  • Rzepnikowska, W., Kaminska, J., Kabzińska, D., Binięda, K., & Kochański, A. (2020). A yeast-based model for hereditary motor and sensory neuropathies: A simple system for complex, heterogeneous diseases. International Journal of Molecular Sciences, 21(12), 4277. https://doi.org/10.3390/ijms21124277
  • Schapira, A. H. V. (1998). Mitochondrial dysfunction in neurodegenerative disorders. Biochimica et Biophysica Acta, 1366(1-2), 225–233. https://doi.org/10.1016/S0005-2728(98)00115-7
  • Singh, A., Kukreti, R., Saso, L., & Kukreti, S. (2019). Oxidative stress: a key modulator in neurodegenerative diseases. Molecules, 24(8), 1583. https://doi.org/10.3390/molecules24081583
  • Smith, E. F., Shaw, P. J., & De Vos, K. J. (2019). The role of mitochondria in amyotrophic lateral sclerosis. Neurosci. Lett, 710, 132933.
  • Sreedharan, J., Blair, I. P., Tripathi, V. B., Hu, X., Vance, C., Rogelj, B., Ackerley, S., Durnall, J. C., Williams, K. L., Buratti, E., Baralle, F., de Belleroche, J., Mitchell, J. D., Leigh, P. N., Al-Chalabi, A., Miller, C. C., Nicholson, G., & Shaw, C. E. (2008). TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science (New York, N.Y.), 319(5870), 1668–1672. https://doi.org/10.1126/science.1154584
  • Staats, K. A., & Van Den Bosch, L. (2014). Excitotoxicity and amyotrophic lateral sclerosis. Handb. Neurotox, 2, 1209–1222.
  • Strong, M. J., & Volkening, K. (2011). TDP‐43 and FUS/TLS: Sending a complex message about messenger RNA in amyotrophic lateral sclerosis? The FEBS Journal, 278(19), 3569–3577. https://doi.org/10.1111/j.1742-4658.2011.08277.x
  • Sun, Y., Wang, Y., Chen, S.-T., Chen, Y.-J., Shen, J., Yao, W.-B., Gao, X.-D., & Chen, S. (2020). Theranostics modulation of the astrocyte-neuron lactate shuttle system contributes to neuroprotective action of fibroblast growth factor 21. Theranostics, 10(18), 8430–8445. https://doi.org/10.7150/thno.44370
  • Sun, Z., Diaz, Z., Fang, X., Hart, M. P., Chesi, A., Shorter, J., & Gitler, A. D. (2011). Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS. PLoS Biology, 9(4), e1000614. https://doi.org/10.1371/journal.pbio.1000614
  • Tam, O. H., Rozhkov, N. V., Shaw, R., Kim, D., Hubbard, I., Fennessey, S., Propp, N., Fagegaltier, D., Harris, B. T., Ostrow, L. W., Phatnani, H., Ravits, J., Dubnau, J., & Gale Hammell, M, NYGC ALS Consortium (2019). Postmortem cortex samples identify distinct molecular subtypes of ALS: Retrotransposon activation, oxidative stress, and activated glia. Cell Reports, 29(5), 1164–1177.
  • Tefera, T. W., & Borges, K. (2016). Metabolic dysfunctions in amyotrophic lateral sclerosis pathogenesis and potential metabolic treatments. Frontiers in Neuroscience, 10, 611. https://doi.org/10.3389/fnins.2016.00611
  • Tenreiro, S., & Outeiro, T. F. (2010). Simple is good: Yeast models of neurodegeneration. FEMS Yeast Research, 10(8), 970–979. https://doi.org/10.1111/j.1567-1364.2010.00649.x
  • Tiwari, A., & Hayward, L. J. (2005). Mutant SOD1 instability: Implications for toxicity in amyotrophic lateral sclerosis. Neuro-Degenerative Diseases, 2(3-4), 115–127. https://doi.org/10.1159/000089616
  • Trumpower, B. L., & Haggerty, J. G. (1980). Inhibition of electron transfer in the cytochromeb-c 1 segment of the mitochondrial respiratory chain by a synthetic analogue of ubiquinone. Journal of Bioenergetics and Biomembranes, 12(3-4), 151–164. https://doi.org/10.1007/BF00744680
  • Turrens, J. F. (2003). Mitochondrial formation of reactive oxygen species. The Journal of Physiology, 552(Pt 2), 335–344. https://doi.org/10.1113/jphysiol.2003.049478
  • Venny, O. J.C. (2007). An interactive tool for comparing lists with Venn Diagrams. http//bioinfogp.cnb.csic.es/tools/venny/index.html
  • Walker, C., Herranz-Martin, S., Karyka, E., Liao, C., Lewis, K., Elsayed, W., Lukashchuk, V., Chiang, S.-C., Ray, S., Mulcahy, P. J., Jurga, M., Tsagakis, I., Iannitti, T., Chandran, J., Coldicott, I., De Vos, K. J., Hassan, M. K., Higginbottom, A., Shaw, P. J., El-Khamisy, S. F. (2017). C9orf72 expansion disrupts ATM-mediated chromosomal break repair. Nature Neuroscience, 20(9), 1225–1235. https://doi.org/10.1038/nn.4604
  • Wang, Z., Bai, Z., Qin, X., & Cheng, Y. (2019). Aberrations in oxidative stress markers in amyotrophic lateral sclerosis: A systematic review and meta-analysis. OxiMed & Cellular Longevity, 2019, 1–9. (). https://doi.org/10.1155/2019/1712323
  • Xia, J., Fjell, C. D., Mayer, M. L., Pena, O. M., Wishart, D. S., & Hancock, R. E. W. (2013). INMEX—A web-based tool for integrative meta-analysis of expression data. Nucleic Acids Research, 41(Web Server issue), W63–W70. https://doi.org/10.1093/nar/gkt338
  • Xia, J., Gill, E. E., & Hancock, R. E. W. (2015). NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data. Nature Protocols, 10(6), 823–844. https://doi.org/10.1038/nprot.2015.052
  • Xia, J., Lyle, N. H., Mayer, M. L., Pena, O. M., & Hancock, R. E. W. (2013). INVEX—A web-based tool for integrative visualization of expression data. Bioinformatics (Oxford, England), 29(24), 3232–3234. https://doi.org/10.1093/bioinformatics/btt562
  • Xie, Z., Bailey, A., Kuleshov, M. V., Clarke, D. J. B., Evangelista, J. E., Jenkins, S. L., Lachmann, A., Wojciechowicz, M. L., Kropiwnicki, E., Jagodnik, K. M., Jeon, M., & Ma'ayan, A. (2021). Gene set knowledge discovery with Enrichr. Current Protocols, 1(3), e90.
  • Xu, G. P., Dave, K. R., Moraes, C. T., Busto, R., Sick, T. J., Bradley, W. G., & Pérez-Pinzón, M. A. (2001). Dysfunctional mitochondrial respiration in the wobbler mouse brain. Neuroscience Letters, 300(3), 141–144. https://doi.org/10.1016/S0304-3940(01)01575-0
  • Zhou, G., Soufan, O., Ewald, J., Hancock, R. E. W., Basu, N., & Xia, J. (2019). NetworkAnalyst 3.0: A visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Research, 47(W1), W234–W241. https://doi.org/10.1093/nar/gkz240

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.