328
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Therapeutic role of traditionally used Indian medicinal plants and spices in combating COVID-19 pandemic situation

& ORCID Icon
Pages 5894-5913 | Received 23 Apr 2022, Accepted 20 Jun 2022, Published online: 30 Jun 2022

References

  • Abd Rani, N. Z., Husain, K., & Kumolosasi, E. (2018). Moringa Genus: A review of phytochemistry and pharmacology. Frontiers in Pharmacology, 9, 108. doi: 10.3389/fphar.2018.0010
  • Ahmad, S., Abbasi, H. W., Shahid, S., Gul, S., & Abbasi, S. W. (2021). Molecular docking, simulation and MM-PBSA studies of Nigella sativa compounds: A computational quest to identify potential natural antiviral for COVID-19 treatment. Journal of Biomolecular Structure & Dynamics, 39(12), 4225–4233. https://doi.org/10.1080/07391102.2020.1775129
  • Alberca, R. W., Teixeira, F. M. E., Beserra, D. R., de Oliveira, E. A., Andrade, M. M. S., Pietrobon, A. J., & Sato, M. N. (2020). Perspective: The potential effects of Naringenin in COVID-19. Frontiers in Immunology, 11, 570919. https://doi.org/10.3389/fimmu.2020.570919
  • Al-Tawfiq, J. A., & Perl, T. M. (2015). Middle East respiratory syndrome coronavirus in healthcare settings. Current Opinion in Infectious Diseases, 28(4), 392–396. https://doi.org/10.1097/QCO.0000000000000178
  • Antonio, A., Wiedemann, L., & Veiga-Junior, V. F. (2020). Natural products’ role against COVID-19. RSC Advances, 10(39), 23379–23393. https://doi.org/10.1039/d0ra03774e
  • Arden, K. E., Nissen, M. D., Sloots, T. P., & Mackay, I. M. (2005). New human coronavirus, HCoVNL63, associated with severe lower respiratory tract disease in Australia. Journal of Medical Virology, 75(3), 455–462. https://doi.org/10.1002/jmv.20288
  • Arreola, R., Quintero-Fabián, S., López-Roa, R. I., Flores-Gutiérrez, E. O., Reyes-Grajeda, J. P., Carrera-Quintanar, L., & Ortuño-Sahagún, D. (2015). Immunomodulation and anti-inflammatory effects of garlic compounds. Journal of Immunology Research, 2015, 401630. https://doi.org/10.1155/2015/401630
  • Ayurveda’s immunity-boosting measures for self-care during COVID 19 crisis Central Government Health Scheme (CGHS Mumbai, India). https://www.ayush.gov.in/docs/123.pdf. [Accessed 2021 Apr 10].
  • Badam, L., Joshi, S. P., & Bedekar, S. S. (1999). In vitro antiviral activity of neem (Azadirachta indica. A. Juss) leaf extract against group B coxsackieviruses. Journal of Communicable Diseases, 31, 79–90.
  • Baez-Santos, Y. M., St. John, S. E., & Mesecar, A. D. (2015). The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds. Antiviral Research, 115, 21–38. https://doi.org/10.1016/j.antiviral.2014.12.015
  • Bani, S., Gautam, M., Sheikh, F. A., Khan, B., Satti, N. K., Suri, K. A., Qazi, G. N., & Patwardhan, B. (. (2006). Selective th1 up-regulating activity of withania somnifera aqueous extract in an experimental system using flow cytometry. Journal of Ethnopharmacology, 107(1), 107–115. https://doi.org/10.1016/j.jep.2006.02.016
  • Bano, S., Hameed, A., Al-Rashida, M., Iftikhar, S, Iqbal, J. (2021). Recent Advances Towards Drug Design Targeting the Protease of 2019 Novel Coronavirus (2019-nCoV). Current Medicinal Chemistry, 28(22), 4484–4498. https://doi.org/10.2174/092986732766201027153617.
  • Basurra, R. S., Wang, S. M., & Alhoot, M. A. (2021). Nigella sativa (Black Seed) as a natural remedy against viruses. Journal of Pure and Applied Microbiology, 15(1), 29–41. https://doi.org/10.22207/JPAM.15.1.26
  • Bayan, L., Koulivand, P. H., & Gorji, A. (2014). Garlic: A review of potential therapeutic effects. Avicenna Journal of Phytomedicine, 4(1), 1–14.
  • Beura, S., & Chetti, P. (2021). In-silico strategies for probing chloroquine based inhibitors against SARS-CoV-2. Journal of Biomolecular Structure & Dynamics, 39(10), 3747–3759. https://doi.org/10.1080/07391102.2020.1772111
  • Bhat, H. P., Jakribettu, R. P., Boloor, R., Fayad, R., & Baliga, M. S. (2015). Use of ayurvedic medicinal plants as immunomodulators in geriatrics: Preclinical studies. Watson RR, Foods and Dietary Supplements in the Prevention and Treatment of Disease in Older Adults., Academic Press. 143–149. https://doi.org/10.1016/B978-0-12-418680-4.00015-4
  • Biswas, K., Chattopadhyay, I., Banerjee, R. K., & Bandyopadhyay, V. (2002). Biological and medicinal properties of Neem (Azadirachta indica). Curr Sci, 82, 1136–1345.
  • Bolcato, G., Bissaro, M., Pavan, M., Sturlese, M., & Moro, S. (2020). Targeting the coronavirus SARS-CoV-2: Computational insights into the mechanism of action of the protease inhibitors lopinavir, ritonavir and nelfinavir. Scientific Reports, 10(1), 20927. https://doi.org/10.1038/s41598-020-77700-z
  • Borkotoky, S., & Banerjee, M. (2021). A computational prediction of SARS-CoV-2 structural protein inhibitors from Azadirachta indica (Neem). Journal of Biomolecular Structure & Dynamics, 39(11), 4111–4121. https://doi.org/10.1080/07391102.2020.1774419
  • Bosch, B. J., van der Zee, R., de Haan, C. A., & Rottier, P. J. (2003). The coronavirus spike protein is a class I virus fusion protein: Structural and functional characterization of the fusion core complex. Journal of Virology, 77(16), 8801–8811. https://doi.org/10.1128/jvi.77.16.8801-8811.2003
  • Butt, M. S., Pasha, I., Sultan, M. T., Randhawa, M. A., Saeed, F., & Ahmed, W. (2013). Black pepper and health claims: A comprehensive treatise. Critical Reviews in Food Science and Nutrition, 53(9), 875–886. https://doi.org/10.1080/10408398.2011.571799
  • CDC. Severe acute respiratory syndrome. Available online: https://www.cdc.gov/sars/about/fs-sars.html [accessed 2018 Dec 20].
  • Chacko, S. M., Thambi, P. T., Kuttan, R., & Nishigaki, I. (2010). Beneficial effects of green tea: A literature review. Chinese Medicine, 5(1), 13–19. https://doi.org/10.1186/1749-8546-5-13
  • Chakraborty, A. J., Uddin, T. M., Matin Zidan, B. M. R., Mitra, S., Das, R., Nainu, F., Dhama, K., Roy, A., Hossain, M. J., Khusro, A., & Emran, T. B. (2022). Allium cepa: A Treasure of Bioactive Phytochemicals with Prospective Health Benefits. Evidence-Based Complementary and Alternative Medicine: eCAM, 2022, 4586318. https://doi.org/10.1155/2022/4586318
  • Chen, C. N., Lin, C. P., Huang, K. K., Chen, W. C., Hsieh, H. P., Liang, P. H., & Hsu, J. T. (2005). Inhibition of SARS-CoV 3C-like protease activity by Theaflavin-3,3-digallate (TF3). Evidence-Based Complementary and Alternative Medicine: eCAM, 2(2), 209–215. https://doi.org/10.1093/ecam/neh081
  • Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T., Zhang, X., & Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. The Lancet, 395(10223), 507–513. https://doi.org/10.1016/S0140-6736(20)30211-7
  • Liu, W., Zheng, W., Cheng, L., Li, M., Huang, J., Bao, S., Xu, Q., & Ma, Z. (2022). Citrus fruits are rich in flavonoids for immunoregulation and potential targeting ACE2. Natural Products and Bioprospecting, 12(4), 1–10. https://doi.org/10.1007/s13659-022-00325-4
  • Colson, P., Rolain, J. M., Lagier, J. C., Brouqui, P., & Raoult, D. (2020). Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. International Journal of Antimicrobial Agents, 55(4), 105932. https://doi.org/10.1016/j.ijantimicag.2020.105932
  • Coperchini, F., Chiovato, L., Croce, L., Magri, F., & Rotondi, M. (2020). The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine & Growth Factor Reviews, 53, 25–32. https://doi.org/10.1016/j.cytogfr.2020.05.003
  • Dabaghian, F., Khanavi, M., & Zarshenas, M. M. (2020). Bioactive compounds with possible inhibitory activity of angiotensin-converting enzyme-II; a gate to manage and prevent COVID-19. Medical Hypotheses, 143, 109841. https://doi.org/10.1016/j.mehy.2020.109841
  • Dar, N. J., Hamid, A., & Ahmad, M. (2015). Pharmacologic overview of withania somnifera, the Indian ginseng. Cellular and Molecular Life Sciences: CMLS, 72(23), 4445–4460. https://doi.org/10.1007/s00018-015-2012-1
  • Das, S., Sarmah, S., Lyndem, S., & Roy, A. S. (2021). An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. Journal of Biomolecular Structure & Dynamics, 39(9), 3347–3357.
  • Debnath, B., Debnath, P., Ghosh, R., & Debnath, S. (2021). In silico identification of potential inhibitors of SARS-CoV-2 papain-like protease from natural sources: A natural weapon to fight COVID-19. Coronaviruses, 2(8), e260721188689. https://doi.org/10.2174/2666796701999201203211330
  • Debnath, P., Debnath, B., Bhaumik, S., & Debnath, S. (2020). In silico identification of potential inhibitors of ADP-ribose phosphatase of SARS-CoV-2 nsP3 by combining E-pharmacophore- and receptor-based virtual screening of database. ChemistrySelect, 5(30), 9388–9393. https://doi.org/10.1002/slct.202001419
  • Denaro, M., Smeriglio, A., Barreca, D., De Francesco, C., Occhiuto, C., Milano, G., & Trombetta, D. (2020). Antiviral activity of plants and their isolated bioactive compounds: An update. Phytotherapy Research: PTR, 34(4), 742–768. https://doi.org/10.1002/ptr.6575
  • Eilat-Adar, S., Sinai, T., Yosefy, C., & Henkin, Y. (2013). Nutritional recommendations for cardiovascular disease prevention. Nutrients, 5(9), 3646–3683. https://doi.org/10.3390/nu5093646
  • Elsayed, E. A., El Enshasy, H., Wadaan, M. A., & Aziz, R. (2014). Mushrooms: A potential natural source of anti-inflammatory compounds for medical applications. Mediators of Inflammation, 2014, 1–15. https://doi.org/10.1155/2014/805841
  • Fehr, A. R., Jankevicius, G., Ahel, I., & Perlman, S. (2018). Viral macrodomains: Unique mediators of viral replication and pathogenesis. Trends in Microbiology, 26(7), 598–610. https://doi.org/10.1016/j.tim.2017.11.011
  • Fischer, A., Sellner, M., Neranjan, S., Smieško, M. & Lill, M. A. (2020). Potential inhibitors for novel coronavirus protease identified by virtual screening of 606 million compounds. International Journal of Molecular Sciences, 21(10), 3626. https://doi.org/10.3390/ijms21103626.
  • Gańczak, M. (2015). Etiological, epidemiological and clinical aspects of coronavirus infection MERS-CoV. Polski Merkuriusz Lekarski: Organ Polskiego Towarzystwa Lekarskiego, 38(223), 46–50.
  • Gao, J., Tian, Z., & Yang, X. (2020). Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Bioscience Trends, 14(1), 72–73. https://doi.org/10.5582/bst.2020.01047
  • Ghoke, S. S., Sood, R., Kumar, N., Pateriya, A. K., Bhatia, S., Mishra, A., Dixit, R., Singh, V. K., Desai, D. N., Kulkarni, D. D., Dimri, U., & Singh, V. P. (2018). Evaluation of antiviral activity of Ocimum sanctum and Acacia arabica leaves extracts against H9N2 virus using embryonated chicken egg model. BMC Complementary and Alternative Medicine, 18(1), 174. https://doi.org/10.1186/s12906-018-2238-1
  • Ghosh, R., Chakraborty, A., Biswas, A., & Chowdhuri, S. (2021). Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors - an in silico docking and molecular dynamics simulation study. Journal of Biomolecular Structure & Dynamics, 39(12), 4362–4374. https://doi.org/10.1080/07391102.2020.1779818
  • Girija, P. L. T., & Sivan, N. (2022 Jan-Mar). Ayurvedic treatment of COVID-19/SARSCoV-2: A case report. Journal of Ayurveda and Integrative Medicine, 13(1), 100329. https://doi.org/10.1016/j.jaim.2020.06.001
  • Gogoi, M., Borkotoky, M., Borchetia, S., Chowdhury, P., Mahanta, S., & Barooah, A. K. (2021). Black tea bioactives as inhibitors of multiple targets of SARS-CoV-2 (3CLpro, PLpro and RdRp): A virtual screening and molecular dynamic simulation study. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2021.1897679
  • Gong, P., Wang, S., Liu, M., Chen, F., Yang, W., Chang, X., Liu, N., Zhao, Y., Wang, J., & Chen, X. (2020). Extraction methods, chemical characterizations and biological activities of mushroom polysaccharides: A mini-review. Carbohydrate Research, 494, 108037. https://doi.org/10.1016/j.carres.2020.108037
  • Goyal, M. (2019). Threats and challenges of emerging viral diseases and scope of ayurveda in its prevention. Ayu, 40(2), 67–68. https://doi.org/10.4103/ayu.AYU_18_20
  • Gupta, S., Singh, A. K., Kushwaha, P. P., Prajapati, K. S., Shuaib, M., Senapati, S., & Kumar, S. (2021). Identification of potential natural inhibitors of SARS-CoV2 main protease by molecular docking and simulation studies. Journal of Biomolecular Structure & Dynamics, 39(12), 4334–4345. https://doi.org/10.1080/07391102.2020.1776157
  • Haslberger, A., Jacob, U., Hippe, B., & Karlic, H. (2020). Mechanisms of selected functional foods against viral infections with a view on COVID-19: Mini review. Functional Foods in Health and Disease, 10(5), 195–209. ):https://doi.org/10.31989/ffhd.v10i5.707
  • Henss, L., Auste, A., Schürmann, C., Schmidt, C., von Rhein, C., Mühlebach, M. D., & Schnierle, B. S. (2021). The green tea catechin epigallocatechin gallate inhibits SARS-CoV-2 infection. Journal of General Virology. 102(4), 001574.
  • Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271–280. https://doi.org/10.1016/j.cell.2020.02.052
  • Hosogaya, N., Miyazaki, T., Fukushige, Y., Takemori, S., Morimoto, S., Yamamoto, H., Hori, M., Kurokawa, T., Kawasaki, Y., Hanawa, M., Fujii, Y., Hanaoka, H., Iwami, S., Watashi, K., Yamagoe, S., Miyazaki, Y., Wakita, T., Izumikawa, K., Yanagihara, K., Mukae, H., Kohno, S. (2021). Efficacy and safety of nelfinavir in asymptomatic and mild COVID-19 patients: a structured summary of a study protocol for a multicenter, randomized controlled trial. Trials, 22(1), 309. https://doi.org/10.1186/s13063-021-05282-w.
  • Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, J., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5
  • Hui, D. S., Memish, Z. A., & Zumla, A. (2014). Severe acute respiratory syndrome vs. the Middle East respiratory syndrome. Current Opinion in Pulmonary Medicine, 20(3), 233–241. https://doi.org/10.1097/MCP.0000000000000046
  • Hussain, W., Haleem, K. S., Khan, I., Tauseef, I., Qayyum, S., Ahmed, B., & Riaz, M. N. (2017). Medicinal plants: A repository of antiviral metabolites. Future Virology, 12(6), 299–308. https://doi.org/10.2217/fvl-2016-0110
  • Huynh, T., Wang, H., & Luan, B. (2020). In silico exploration of the molecular mechanism of clinically oriented drugs for possibly inhibiting SARS-CoV-2’s main protease. The Journal of Physical Chemistry Letters, 11(11), 4413–4420. https://doi.org/10.1021/acs.jpclett.0c00994
  • Ibrahim, M. A. A., Abdelrahman, A. H. M., Hussien, T. A., Badr, E. A. A., Mohamed, T. A., El-Seedi, H. R., Pare, P. W., Efferth, T., & Hegazy, M. F. (2020). In silico drug discovery of major metabolites from spices as SARS-CoV-2 main protease inhibitors. Computers in Biology and Medicine, 126, 104046. https://doi.org/10.1016/j.compbiomed.2020.104046
  • Ibrahim, M. A. A., Abdeljawaad, K. A. A., Abdelrahman, A. H. M., & Hegazy, M. E. F. (2021). Natural-like products as potential SARS-CoV-2 Mpro inhibitors: In-silico drug discovery. Journal of Biomolecular Structure & Dynamics, 39(15), 5722–5734. https://doi.org/10.1080/07391102.2020.1790037
  • Ingawale, D. S. M., & Namdeo, A. G. (2021). Pharmacological evaluation of Ashwagandha highlighting its healthcare claims, safety, and toxicity aspects. Journal of Dietary Supplements, 18(2), 183–226. https://doi.org/10.1080/19390211.2020.1741484
  • Islam, R., Parves, M. R., Paul, A. S., Uddin, N., Rahman, M. S., Mamun, A. A., Hossain, M. N., Ali, M. A., & Halim, M. A. (2021). A molecular modelling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. Journal of Biomolecular Structure & Dynamics, 39(9), 3213–3224. https://doi.org/10.1080/07391102.2020.1761883
  • Israeli, E. (2020). Novel coronavirus that recently emerged in China. Harefuah, 159(1), 70–71.
  • Javed, H., Meeran, M. F. N., Jha, N. K., & Ojha, S. (2021). Carvacrol, a plant metabolite targeting viral protease (mpro) and ACE2 in host cells can be a possible candidate for COVID-19. Frontiers in Plant Science, 11, 601335. https://doi.org/10.3389/fpls.2020.601335
  • Khaerunnisa, S., Kurniawan, H., Awaluddin, R., Suhartati, S., & Soetjipto, S. (2020). Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Preprints. https://doi.org/10.20944/preprints202003.0226.v1
  • Kumar, H. S. A. (2020). Molecular docking of natural compounds from tulsi (Ocimum sanctum) and neem (Azadirachta indica) against SARS-CoV-2 protein target. Biology, Engineering, Medicine and Science Reports, 6(1), 11–13. https://doi.org/10.5530/bems.6.1.4
  • Kumar, S. S. G., Srilatha, G., Anita, C., & Potey, G. G. (2020). Ayurveda’s holistic lifestyle approach for the management of coronavirus disease (COVID-19): Possible role of tulsi. Int J Res Pharm Sci, 11, 16–18.
  • Kumar, V., Dhanjal, J. K., Kaul, S. C., Wadhwa, R., & Sundar, D. (2021). Withanone and caffeic acid phenethyl ester are predicted to interact with the main protease (Mpro) of SARS-CoV-2 and inhibit its activity. Journal of Biomolecular Structure & Dynamics, 39(11), 3842–3854. https://doi.org/10.1080/07391102.2020.1772108
  • Kundu, D., Selvaraj, C., Singh, S. K., & Dubey, V. K. (2021). Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target. Journal of Biomolecular Structure & Dynamics, 39(9), 3428–3434. https://doi.org/10.1080/07391102.2020.1763202
  • Li, G., & De Clercq, E. (2020). Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nature Reviews Drug Discovery, 19(3), 149–150. https://doi.org/10.1038/d41573-020-00016-0
  • Li, H. Y., Yang, M., Li, Z., & Meng, Z. (2017). Curcumin inhibits angiotensin II-induced inflammation and proliferation of rat vascular smooth muscle cells by elevating PPAR-γ activity and reducing oxidative stress. International Journal of Molecular Medicine, 39(5), 1307–1316. https://doi.org/10.3892/ijmm.2017.2924
  • Lin, L. T., Hsu, W. C., & Lin, C. C. (2014). Antiviral natural products and herbal medicines. Journal of Traditional and Complementary Medicine, 4(1), 24–35. https://doi.org/10.4103/2225-4110.124335
  • Linnakoski, R., Reshamwala, D., Veteli, P., Cortina-Escribano, M., Vanhanen, H., & Marjomaki, V. (2018). Antiviral agents from fungi: Diversity, mechanisms and potential applications. Frontiers in Microbiology, 9, 2325. https://doi.org/10.3389/fmicb.2018.02325
  • Liu, J., Bodnar, B. H., Meng, F., Khan, A., Wang, X., Saribas, S., Wang, T., Lohani, S. C., Wang, P., Wei, Z., Luo, J., Zhou, L., Wu, J., Luo, G., Li, Q., Hu, W., & Ho, W. (2021). Epigallocatechin gallate from green tea effectively blocks infection of SARS-CoV-2 and new variants by inhibiting spike binding to ACE2 receptor. Cell & Bioscience, 11(1), 168. https://doi.org/10.1186/s13578-021-00680-8
  • Määttä-Riihinen, K. R., Kähkönen, M. P., Törrönen, A. R., & Heinonen, I. M. (2005). Catechins and procyanidins in berries of vaccinium species and their antioxidant activity. Journal of Agricultural and Food Chemistry, 53(22), 8485–8491. https://doi.org/10.1021/jf050408l
  • Magro, P., Zanella, I., Pescarolo, M., Castelli, F., & Quiros-Roldan, E. (2021). Lopinavir/ritonavir: Repurposing an old drug for HIV infection in COVID-19 treatment. Biomedical Journal, 44(1), 43–53. https://doi.org/10.1016/j.bj.2020.11.005
  • Malin, J. J., Suárez, I., Priesner, V., Fätkenheuer, G., & Rybniker, J. (2020). Remdesivir against COVID-19 and Other Viral Diseases. Clinical Microbiology Reviews, 34(1), e162-220. https://doi.org/10.1128/CMR.00162-20
  • Mathpal, S., Sharma, P., Joshi, T., Joshi, T., Pande, V., & Chandra, S. (2021). Screening of potential bio-molecules from Moringa olifera against SARS-CoV-2 main protease using computational approaches. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2021.1936183
  • Maurya, V. K., Kumar, S., Prasad, A. K., Bhatt, M. L. B., & Saxena, S. K. (2020). Structure-based drug designing for potential antiviral activity of selected natural products from ayurveda against SARS-CoV-2 spike glycoprotein and its cellular receptor. Virusdisease, 31(2), 179–193. https://doi.org/10.1007/s13337-020-00598-8
  • Ministry of Ayush, Government of India. Guidelines for ayurveda practitioners for COVID 19. https://www.ayush.gov.in/docs/ayurveda.pdf
  • Motohashi, N., Vanam, A., & Gollapudi, R. (2020). In silico study of curcumin and folic acid as potent inhibitors of human transmembrane protease serine 2 in the treatment of COVID-19. INNOSC Theranostics and Pharmacological Sciences, 3(2), 3–9. https://doi.org/10.36922/itps.v3i2.935
  • Mukherjee, P. K., Banerjee, S., Biswas, S., Das, B., Kar, A., & Katiyar, C. K. (2021). Withania somnifera (L.) Dunal-modern perspectives of an ancient rasayana from ayurveda. Journal of Ethnopharmacology, 264, 113157. https://doi.org/10.1016/j.jep.2020.113157
  • Muralidharan, N., Sakthivel, R., Velmurugan, D., & Gromiha, M. M. (2021). Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 protease against COVID-19. Journal of Biomolecular Structure & Dynamics, 39(7), 2673–2678. https://doi.org/10.1080/07391102.2020.1752802
  • Nik Salleh, N. N. H., Othman, F. A., Kamarudin, N. A., & Tan, S. C. (2020). The biological activities and therapeutic potentials of baicalein extracted from Oroxylum indicum: A Systematic Review. Molecules, 25(23), 5677. https://doi.org/10.3390/molecules25235677
  • Pandey, G., & Madhuri, S. (2010). Pharmacological activities of Ocimum sanctum (Tulsi): A review. International Journal of Pharmaceutical Sciences Review and Research, 5(1), 61–66.
  • Park, R., Jang, M., Park, Y. I., Park, Y., Jung, W., Park, J., & Park, J. (2021). Epigallocatechin Gallate (EGCG), a Green Tea Polyphenol, Reduces Coronavirus Replication in a Mouse Model. Viruses, 13(12), 2533. https://doi.org/10.3390/v13122533
  • Patil, D. L., Manish, G., Jadhav, U., Mishra, S., Karupothula, S., Gairola, S., Jadhav, S., & Patwardhan, B. (2010). Physicochemical stability and biological activity of Withania somnifera extract under real-time and accelerated storage conditions. Planta Medica, 76(05), 481–488. https://doi.org/10.1055/s-0029-1186220
  • Pillaiyar, T., Meenakshisundaram, S., & Manickam, M. (2020). Recent discovery and development of inhibitors targeting coronaviruses. Drug Discovery Today, 25(4), 668–688. https://doi.org/10.1016/j.drudis.2020.01.015
  • Prajapati, S., & Kumar, N. G. V. (2020). SARS-CoV-2 pandemic: An opportunity for Indian traditional medicines (AYUSH). International Journal of Complementary and Alternative Medicine, 13(3), 103–105. https://doi.org/10.15406/ijcam.2020.13.00502
  • Rajagopal, K., Byran, G., Jupudi, S., & Vadivelan, R. (2020). Activity of phytochemical constituents of black pepper, ginger, and garlic against coronavirus (COVID-19): An in silico approach. International Journal of Health & Allied Sciences, 9(5), 43–50. https://doi.org/10.4103/ijhas.IJHAS_55_20
  • Rangsinth, P., Sillapachaiyaporn, C., Nilkhet, S., Tencomnao, T., Ung, A. T., & Chuchawankul, S. (2021). Mushroom-derived bioactive compounds potentially serve as the inhibitors of SARS-CoV-2 main protease: An in silico approach. Journal of Traditional and Complementary Medicine, 11(2), 158–172. https://doi.org/10.1016/j.jtcme.2020.12.002
  • Rodriguez-Mateos, A., Vauzour, D., Krueger, C. G., Shanmuganayagam, D., Reed, J., Calani, L., Mena, P., Rio, D. D., & Crozier, A. (2014). Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: An update. Archives of Toxicology, 88(10), 1803–1853.
  • Rouf, R., Uddin, S. J., Sarker, D. K., Islam, M. T., Ali, E. S., Shilpi, J. A., Nahar, L., Tiralongo, E., & Sarker, S. D. (2020). Antiviral potential of garlic (Allium sativum) and its organosulfur compounds: A systematic update of pre-clinical and clinical data. Trends in Food Science & Technology, 104, 219–234. https://doi.org/10.1016/j.tifs.2020.08.006
  • Saini, R. K., Sivanesan, I., & Keum, Y. S. (2016). Phytochemicals of Moringa oleifera: A review of their nutritional, therapeutic and industrial significance. Biotech, 6(2), 203. 10.1007/s13205-016-0526-3.
  • Salem, M. L., & Hossain, M. S. (2000). Protective effect of black seed oil from Nigella sativa against murine cytomegalovirus infection. International Journal of Immunopharmacology. 22(9), 729–740. https://doi.org/10.1016/S0192-0561(00)00036-9
  • Sampangi-Ramaiah, M. H., Vishwakarma, R., & Shaanker, R. U. (2020). Molecular docking analysis of selected natural products from plants for inhibition of SARS-CoV-2 main protease. Current Science, 118(7), 1087–1092. https://doi.org/10.18520/cs/v118/i7/1087-1092
  • Sen, D., Bhaumik, S., Debnath, P., & Debnath, S. (2021). Potentiality of Moringa oleifera against SARS-CoV-2: Identified by a rational computer aided drug design method. Journal of Biomolecular Structure and Dynamics. doi: https://doi.org/10.1080/07391102.2021.1898475 (Online ahead of print)
  • Sen, D., Debnath, B., Debnath, P., Debnath, S., Zaki, M. E. A., & Masand, V. H. (2022). Identification of potential edible mushroom as SARS-CoV-2 main protease inhibitor using rational drug design approach. Scientific Reports, 12(1), 1503. https://doi.org/10.1038/s41598-022-05349-x
  • Sen, D., Debnath, P., Debnath, B., Bhaumik, S., & Debnath, S. (2022). Identification of potential inhibitors of SARS-CoV-2 main protease and spike receptor from 10 important spices through structure-based virtual screening and molecular dynamic study. Journal of Biomolecular Structure & Dynamics, 40(2), 941–962. https://doi.org/10.1080/07391102.2020.1819883
  • Shahrajabian, M. H., Sun, W., & Cheng, Q. (2019). Clinical aspects and health benefits of ginger (Zingiberofficinale) in both traditional Chinese medicine and modern industry. Acta Agriculturae Scandinavica, Section-B. Soil & Plant Science, 69(6), 546–556. https://doi.org/10.1080/09064710.2019.1606930
  • Siddiqui, B. S., Bhatti, H. A., Begum, S., & Perwaiz, S. (2012). Evaluation of the antimycobacterium activity of the constituents from ocimum basilicum against mycobacterium tuberculosis. Journal of Ethnopharmacology, 144(1), 220–222. https://doi.org/10.1016/j.jep.2012.08.003
  • Singh, S., Taneja, M., & Majumdar, D. K. (2007). Biological activities of Ocimum sanctum L. fixed oil–an overview. Indian J Exp Biol, 45(5), 403–412.
  • Singh, A., & Mishra, A. (2021). Leucoefdin a potential inhibitor against SARS CoV-2 Mpro. Journal of Biomolecular Structure & Dynamics, 39(12), 4427–4432. https://doi.org/10.1080/07391102.2020.1777903
  • Soni, V. K., Mehta, A., Ratre, Y. K., Tiwari, A. K., Amit, A., Singh, R. P., Sonkar, S. C., Chaturvedi, N., Shukla, D., & Vishvakarma, N. K. (2020). Curcumin, a traditional spice component, can hold the promise against COVID-19? European Journal of Pharmacology, 886, 173551. https://doi.org/10.1016/j.ejphar.2020.173551
  • Su, H., Yao, S., Zhao, W., Li, M., Liu, J., Shang, W., Xie, H., Ke, C., Gao, M., Yu, K., Liu, H., Shen, J., Tang, W., Zhang, L., Zuo, J., Jiang, H., Bai, F., Wu, Y., Ye, Y., & Xu, Y. (2020). Discovery of baicalin and baicalein as novel, natural product inhibitors of SARS-CoV-2 3CL protease in vitro. BioRxiv, https://doi.org/10.1101/2020.04.13.038687(Preprint).
  • Tang, Y., Liu, J., Zhang, D., Xu, Z., Ji, J., & Wen, C. (2020). Cytokine Storm in COVID-19: The Current Evidence and Treatment Strategies. Frontiers in Immunology, 11, 1708. https://doi.org/10.3389/fimmu.2020.01708
  • Thuy, B. T. P., Ai My, T. T., Hai, N. T. T., Hieu, L. T., Hoa, T. T., Loan, H. T. P., Triet, N. T., Van Anh, T. T., Quy, P. T., Van Tat, P., Hue, N. V., Quang, D. T., Trung, N. T., Tung, V. T., Huynh, L. K., & Nhung, N. T. A. (2020). Investigation into SARS-CoV-2 resistance of compounds in garlic essential oil. ACS Omega, 5(14), 8312–8320. https://doi.org/10.1021/acsomega.0c00772
  • Tiwari, V., Darmani, N. A., Yue, B. Y., & Shukla, D. (2010). In vitro antiviral activity of neem (Azardirachta indica L.) bark extract against herpes simplex virus type-1 infection. Phytotherapy Research: PTR, 24(8), 1132–1140. https://doi.org/10.1002/ptr.3085
  • Ton, A. T., Gentile, F., Hsing, M., Ban, F., & Cherkasov, A. (2020). Rapid identification of potential inhibitors of SARS-CoV-2 main protease by deep docking of 1.3 billion compounds. Molecular Informatics, 39(8), e2000028. https://doi.org/10.1002/minf.202000028
  • Tutunchi, H., Naeini, F., Ostadrahimi, A., & Hosseinzadeh-Attar, M. J. (2020). Naringenin, a flavanone with antiviral and anti-inflammatory effects: A promising treatment strategy against COVID-19. Phytotherapy Research: PTR, 34(12), 3137–3147. https://doi.org/10.1002/ptr.6781
  • Utomo, R. Y., Ikawati, M., & Meiyanto, E. (2020). Revealing the potency of citrus and galangal constituents to halt sars-cov-2 infection. Preprints. https://doi.org/10.20944/preprints202003.0214.v1
  • Valizadeh, H., Abdolmohammadi-vahid, S., Danshina, S., Gencer, M. Z., Ammari, A., Sadeghi, A., Roshangar, L., Aslani, S., Esmaeilzadeh, A., Ghaebi, M., Valizadeh, S., & Ahmadi, M. (2020). Nano-curcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. International Immunopharmacology, 89(Pt B), 107088. 10.1186/1743-422X-2-69.
  • Vincent, M. J., Bergeron, E., Benjannet, B., Erickson, B. R., Rollin, P. E., Ksiazek, T. G., Seidah, N. G., & Nichol, S. T. (2005). Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virology Journal, 2, 69.
  • Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W., & Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 30(3), 269–271.
  • WHO. Middle East Respiratory Syndrome Coronavirus and severe acute respiratory syndrome coronavirus (SARS-CoV). http://www.who.int/emergencies/mers-cov/en/
  • Wit de, E., van Doremalen, N., Falzarano, D., & Munster, V. J. (2016). SARS and MERS: Recent insights into emerging coronaviruses. Nature Reviews. Microbiology, 14(8), 523–534.
  • Woo, P. C. Y., Lau, S. K. P., Chu, C. M., Chan, K. H., Tsoi, H. W., Huang, Y., Wong, B. H. L., Poon, R. W. S., Cai, J. J., Luk, W. K., Poon, L. L. M., Wong, S. S. Y., Guan, Y., Peiris, J. S. M., & Yuen, K. Y. (2005). Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. Journal of Virology, 79(2), 884–895. https://doi.org/10.1128/JVI.79.2.884-895.2005
  • World Health Organization, International Health Regulations Emergency Committee on novel coronavirus in China. https://www.who.int/news-room/events/detail/2020/01/30/default-calendar/international-health-regulations-emergency-committee-on-novel-coronavirus-in-china
  • Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., Wang, Q., Xu, Y., Li, M., Li, X., Zheng, M., Chen, L., & Li, H. (2020). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica. B, 10(5), 766–788.
  • Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., Hu, Y., Tao, Z. W., Tian, J. H., Pei, Y. Y., Yuan, M. L., Zhang, Y. L., Dai, F. H., Liu, Y., Wang, Q. M., Zheng, J. J., Xu, L., Holmes, E. C., & Zhang, Y. Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265–269.
  • Yang, Y., Zhu, Z., Wang, X., Zhang, X., Mu, K., Shi, Y., Peng, C., Xu, Z., & Zhu, W. (2021). Ligand-based approach for predicting drug targets and for virtual screening against COVID-19. Briefings in Bioinformatics, 22(2), 1053–1064. Doi: 10.1093/bib/bbaa422.
  • Zahedipour, F., Hosseini, S. A., Sathyapalan, T., Majeed, M., Jamialahmadi, T., Al-Rasadi, K., Banach, M., & Sahebkar, A. (2020). Potential effects of curcumin in the treatment of COVID-19 infection. Phytotherapy Research: PTR, 34(11), 2911–2920.
  • Zaher, K. S., Ahmed, W. M., & Zerizer, S. N. (2008). Observations on the biological effects of black cumin seed (Nigella sativa) and green tea (Camellia sinensis). Global Vet, 2, 198–204.
  • Zandi, K., Musall, K., Oo, A., Cao, D., Liang, B., Hassandarvish, P., Lan, S., Slack, R. L., Kirby, K. A., Bassit, L., Amblard, F., Kim, B., AbuBakar, S., Sarafianos, S. G., & Schinazi, R. F. (2021). Baicalein and baicalin inhibit SARS-CoV-2 RNA-dependent-RNA polymerase. Microorganisms, 9(5), 893. https://doi.org/10.3390/microorganisms9050893
  • Zhang, D. H., Wu, K. L., Zhang, X., Deng, S. Q., & Peng, B. (2020). In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. Journal of Integrative Medicine, 18(2), 152–158.
  • Zhang, H., Saravanan, K. M., Yang, Y., Hossain, M. T., Li, J., Ren, X., Pan, Y., & Wei, Y. (2020). Deep learning based drug screening for novel coronavirus 2019-nCov. Interdisciplinary Sciences, Computational Life Sciences, 12(3), 368–376.
  • Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., Si, H. R., Zhu, Y., Li, B., Huang, C. L., Chen, H. D., Chen, J., Luo, Y., Guo, H., Jiang, R. D., Liu, M. Q., Chen, Y., Shen, X. R., Wang, X., … Shi, L. Z. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273.
  • Zhou, Y., Hu, Y., Shen, J., Huang, Y., Martin, W., & Cheng, F. (2020). Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discovery, 6, 14. https://doi.org/10.1073/pnas.202558111.
  • Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W. (2020). Novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 382(8), 727–733. https://doi.org/10.1056/NEJMoa2001017
  • Zumla, A., Chan, J. F., Azhar, E. I., Hui, D. S., & Yuen, K. Y. (2016). Coronaviruses-drug discovery and therapeutic options. Nature Reviews. Drug Discovery, 15(5), 327–347.
  • Zumla, A., Hui, D. S., Azhar, E. I., Memish, Z. A., & Maeurer, M. (2020). Reducing mortality from 2019-nCoV: Host-directed therapies should be an option. Lancet (London, England), 395(10224), e35–e36.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.