152
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

PITRM1 interaction studies with amyloidogenic nonapeptide mutants of familial Alzheimer’s disease

ORCID Icon, ORCID Icon & ORCID Icon
Pages 5660-5671 | Received 06 Dec 2021, Accepted 16 Jun 2022, Published online: 24 Jun 2022

References

  • Arnold, K., Bordoli, L., Kopp, J., & Schwede, T. (2006). The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics (Oxford, England), 22(2), 195–201. https://doi.org/10.1093/bioinformatics/bti770
  • Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Cassarino, T. G., Bertoni, M., Bordoli, L., & Schwede, T. (2014). SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 42(Web Server issue), W252–W258. https://doi.org/10.1093/nar/gku340
  • Bora, R. P., & Prabhakar, R. (2010). Elucidation of interactions of Alzheimer amyloid β Peptides (Aβ40 and Aβ42) with insulin degrading enzyme: A molecular dynamics study. Biochemistry, 49(18), 3947–3956. https://doi.org/10.1021/bi1002103
  • Bugiani, O., Giaccone, G., Rossi, G., Mangieri, M., Capobianco, R., Morbin, M., Mazzoleni, G., Cupidi, C., Marcon, G., Giovagnoli, A., Bizzi, A., Di Fede, G., Puoti, G., Carella, F., Salmaggi, A., Romorini, A., Patruno, G. M., Magoni, M., Padovani, A., & Tagliavini, F. (2010). Hereditary cerebral hemorrhage with amyloidosis associated with the E693K mutation of APP. Archives of Neurology, 67(8), 987–995. https://doi.org/10.1001/archneurol.2010.178
  • Cha, M. Y., Han, S. H., Son, S. M., Hong, H. S., Choi, Y. J., Byun, J., & Mook-Jung, I. (2012). Mitochondria-specific accumulation of amyloid β induces mitochondrial dysfunction leading to apoptotic cell death. PLoS One, 7(4), e34929. https://doi.org/10.1371/journal.pone.0034929
  • Chen, J. X., & Yan, S. S. (2010). Role of mitochondrial amyloid-β in Alzheimer’s disease. Journal of Alzheimer's Disease, 20(s2), S569–S578. https://doi.org/10.3233/JAD-2010-100357
  • Chen, W.-T., Hong, C.-J., Lin, Y.-T., Chang, W.-H., Huang, H.-T., Liao, J.-Y., Chang, Y.-J., Hsieh, Y.-F., Cheng, C.-Y., Liu, H.-C., Chen, Y.-R., & Cheng, I. H. (2012). Amyloid-beta (Aβ) D7H mutation increases oligomeric Aβ42 and alters properties of Aβ-zinc/copper assemblies. PLoS One, 7(4), e35807. https://doi.org/10.1371/journal.pone.0035807
  • Chong, S.-H., Yim, J., & Ham, S. (2013). Structural heterogeneity in familial Alzheimer’s disease mutants of amyloid-beta peptides. Molecular bioSystems, 9(5), 997–1003. https://doi.org/10.1039/c2mb25457c
  • Chow, K. M., Gakh, O., Payne, I. C., Juliano, M. A., Juliano, L., Isaya, G., & Hersh, L. B. (2009). Mammalian Pitrilysin: Substrate specificity and mitochondrial targeting. Biochemistry, 48(13), 2868–2877. https://doi.org/10.1021/bi8016125
  • Falkevall, A., Alikhani, N., Bhushan, S., Pavlov, P. F., Busch, K., Johnson, K. A., Eneqvist, T., Tjernberg, L., Ankarcrona, M., & Glaser, E. (2006). Degradation of the amyloid beta-protein by the novel mitochondrial peptidasome, PreP. The Journal of Biological Chemistry, 281(39), 29096–29104. https://doi.org/10.1074/jbc.M602532200
  • Fernandez-Madrid, I., Levy, E., Marder, K., & Frangione, B. (1991). Codon 618 variant of Alzheimer amyloid gene associated with inherited cerebral hemorrhage. Annals of Neurology, 30(5), 730–733. https://doi.org/10.1002/ana.410300516
  • Gessel, M. M., Bernstein, S., Kemper, M., Teplow, D. B., & Bowers, M. T. (2012). Familial Alzheimer’s disease mutations differentially alter amyloid β-protein oligomerization. ACS Chemical Neuroscience, 3(11), 909–918. https://doi.org/10.1021/cn300050d
  • Grabowski, T. J., Cho, H. S., Vonsattel, J. P., Rebeck, G. W., & Greenberg, S. M. (2001). Novel amyloid precursor protein mutation in an Iowa family with dementia and severe cerebral amyloid angiopathy. Annals of Neurology, 49(6), 697–705. http://www.ncbi.nlm.nih.gov/pubmed/11409420 https://doi.org/10.1002/ana.1009
  • Guo, Q., Manolopoulou, M., Bian, Y., Schilling, A. B., & Tang, W.-J. (2010). Molecular basis for the recognition and cleavages of IGF-II, TGF-α, and amylin by human insulin-degrading enzyme. Journal of Molecular Biology, 395(2), 430–443. https://doi.org/10.1016/j.jmb.2009.10.072
  • Hansson Petersen, C. A., Alikhani, N., Behbahani, H., Wiehager, B., Pavlov, P. F., Alafuzoff, I., Leinonen, V., Ito, A., Winblad, B., Glaser, E., & Ankarcrona, M. (2008). The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proceedings of the National Academy of Sciences of the United States of America, 105(35), 13145–13150. https://doi.org/10.1073/pnas.0806192105
  • Hatami, A., Monjazeb, S., Milton, S., & Glabe, C. G. (2017). Familial Alzheimer’s disease mutations within the amyloid precursor protein alter the aggregation and conformation of the amyloid-β peptide. The Journal of Biological Chemistry, 292(8), 3172–3185. https://doi.org/10.1074/jbc.M116.755264
  • Hendriks, L., vanDuijn, C. M., Cras, P., Cruts, M., Vanhul, W., Vanharskamp, F., Warren, A., Mcinnis, M. G., Antonarakis, S. E., Martin, J. J., Hofman, A., & Vanbroeckhoven, C. (1992). Presenile-dementia and cerebral-hemorrhage linked to a mutation at codon-692 of the beta-amyloid precursor protein gene. Nature Genetics, 1(3), 218–221. https://doi.org/10.1038/ng0692-218
  • Janssen, J. C., Beck, J. A., Campbell, T. A., Dickinson, A., Fox, N. C., Harvey, R. J., Houlden, H., Rossor, M. N., & Collinge, J. (2003). Early onset familial Alzheimer’s disease: Mutation frequency in 31 families. Neurology, 60(2), 235–239. https://doi.org/10.1212/01.WNL.0000042088.22694.E3
  • Kaplan, W., & Littlejohn, T. G. (2001). Swiss-PDB viewer (deep view). Briefings in Bioinformatics, 2(2), 195–197. https://doi.org/10.1093/bib/2.2.195
  • Kim, M., Hersh, L. B., Leissring, M. A., Ingelsson, M., Matsui, T., Farris, W., Lu, A., Hyman, B. T., Selkoe, D. J., Bertram, L., & Tanzi, R. E. (2007). Decreased catalytic activity of the insulin-degrading enzyme in chromosome 10-linked Alzheimer disease families. The Journal of Biological Chemistry, 282(11), 7825–7832. https://doi.org/10.1074/jbc.M609168200
  • Kim, W., & Hecht, M. H. (2008). Mutations enhance the aggregation propensity of the Alzheimer’s Aβ peptide. Journal of Molecular Biology, 377(2), 565–574. https://doi.org/10.1016/j.jmb.2007.12.079
  • King, J. V., Liang, W. G., Scherpelz, K. P., Schilling, A. B., Meredith, S. C., & Tang, W.-J. (2014). Molecular basis of substrate recognition and degradation by human presequence protease. Structure (London, England : 1993), 22(7), 996–1007. https://doi.org/10.1016/j.str.2014.05.003
  • Kumar, S., Kumar Bhardwaj, V., Singh, R., & Purohit, R. (2021). Explicit-solvent molecular dynamics simulations revealed conformational regain and aggregation inhibition of I113T SOD1 by Himalayan bioactive molecules. Journal of Molecular Liquids, 339, 116798. https://doi.org/10.1016/j.molliq.2021.116798
  • Kumari, R., Kumar, R., Consortium, O. S. D. D., & Lynn, A, Open Source Drug Discovery Consortium. (2014). g _ mmpbsa - A GROMACS tool for MM-PBSA and its optimization for high-throughput binding energy calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • LaFerla, F. M., Green, K. N., & Oddo, S. (2007). Intracellular amyloid-β in Alzheimer’s disease. Nature Reviews. Neuroscience, 8(7), 499–509. https://doi.org/10.1038/nrn2168
  • Lai, R., Tang, W.-J., & Li, H. (2018). Catalytic mechanism of amyloid-β peptide degradation by insulin degrading enzyme: insights from quantum mechanics and molecular mechanics style Møller–Plesset second order perturbation theory calculation. Journal of Chemical Information and Modeling, 58(9), 1926–1934. https://doi.org/10.1021/acs.jcim.8b00406
  • Levy, E., Carman, M. D., Fernandez-Madrid, I. J., Power, M. D., Lieberburg, I., van Duinen, S. G., Bots, G. T., Luyendijk, W., & Frangione, B. (1990). Mutation of the Alzheimer’s disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science (New York, NY), 248(4959), 1124–1126. http://www.ncbi.nlm.nih.gov/pubmed/2111584 https://doi.org/10.1126/science.2111584
  • Lustbader, J. W., Cirilli, M., Lin, C., Xu, H. W., Takuma, K., Wang, N., Caspersen, C., Chen, X., Pollak, S., Chaney, M., Trinchese, F., Liu, S., Gunn-Moore, F., Lue, L.-F., Walker, D. G., Kuppusamy, P., Zewier, Z. L., Arancio, O., Stern, D., Yan, S. S., & Wu, H. (2004). ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science (New York, NY), 304(5669), 448–452. https://doi.org/10.1126/science.1091230
  • Manczak, M., Anekonda, T. S., Henson, E., Park, B. S., Quinn, J., & Reddy, P. H. (2006). Mitochondria are a direct site of Aβ accumulation in Alzheimer’s disease neurons: Implications for free radical generation and oxidative damage in disease progression. Human Molecular Genetics, 15(9), 1437–1449. https://doi.org/10.1093/hmg/ddl066
  • Manolopoulou, M., Guo, Q., Malito, E., Schilling, A. B., & Tang, W.-J. (2009). Molecular basis of catalytic chamber-assisted unfolding and cleavage of human insulin by human insulin-degrading enzyme. The Journal of Biological Chemistry, 284(21), 14177–14188. https://doi.org/10.1074/jbc.M900068200
  • Mashiach, E., Nussinov, R., & Wolfson, H. J. (2010). FiberDock: A web server for flexible induced-fit backbone refinement in molecular docking. Nucleic Acids Research, 38(Web Server), W457–W461. https://doi.org/10.1093/nar/gkq373
  • Masuda, Y., Nakanishi, A., Ohashi, R., Takegoshi, K., Shimizu, T., Shirasawa, T., & Irie, K. (2008). Verification of the intermolecular parallel beta-sheet in E22K-Abeta42 aggregates by solid-state NMR using rotational resonance: implications for the supramolecular arrangement of the toxic conformer of Abeta42. Bioscience, Biotechnology, and Biochemistry, 72(8), 2170–2175. https://doi.org/10.1271/bbb.80250
  • McCord, L. A., Liang, W. G., Dowdell, E., Kalas, V., Hoey, R. J., Koide, A., Koide, S., & Tang, W.-J. (2013). Conformational states and recognition of amyloidogenic peptides of human insulin-degrading enzyme. Proceedings of the National Academy of Sciences of the United States of America, 110(34), 13827–13832. https://doi.org/10.1073/pnas.1304575110
  • Miners, J. S., Barua, N., Kehoe, P. G., Gill, S., & Love, S. (2011). Aβ-degrading enzymes: Potential for treatment of Alzheimer disease. Journal of Neuropathology and Experimental Neurology, 70(11), 944–959. https://doi.org/10.1097/NEN.0b013e3182345e46
  • Nilsberth, C., Westlind-Danielsson, A., Eckman, C. B., Condron, M. M., Axelman, K., Forsell, C., Stenh, C., Luthman, J., Teplow, D. B., Younkin, S. G., Näslund, J., & Lannfelt, L. (2001). The ‘Arctic’ APP mutation (E693G) causes Alzheimer’s disease by enhanced Abeta protofibril formation. Nature Neuroscience, 4(9), 887–893. https://doi.org/10.1038/nn0901-887
  • Pagani, L., & Eckert, A. (2011). Amyloid-beta interaction with mitochondria. International Journal of Alzheimer's Disease, 2011, 925050–925012. https://doi.org/10.4061/2011/925050
  • Pérez, A., Morelli, L., Cresto, J. C., & Castaño, E. M. (2000). Degradation of soluble amyloid beta-peptides 1-40, 1-42, and the Dutch variant 1-40Q by insulin degrading enzyme from Alzheimer disease and control brains. Neurochemical Research, 25(2), 247–255. https://doi.org/10.1023/a:1007527721160
  • Pinho, C. M., Teixeira, P. F., & Glaser, E. (2014). Mitochondrial import and degradation of amyloid-β peptide. Biochimica et Biophysica Acta, 1837(7), 1069–1074. https://doi.org/10.1016/j.bbabio.2014.02.007
  • Qin, W., & Jia, J. (2008). Down-regulation of insulin-degrading enzyme by presenilin 1 V97L mutant potentially underlies increased levels of amyloid beta 42. The European Journal of Neuroscience, 27(9), 2425–2432. https://doi.org/10.1111/j.1460-9568.2008.06207.x
  • Reddy, P. H. (2009). Amyloid beta, mitochondrial structural and functional dynamics in Alzheimer’s disease. Experimental Neurology, 218(2), 286–292. https://doi.org/10.1016/j.expneurol.2009.03.042
  • Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F., & Schroeder, M. (2015). PLIP: Fully automated protein-ligand interaction profiler. Nucleic Acids Research, 43(W1), W443–W447. https://doi.org/10.1093/nar/gkv315
  • Scheurer, M., Rodenkirch, P., Siggel, M., Bernardi, R. C., Schulten, K., Tajkhorshid, E., & Rudack, T. (2018). PyContact: Rapid, customizable, and visual analysis of noncovalent interactions in MD simulations. Biophysical Journal, 114(3), 577–583. https://doi.org/10.1016/j.bpj.2017.12.003
  • Serpell, L. C. (2000). Alzheimer’s amyloid fibrils: Structure and assembly. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1502(1), 16–30. https://doi.org/10.1016/S0925-4439(00)00029-6
  • Serrano-Pozo, A., Frosch, M. P., Masliah, E., & Hyman, B. T. (2011). Neuropathological alterations in Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 1(1), a006189. https://doi.org/10.1101/cshperspect.a006189
  • Stahl, A., Moberg, P., Ytterberg, J., Panfilov, O., Brockenhuus Von Lowenhielm, H., Nilsson, F., & Glaser, E. (2002). Isolation and identification of a novel mitochondrial metalloprotease (PreP) that degrades targeting presequences in plants. The Journal of Biological Chemistry, 277(44), 41931–41939. https://doi.org/10.1074/jbc.M205500200
  • Tang, T.-C., Hu, Y., Kienlen-Campard, P., El Haylani, L., Decock, M., Van Hees, J., Fu, Z., Octave, J.-N., Constantinescu, S. N., & Smith, S. O. (2014). Conformational changes induced by the A21G Flemish mutation in the amyloid precursor protein lead to increased Aβ production. Structure (London, England : 1993), 22(3), 387–396. https://doi.org/10.1016/j.str.2013.12.012
  • Tovchigrechko, A., & Vakser, I. A. (2006). GRAMM-X public web server for protein-protein docking. Nucleic Acids Research, 34(Web Server issue), W310–W314. https://doi.org/10.1093/nar/gkl206
  • Tsubuki, S., Takai, Y., & Saido, T. C. (2003). Dutch, Flemish, Italian, and Arctic mutations of APP and resistance of Aβ to physiologically relevant proteolytic degradation. The Lancet, 361(9373), 1957–1958. https://doi.org/10.1016/S0140-6736(03)13555-6
  • Van Broeckhoven, C., Haan, J., Bakker, E., Hardy, J. A., Van Hul, W., Wehnert, A., Vegter-Van der Vlis, M., & Roos, R. A. (1990). Amyloid beta protein precursor gene and hereditary cerebral hemorrhage with amyloidosis (Dutch). Science (New York, NY), 248(4959), 1120–1122. http://www.ncbi.nlm.nih.gov/pubmed/1971458 https://doi.org/10.1126/science.1971458
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Van Nostrand, W. E., Melchor, J. P., Cho, H. S., Greenberg, S. M., & Rebeck, G. W. (2001). Pathogenic effects of D23N Iowa mutant amyloid β-protein. The Journal of Biological Chemistry, 276(35), 32860–32866. https://doi.org/10.1074/jbc.M104135200
  • Weggen, S., & Beher, D. (2012). Molecular consequences of amyloid precursor protein and presenilin mutations causing autosomal-dominant Alzheimer’s disease. Alzheimer's Research & Therapy, 4(2), 9. https://doi.org/10.1186/alzrt107

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.