318
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A molecular dynamics investigation of N-glycosylation effects on T-cell receptor kinetics

, , &
Pages 5614-5623 | Received 09 May 2022, Accepted 13 Jun 2022, Published online: 28 Jun 2022

References

  • Bause, E. (1983). Structural requirements of N-glycosylation of proteins. Studies with proline peptides as conformational probes. The Biochemical Journal, 209(2), 331–336. https://doi.org/10.1042/BJ2090331
  • Beckstein, O. (2021). GromacsWrapper. https://doi.org/10.5281/zenodo.17901.
  • Berendsen, H. J. C., Grigera, J. R., & Straatsma, T. P. (1987). The missing term in effective pair potentials. The Journal of Physical Chemistry, 91(24), 6269–6271. https://doi.org/10.1021/j100308a038
  • Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., Dinola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. Journal of Chemical Physics., 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Bernardi, A. (2020). GlyRot. GitHub.
  • Bernardi, A., Faller, R., Reith, D., & Kirschner, K. N. (2019). ACPYPE update for nonuniform 1–4 scale factors: Conversion of the GLYCAM06 force field from AMBER to GROMACS. SoftwareX, 10, 100241. https://doi.org/10.1016/j.softx.2019.100241
  • Bernardi, A., Huang, Y., Harris, B., Xiong, Y., Nandi, S., McDonald, K. A., & Faller, R. (2020). Development and simulation of fully glycosylated molecular models of ACE2-Fc fusion proteins and their interaction with the SARS-CoV-2 spike protein binding domain. PLoS One, 15(8), e0237295. https://doi.org/10.1371/JOURNAL.PONE.0237295
  • Bernardi, A., Kirschner, K. N., & Faller, R. (2017). Structural analysis of human glycoprotein butyrylcholinesterase using atomistic molecular dynamics: The importance of glycosylation site ASN241. PLoS One, 12(11), e0187994. https://doi.org/10.1371/JOURNAL.PONE.0187994
  • Borbulevych, O. Y., Santhanagopolan, S. M., Hossain, M., & Baker, B. M. (2011). TCRs used in cancer gene therapy cross-react with MART-1/Melan-A tumor antigens via distinct mechanisms. Journal of Immunology (Baltimore, MD: 1950), 187(5), 2453–2463. https://doi.org/10.4049/jimmunol.1101268
  • Bousser, E. D., Meuris, L., Callewaert, N., & Festjens, N. (2020). Human T cell glycosylation and implications on immune therapy for cancer. Human Vaccines & Immunotherapeutics, 16(10), 2374–2388. https://doi.org/10.1080/21645515.2020.1730658
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101. https://doi.org/10.1063/1.2408420
  • Cerliani, J. P., Blidner, A. G., Toscano, M. A., Croci, D. O., & Rabinovich, G. A. (2016). Translating the ‘sugar code’into immune and vascular signaling programs. Trends in biochemical sciences, 42(4), 255–273.
  • Clark, M. C., & Baum, L. G. (2012). T cells modulate glycans on CD43 and CD45 during development and activation, signal regulation, and survival. Annals of the New York Academy of Sciences, 1253(1), 58–67.
  • D. A., Case, R. M., Betz, D. S., Cerutti, T. E., Cheatham, III, T. A., Darden, R. E., Duke, T. J., Giese, H. G., A. W., Goetz, N., Homeyer, S., Izadi, P., Janowski, J., Kaus, A., Kovalenko, T. S., Lee, S., LeGrand, P., Li, C., Lin, T., Luchko, R., Luo, … Kollman, P. A. (2016). AMBER 2016. University of California.
  • Evans, D. J., & Holian, B. L. (1985). The nose–hoover thermostat. The Journal of chemical physics, 83(8), 4069–4074.
  • Ewald, P. P. (1921). Die Berechnung optischer und elektrostatischer Gitterpotentiale. Annalen Der Physik, 369(3), 253–287.
  • Gómez-Henao, W., Tenorio, E. P., Sanchez, F. R. C., Mendoza, M. C., Ledezma, R. L., & Zenteno, E. (2021). Relevance of glycans in the interaction between T lymphocyte and the antigen presenting cell. International Reviews of Immunology, 40(4), 274–288. https://doi.org/10.1080/08830185.2020.1845331
  • Gowers, R.J., Linke, M., Barnoud, J., Reddy, T.J., Melo, M.N., Seyler, S.L., Domanski, J., Dotson, D.L., Buchoux, S., Kenney, I.M. and Beckstein, O. (2016). MDAnalysis: a Python package for the rapid analysis of molecular dynamics simulations. In Proceedings of the 15th python in science conference (Vol. 98, p. 105). Austin, T X: SciPy.
  • Grant, O. C., Montgomery, D., Ito, K., & Woods, R. J. (2020). 3D Models of glycosylated SARS-CoV-2 spike protein suggest challenges and opportunities for vaccine development. bioRxiv, 2020.04.07.030445. https://doi.org/10.1101/2020.04.07.030445
  • Group of Robert J. Woods. GLYCAM Web. Complex Carbohydrate Research Center, University of Georg Athens.
  • Harbison, A., & Fadda, E. (2020). An atomistic perspective on antibody-dependent cellular cytotoxicity quenching by core-fucosylation of IgG1 Fc N-glycans from enhanced sampling molecular dynamics. Glycobiology, 30(6), 407–414. https://doi.org/10.1093/GLYCOB/CWZ101
  • Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., Del Río, J. F., Wiebe, M., Peterson, P., … Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12 < 1463::AID-JCC4 > 3.0.CO;2-H
  • Huang, Y., Harris, B. S., Minami, S. A., Jung, S., Shah, P. S., Nandi, S., McDonald, K. A., & Faller, R. (2022). SARS-CoV-2 spike binding to ACE2 is stronger and longer ranged due to glycan interaction. Biophysical Journal, 121(1), 79–90. doi:10.1016/J.BPJ.2021.12.002/ATTACHMENT/E0AAE14F-B973-4AF5-B979-63C0E546FA4C/MMC1.PDF
  • Hunter, J. D., & Hunter, D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55
  • Izrailev, S., Stepaniants, S., Isralewitz, B., Kosztin, D., Lu, H., Molnar, F., Wriggers, W., & Schulten, K. (1999). Steered molecular dynamics. In Computational molecular dynamics: challenges, methods, ideas (pp. 39-65). Berlin, Heidelberg: Springer.
  • Jo, S., Qi, J., & Im, W. (2015). Preferred conformations of N-glycan core pentasaccharide in solution and in glycoproteins. Glycobiology, 26, cwv083–cwv29. https://doi.org/10.1093/glycob/cwv083
  • Kirschner, K. N., Yongye, A. B., Tschampel, S. M., González-Outeiriño, J., Daniels, C. R., Foley, B. L., & Woods, R. J. (2008). GLYCAM06: A generalizable biomolecular force field. Carbohydrates. Journal of Computational Chemistry, 29(4), 622–655. https://doi.org/10.1002/JCC.20820
  • Lu, D., Yang, C., & Liu, Z. (2012). How hydrophobicity and the glycosylation site of glycans affect protein folding and stability: A molecular dynamics simulation. The Journal of Physical Chemistry B, 116(1), 390–400. https://doi.org/10.1021/jp203926r
  • Lyons, J. J., Milner, J. D., & Rosenzweig, S. D. (2015). Glycans instructing immunity: The emerging role of altered glycosylation. Frontiers in Pediatrics, 3, 54. doi:10.3389/FPED.2015.00054
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/ACS.JCTC.5B00255
  • Marth, J. D., & Grewal, P. K. (2008). Mammalian glycosylation in immunity. Nature Reviews. Immunology, 8(11), 874–887. 2008 811 https://doi.org/10.1038/nri2417
  • Mckinney, W. (2010). Data structures for statistical computing in Python [Paper presentation]. In Proceedings of the 9th Python in Science Conference (Vol. 445, No. 1, pp. 51-56), Austin, Texas.
  • Michaud-Agrawal, N., Denning, E. J., Woolf, T. B., & Beckstein, O. (2011). MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10), 2319–2327.
  • Miyamoto, S., & Kollman, P. A. (1992). Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. Journal of Computational Chemistry, 13(8), 952–962. https://doi.org/10.1002/jcc.540130805
  • Olsson, M. H. M., SØndergaard, C. R., Rostkowski, M., & Jensen, J. H. (2011). PROPKA3: Consistent treatment of internal and surface residues in empirical pKa predictions. Journal of Chemical Theory and Computation, 7(2), 525–537. https://doi.org/10.1021/ct100578z
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics., 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Petrescu, A. J., Petrescu, S. M., Dwek, R. A., & Wormald, M. R. (1999). A statistical analysis of N- and O-glycan linkage conformations from crystallographic data. Glycobiology, 9(4), 343–352. https://doi.org/10.1093/GLYCOB/9.4.343
  • Di Pierro, M., Elber, R., & Leimkuhler, B. (2015). A stochastic algorithm for the isobaric–isothermal ensemble with Ewald summations for all long range forces. Journal of chemical theory and computation, 11(12), 5624–5637.
  • Rabinovich, G. A., & Toscano, M. A. (2009). Turning “sweet” on immunity: galectin–glycan interactions in immune tolerance and inflammation. Nature Reviews. Immunology, 9(5), 338–352. 2009 95 https://doi.org/10.1038/nri2536
  • Rollins, Z. A., Faller, R., & George, S. C. (2022). Using molecular dynamics simulations to interrogate T cell receptor non-equilibrium kinetics. Computational and Structural Biotechnology Journal, 20, 2124–2133.
  • Rollins, Z. A., Huang, J., Tagkopoulos, I., Faller, R., & George, S. C. (2021). The atomic-level physiochemical determinants of T cell receptor dissociation kinetics. BioRxiv, 2021.10.25.465739. https://doi.org/10.1101/2021.10.25.465739
  • Ryan, S. O., & Cobb, B. A. (2012). Roles for major histocompatibility complex glycosylation in immune function. Seminars in Immunopathology, 34(3), 425–441. https://doi.org/10.1007/S00281-012-0309-9
  • Sasawatari, S., Okamoto, Y., Kumanogoh, A., & Toyofuku, T. (2020). Blockade of N-glycosylation promotes antitumor immune response of T cells. Journal of Immunology (Baltimore, MD : 1950), 204(5), 1373–1385. https://doi.org/10.4049/JIMMUNOL.1900937
  • Schjoldager, K. T., Narimatsu, Y., Joshi, H. J., & Clausen, H. (2020). Global view of human protein glycosylation pathways and functions. Nature Reviews. Molecular Cell Biology, 21(12), 729–749. 2020 2112 https://doi.org/10.1038/s41580-020-00294-x
  • Sibener, L. V., Fernandes, R. A., Kolawole, E. M., Carbone, C. B., Liu, F., McAffee, D., Birnbaum, M. E., Yang, X., Su, L. F., Yu, W., Dong, S., Gee, M. H., Jude, K. M., Davis, M. M., Groves, J. T., Goddard, W. A., Heath, J. R., Evavold, B. D., Vale, R. D., & Garcia, K. C. (2018). Isolation of a structural mechanism for uncoupling T cell receptor signaling from peptide-MHC binding. Cell, 174(3), 672–687.e27. https://doi.org/10.1016/j.cell.2018.06.017
  • Søndergaard, C. R., Olsson, M. H. M., Rostkowski, M., & Jensen, J. H. (2011). Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values. Journal of Chemical Theory and Computation, 7(7), 2284–2295. https://doi.org/10.1021/ct200133y
  • Sousa da Silva, A. W., & Vranken, W. F. (2012). ACPYPE - AnteChamber PYthon Parser interfacE. BMC Research Notes, 5(1), 1–8. 2012 51 https://doi.org/10.1186/1756-0500-5-367
  • Vallat, R. (2018). Pingouin: Statistics in Python. Journal of Open Source Software, 3(31), 1026. https://doi.org/10.21105/joss.01026
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … van Mulbregt, P., SciPy 1.0 Contributors (2020). SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261–272. 2020 173 https://doi.org/10.1038/s41592-019-0686-2
  • Woo, H., Park, S.-J., Choi, Y. K., Park, T., Tanveer, M., Cao, Y., Kern, N. R., Lee, J., Yeom, M. S., Croll, T. I., Seok, C., & Im, W. (2020). Developing a fully glycosylated full-length SARS-CoV-2 spike protein model in a viral membrane. The Journal of Physical Chemistry. B, 124(33), 7128–7137. https://doi.org/10.1021/ACS.JPCB.0C04553
  • Wooster, A. L., Anderson, T. S., & Lowe, D. B. (2019). Expression and characterization of soluble epitope-defined major histocompatibility complex (MHC) from stable eukaryotic cell lines. Journal of Immunological Methods, 464, 22–30. https://doi.org/10.1016/J.JIM.2018.10.006
  • Wu, P., Zhang, T., Liu, B., Fei, P., Cui, L., Qin, R., Zhu, H., Yao, D., Martinez, R. J., Hu, W., An, C., Zhang, Y., Liu, J., Shi, J., Fan, J., Yin, W., Sun, J., Zhou, C., Zeng, X., … Lou, J. (2019). Mechano-regulation of peptide-MHC class I conformations determines TCR antigen recognition. Molecular Cell, 73(5), 1015–1027.e7. https://doi.org/10.1016/j.molcel.2018.12.018
  • Xiong, Y., Karuppanan, K., Bernardi, A., Li, Q., Kommineni, V., Dandekar, A. M., Lebrilla, C. B., Faller, R., McDonald, K. A., & Nandi, S. (2019). Effects of N-glycosylation on the structure, function, and stability of a plant-made fc-fusion anthrax decoy protein. Frontiers in Plant Science, 10, 768. doi:10.3389/fpls.2019.00768
  • Yanaka, S., Yogo, R., Inoue, R., Sugiyama, M., Itoh, S. G., Okumura, H., Miyanoiri, Y., Yagi, H., Satoh, T., Yamaguchi, T., & Kato, K. (2019). Dynamic views of the Fc region of immunoglobulin G provided by experimental and computational observations. Antibodies, 8(3), 39. https://doi.org/10.3390/antib8030039

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.