361
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Differences between Omicron SARS-CoV-2 RBD and other variants in their ability to interact with cell receptors and monoclonal antibodies

, &
Pages 5707-5727 | Received 23 Mar 2022, Accepted 23 Jun 2022, Published online: 09 Jul 2022

References

  • Abdelnabi, R., Foo, C. S., Zhang, X., Lemmens, V., Maes, P., Slechten, B., Raymenants, J., André, E., Weynand, B., Dallmeier, K., & Neyts, J. (2022). The omicron (B.1.1.529) SARS-CoV-2 variant of concern does not readily infect Syrian hamsters. Antiviral Research, 198, 105253. https://doi.org/10.1016/j.antiviral.2022.105253
  • Abdool Karim, S. S., & de Oliveira, T. (2021). New SARS-CoV-2 variants: Clinical, public health, and vaccine implications. The New England Journal of Medicine, 384(19), 1866–1868. https://doi.org/10.1056/NEJMc2100362
  • Allen, M. P., & Tildesley, D. J. (1989). Computer simulation of liquids. Clarendon Press.
  • Andreano, E., Nicastri, E., Paciello, I., Pileri, P., Manganaro, N., Piccini, G., Manenti, A., Pantano, E., Kabanova, A., Troisi, M., Vacca, F., Cardamone, D., De Santi, C., Torres, J. L., Ozorowski, G., Benincasa, L., Jang, H., Di Genova, C., Depau, L., … Rappuoli, R. (2021). Extremely potent human monoclonal antibodies from COVID-19 convalescent patients. Cell, 184(7), 1821–1835.e16. https://doi.org/10.1016/j.cell.2021.02.035
  • Bai, C., & Warshel, A. (2020). Critical differences between the binding features of the spike proteins of SARS-CoV-2 and SARS-CoV. The Journal of Physical Chemistry. B, 124(28), 5907–5912. https://doi.org/10.1021/acs.jpcb.0c04317
  • Bakhshandeh, B., Sorboni, S. G., Javanmard, A.-R., Mottaghi, S. S., Mehrabi, M., Sorouri, F., Abbasi, A., & Jahanafrooz, Z. (2021). Variants in ACE2; potential influences on virus infection and COVID-19 severity. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 90, 104773. https://doi.org/10.1016/j.meegid.2021.104773
  • Barroso da Silva, F. L., Carloni, P., Cheung, D., Cottone, G., Donnini, S., Foegeding, E. A., Gulzar, M., Jacquier, J. C., Lobaskin, V., MacKernan, D., Mohammad Hosseini Naveh, Z., Radhakrishnan, R., & Santiso, E. E. (2020). Understanding and controlling food protein structure and function in foods: perspectives from experiments and computer simulations. Annual Review of Food Science and Technology, 11(1), 365–387. https://doi.org/10.1146/annurev-food-032519-051640
  • Barroso da Silva, F. L., Derreumaux, P., & Pasquali, S. (2018). Protein-RNA complexation driven by the charge regulation mechanism. Biochemical and Biophysical Research Communications, 498(2), 264–273. https://doi.org/10.1016/j.bbrc.2017.07.027
  • Barroso da Silva, F. L., & Dias, L. G. (2017). Development of constant-pH simulation methods in implicit solvent and applications in biomolecular systems. Biophysical Reviews, 9(5), 699–728. https://doi.org/10.1007/s12551-017-0311-5
  • Barroso da Silva, F. L., Giron, C. C., & Laaksonen, A. (2022). Electrostatic features for the Receptor binding domain of SARS-COV-2 wildtype and its variants. Compass to the severity of the future variants with the charge-rule. BioRxiv. https://doi.org/10.1101/2022.06.16.496458
  • Barroso da Silva, F. L., & MacKernan, D. (2017). Benchmarking a fast proton titration scheme in implicit solvent for biomolecular simulations. Journal of Chemical Theory and Computation, 13(6), 2915–2929. https://doi.org/10.1021/acs.jctc.6b01114
  • Barroso da Silva, F. L., Pasquali, S., Derreumaux, P., & Dias, L. G. (2016). Electrostatics analysis of the mutational and pH effects of the N-terminal domain self-association of the major ampullate spidroin. Soft Matter, 12(25), 5600–5612. https://doi.org/10.1039/c6sm00860g
  • Barton, M. I., MacGowan, S. A., Kutuzov, M. A., Dushek, O., Barton, G. J., & van der Merwe, P. A. (2021). Effects of common mutations in the SARS-CoV-2 Spike RBD and its ligand, the human ACE2 receptor on binding affinity and kinetics. eLife, 10, e70658. https://doi.org/10.7554/eLife.70658
  • Bate, N., Savva, C. G., Moody, P. C., Brown, E. A., Ball, J. K., Schwabe, J. W., Sale, J. E., & Brindle, N. P. (2021). In vitro evolution predicts emerging CoV-2 mutations with high affinity for ACE2 and cross-species binding. https://doi.org/10.1101/2021.12.23.473975
  • Batra, R., Chan, H., Kamath, G., Ramprasad, R., Cherukara, M. J., & Sankaranarayanan, S. (2020). Screening of therapeutic agents for COVID-19 using machine learning and ensemble docking studies. The Journal of Physical Chemistry Letters, 11(17), 7058–7065. https://doi.org/10.1021/acs.jpclett.0c02278
  • Baum, A., Ajithdoss, D., Copin, R., Zhou, A., Lanza, K., Negron, N., Ni, M., Wei, Y., Mohammadi, K., Musser, B., Atwal, G. S., Oyejide, A., Goez-Gazi, Y., Dutton, J., Clemmons, E., Staples, H. M., Bartley, C., Klaffke, B., Alfson, K., … Kyratsous, C. A. (2020). REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters. Science (New York, N.Y.), 370(6520), 1110–1115. https://doi.org/10.1126/science.abe2402
  • Bayarri-Olmos, R., Rosbjerg, A., Johnsen, L. B., Helgstrand, C., Bak-Thomsen, T., Garred, P., & Skjoedt, M.-O. (2021). The SARS-CoV-2 Y453F mink variant displays a pronounced increase in ACE-2 affinity but does not challenge antibody neutralization. The Journal of Biological Chemistry, 296, 100536. https://doi.org/10.1016/j.jbc.2021.100536
  • Bentley, E. G., Kirby, A., Sharma, P., Kipar, A., Mega, D. F., Bramwell, C., Penrice-Randal, R., Prince, T., Brown, J. C., Zhou, J., Screaton, G. R., Barclay, W. S., Owen, A., Hiscox, J. A., & Stewart, J. P. (2021). SARS-CoV-2 Omicron-B.1.1.529 variant leads to less severe disease than Pango B and delta variants strains in a mouse model of severe COVID-19. https://doi.org/10.1101/2021.12.26.474085
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bertoglio, F., Fühner, V., Ruschig, M., Heine, P. A., Abassi, L., Klünemann, T., Rand, U., Meier, D., Langreder, N., Steinke, S., Ballmann, R., Schneider, K.-T., Roth, K. D. R., Kuhn, P., Riese, P., Schäckermann, D., Korn, J., Koch, A., Chaudhry, M. Z., … Hust, M. (2021). A SARS-CoV-2 neutralizing antibody selected from COVID-19 patients binds to the ACE2-RBD interface and is tolerant to most known RBD mutations. Cell Reports, 36(4), 109433. https://doi.org/10.1016/j.celrep.2021.109433
  • Bozek, K., Nakayama, E. E., Kono, K., & Shioda, T. (2012). Electrostatic potential of human immunodeficiency virus type 2 and rhesus macaque simian immunodeficiency virus capsid proteins. Frontiers in Microbiology, 3, 206. https://doi.org/10.3389/fmicb.2012.00206
  • Brest, P., Refae, S., Mograbi, B., Hofman, P., & Milano, G. (2020). Host polymorphisms May impact SARS-CoV-2 infectivity. Trends in Genetics: TIG, 36(11), 813–815. https://doi.org/10.1016/j.tig.2020.08.003
  • Build structural models for several variants of SARS-CoV-2 RBD | Zenodo. (2021). https://zenodo.org/record/4780600#.YegDDf7MKMp [Accessed: 19 January 2022a].
  • Callaway, E., & Ledford, H. (2021). How bad is Omicron? What scientists know so far. Nature, 600(7888), 197–199. https://doi.org/10.1038/d41586-021-03614-z
  • Cameroni, E., Bowen, J. E., Rosen, L. E., Saliba, C., Zepeda, S. K., Culap, K., Pinto, D., VanBlargan, L. A., De Marco, A., di Iulio, J., Zatta, F., Kaiser, H., Noack, J., Farhat, N., Czudnochowski, N., Havenar-Daughton, C., Sprouse, K. R., Dillen, J. R., Powell, A. E., … Corti, D. (2022). Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature, 602(7898), 664–670. https://doi.org/10.1038/s41586-021-04386-2
  • Cao, Y., Wang, J., Jian, F., Xiao, T., Song, W., Yisimayi, A., Huang, W., Li, Q., Wang, P., An, R., Wang, J., Wang, Y., Niu, X., Yang, S., Liang, H., Sun, H., Li, T., Yu, Y., Cui, Q., … Xie, X. S. (2022). Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature, 602(7898), 657–663. https://doi.org/10.1038/s41586-021-04385-3
  • CDC COVID-19 Response Team. (2021). SARS-CoV-2 B.1.1.529 (Omicron) variant: United States, December 1–8, 2021. MMWR. Morbidity and Mortality Weekly Report, 70(50), 1731–1734. https://doi.org/10.15585/mmwr.mm7050e1
  • Cele, S., Gazy, I., Jackson, L., Hwa, S.-H., Tegally, H., Lustig, G., Giandhari, J., Pillay, S., Wilkinson, E., Naidoo, Y., Karim, F., Ganga, Y., Khan, K., Bernstein, M., Balazs, A. B., Gosnell, B. I., Hanekom, W., Moosa, M.-Y S., Lessells, R. J., de Oliveira, T., & Sigal, A, COMMIT-KZN Team. (2021a). Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma. Nature, 593(7857), 142–146. https://doi.org/10.1101/2021.01.26.21250224
  • Cele, S., Jackson, L., Khoury, D. S., Khan, K., & Moyo-Gwete, T. (2021b). SARS-CoV-2 Omicron has extensive but incomplete escape of Pfizer BNT162b2 elicited neutralization and requires ACE2 for infection. https://doi.org/10.1101/2021.12.08.21267417
  • Chen, J., Gao, K., Wang, R., Nguyen, D. D., & Wei, G.-W. (2021b). Review of COVID-19 antibody therapies. Annual Review of Biophysics, 50(1), 1–30. https://doi.org/10.1146/annurev-biophys-062920-063711
  • Chen, P., Nirula, A., Heller, B., Gottlieb, R. L., Boscia, J., Morris, J., Huhn, G., Cardona, J., Mocherla, B., Stosor, V., Shawa, I., Adams, A. C., Van Naarden, J., Custer, K. L., Shen, L., Durante, M., Oakley, G., Schade, A. E., Sabo, J., … Skovronsky, D. M. BLAZE-1 Investigators. (2021c). SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with Covid-19. The New England Journal of Medicine, 384(3), 229–237. https://doi.org/10.1056/NEJMoa2029849
  • Chen, F., Zhang, Y., Li, X., Li, W., Liu, X., & Xue, X. (2021a). The impact of ACE2 polymorphisms on COVID-19 disease: Susceptibility, severity, and therapy. Frontiers in Cellular and Infection Microbiology, 11, 753721. https://doi.org/10.3389/fcimb.2021.753721
  • Chi, X., Yan, R., Zhang, J., Zhang, G., Zhang, Y., Hao, M., Zhang, Z., Fan, P., Dong, Y., Yang, Y., Chen, Z., Guo, Y., Zhang, J., Li, Y., Song, X., Chen, Y., Xia, L., Fu, L., Hou, L., … Chen, W. (2020). A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science (New York, N.Y.), 369(6504), 650–655. https://doi.org/10.1126/science.abc6952
  • Choi, Y., Hua, C., Sentman, C. L., Ackerman, M. E., & Bailey-Kellogg, C. (2015). Antibody humanization by structure-based computational protein design. mAbs, 7(6), 1045–1057. https://doi.org/10.1080/19420862.2015.1076600
  • Colson, P., Delerce, J., Burel, E., Dahan, J., Jouffret, A., Fenollar, F., Yahi, N., Fantini, J., La Scola, B., & Raoult, D. (2021). Emergence in Southern France of a new SARS-CoV-2 variant of probably Cameroonian origin harbouring both substitutions N501Y and E484K in the spike protein. https://doi.org/10.1101/2021.12.24.21268174
  • da Silva, F. L. B., Lund, M., Jönsson, B., & Akesson, T. (2006). On the complexation of proteins and polyelectrolytes. The Journal of Physical Chemistry. B, 110(9), 4459–4464. https://doi.org/10.1021/jp054880l
  • Davies, N. G., Abbott, S., Barnard, R. C., Jarvis, C. I., Kucharski, A. J., Munday, J. D., Pearson, C. A. B., Russell, T. W., Tully, D. C., Washburne, A. D., Wenseleers, T., Gimma, A., Waites, W., Wong, K. L. M., van Zandvoort, K., Silverman, J. D., Diaz-Ordaz, K., Keogh, R., Eggo, R. M., … Edmunds, W. J. CMMID COVID-19 Working Group. (2021). Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science, 372(6538), eabg3055. https://doi.org/10.1126/science.abg3055
  • Dejnirattisai, W., Huo, J., Zhou, D., Zahradník, J., Supasa, P., Liu, C., Duyvesteyn, H. M. E., Ginn, H. M., Mentzer, A. J., Tuekprakhon, A., Nutalai, R., Wang, B., Dijokaite, A., Khan, S., Avinoam, O., Bahar, M., Skelly, D., Adele, S., Johnson, S. A., … Screaton, G. R. ISARIC4C Consortium. (2022). SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. Cell, 185(3), 467–484. https://doi.org/10.1016/j.cell.2021.12.046
  • Dejnirattisai, W., Shaw, R. H., Supasa, P., Liu, C., Stuart, A. S., Pollard, A. J., Liu, X., Lambe, T., Crook, D., Stuart, D. I., Mongkolsapaya, J., Nguyen-Van-Tam, J. S., Snape, M. D., & Screaton, G. R. (2021). Reduced neutralisation of SARS-CoV-2 omicron B.1.1.529 variant by post-immunisation serum. The Lancet. https://doi.org/10.1016/S0140-6736(21)02844-0
  • Delboni, L. A., & Barroso da Silva, F. L. (2016). On the complexation of whey proteins. Food Hydrocolloids. 55, 89–99. https://doi.org/10.1016/j.foodhyd.2015.11.010
  • Denner, J. (2020). SARS-CoV-2 and enhancing antibodies. Journal of Clinical Virology : The Official Publication of the Pan American Society for Clinical Virology, 128, 104424. https://doi.org/10.1016/j.jcv.2020.104424
  • Deshpande, A., Harris, B. D., Martinez-Sobrido, L., Kobie, J. J., & Walter, M. R. (2021). Epitope classification and RBD binding properties of neutralizing antibodies against SARS-CoV-2 variants of concern. Frontiers in Immunology, 12, 691715. https://doi.org/10.3389/fimmu.2021.691715
  • Desingu, Nagarajan& Dhama, 2022: Desingu, P.A., Nagarajan, K. and Dhama, K. (2022). Emergence of Omicron third lineage BA.3 and its importance. J Med Virol, 94, 1808–1810. https://doi.org/10.1002/jmv.27601
  • Destro, F., & Barolo, M. (2022). A review on the modernization of pharmaceutical development and manufacturing: Trends, perspectives, and the role of mathematical modeling. International Journal of Pharmaceutics, 620, 121715. https://doi.org/10.1016/j.ijpharm.2022.121715
  • Dimitrov, D. S. (2003). The secret life of ACE2 as a receptor for the SARS virus. Cell, 115(6), 652–653. https://doi.org/10.1016/S0092-8674(03)00976-0
  • Dolgin, E. (2022). Omicron thwarts some of the world’s most-used COVID vaccines. Nature, 601(7893), 311–311. https://doi.org/10.1038/d41586-022-00079-6
  • Du, L., He, Y., Zhou, Y., Liu, S., Zheng, B.-J., & Jiang, S. (2009). The spike protein of SARS-CoV: a target for vaccine and therapeutic development. Nature Reviews. Microbiology, 7(3), 226–236. https://doi.org/10.1038/nrmicro2090
  • Dulbecco, R., Vogt, M., & Strickland, A. G. R. (1956). A study of the basic aspects of neutralization of two animal viruses, Western equine encephalitis virus and poliomyelitis virus. Virology, 2(2), 162–205. https://doi.org/10.1016/0042-6822(56)90017-4
  • Durmaz, V., Köchl, K., Singh, A., Hetmann, M., Parigger, L., Krassnigg, A., Nutz, D., Korsunsky, A., König, C., Chang, L., Krebs, M., Bassetto, R., Pavkov-Keller, T., Resch, V., Gruber, K., Steinkellner, G., & Gruber, C. C. (2021). Structural-bioinformatics analysis of SARS-CoV-2 variants reveals higher hACE2 receptor binding affinity for Omicron B.1.1.529 spike RBD compared to wild-type reference. https://doi.org/10.21203/rs.3.rs-1153124/v1
  • Du, L., Yang, Y., & Zhang, X. (2021). Neutralizing antibodies for the prevention and treatment of COVID-19. Cellular & Molecular Immunology, 18(10), 2293–2306. https://doi.org/10.1038/s41423-021-00752-2
  • Edara, V. V., Norwood, C., Floyd, K., Lai, L., Davis-Gardner, M. E., Hudson, W. H., Mantus, G., Nyhoff, L. E., Adelman, M. W., Fineman, R., Patel, S., Byram, R., Gomes, D. N., Michael, G., Abdullahi, H., Beydoun, N., Panganiban, B., McNair, N., Hellmeister, K., … Suthar, M. S. (2021). Infection- and vaccine-induced antibody binding and neutralization of the B.1.351 SARS-CoV-2 variant. Cell Host & Microbe, 29(4), 516–521.e3. https://doi.org/10.1016/j.chom.2021.03.009
  • Eisenberg, D., Weiss, R. M., Terwilliger, T. C., & Wilcox, W. (1982). Hydrophobic moments and protein structure. Faraday Symposia of the Chemical Society, 17, 109. https://doi.org/10.1039/fs9821700109
  • England, R. J. A., Homer, J. J., Knight, L. C., & Ell, S. R. (1999). Nasal pH measurement: a reliable and repeatable parameter. Clinical Otolaryngology and Allied Sciences, 24(1), 67–68. https://doi.org/10.1046/j.1365-2273.1999.00223.x
  • Eswar, N., Webb, B., Marti‐Renom, M. A., Madhusudhan, M. S., Eramian, D., Shen, M., Pieper, U., & Sali, A. (2006). Comparative protein structure modeling using modeller. Current Protocols in Bioinformatics, 15(1) https://doi.org/10.1002/0471250953.bi0506s15
  • Ford, C. T., Jacob Machado, D., & Janies, D. A. (2022). Predictions of the SARS-CoV-2 Omicron variant (B.1.1.529) spike protein receptor-binding domain structure and neutralizing antibody interactions. Frontiers in Virology, 2, 830202. https://doi.org/10.3389/fviro.2022.830202
  • Fratev, F. (2021). N501Y and K417N mutations in the spike protein of SARS-CoV-2 alter the interactions with both hACE2 and human-derived antibody: A free energy of perturbation retrospective study. Journal of Chemical Information and Modeling, 61(12), 6079–6084. https://doi.org/10.1021/acs.jcim.1c01242
  • Gan, H. H., Zinno, J., Piano, F., & Gunsalus, K. C. (2022). Omicron Spike protein has a positive electrostatic surface that promotes ACE2 recognition and antibody escape. https://doi.org/10.1101/2022.02.13.480261
  • Gandhi, R. T., Malani, P. N., & del Rio, C. (2022). COVID-19 therapeutics for nonhospitalized patients. JAMA, 327(7), 617. https://doi.org/10.1001/jama.2022.0335
  • Gao, S., & Zhang, L. (2020). ACE2 partially dictates the host range and tropism of SARS-CoV-2. Computational and Structural Biotechnology Journal, 18, 4040–4047. https://doi.org/10.1016/j.csbj.2020.11.032
  • Germain, R. N., Meier-Schellersheim, M., Nita-Lazar, A., & Fraser, I. D. C. (2011). Systems biology in immunology: A computational modeling perspective. Annual Review of Immunology, 29(1), 527–585. https://doi.org/10.1146/annurev-immunol-030409-101317
  • Giron, C. C., Laaksonen, A., & Barroso da Silva, F. L. (2020). On the interactions of the receptor-binding domain of SARS-CoV-1 and SARS-CoV-2 spike proteins with monoclonal antibodies and the receptor ACE2. Virus Research, 285, 198021. https://doi.org/10.1016/j.virusres.2020.198021
  • Giron, C. C., Laaksonen, A., & Barroso da Silva, F. L. (2021). Up state of the SARS-COV-2 spike homotrimer favors an increased virulence for new variants. Frontiers in Medical Technology, 3, 694347. https://doi.org/10.3389/fmedt.2021.694347
  • Gómez, J., Albaiceta, G. M., García-Clemente, M., López-Larrea, C., Amado-Rodríguez, L., Lopez-Alonso, I., Hermida, T., Enriquez, A. I., Herrero, P., Melón, S., Alvarez-Argüelles, M. E., Boga, J. A., Rojo-Alba, S., Cuesta-Llavona, E., Alvarez, V., Lorca, R., & Coto, E. (2020). Angiotensin-converting enzymes (ACE, ACE2) gene variants and COVID-19 outcome. Gene, 762, 145102. https://doi.org/10.1016/j.gene.2020.145102
  • Grant, O. C., Montgomery, D., Ito, K., & Woods, R. J. (2020a). 3D Models of glycosylated SARS-CoV-2 spike protein suggest challenges and opportunities for vaccine development. https://doi.org/10.1101/2020.04.07.030445
  • Grant, O. C., Montgomery, D., Ito, K., & Woods, R. J. (2020b). Analysis of the SARS-CoV-2 spike protein glycan shield reveals implications for immune recognition. Scientific Reports, 10(1), 14991. https://doi.org/10.1038/s41598-020-71748-7
  • Greaney, A. J., Loes, A. N., Crawford, K. H. D., Starr, T. N., Malone, K. D., Chu, H. Y., & Bloom, J. D. (2021). Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies. Cell Host & Microbe, 29(3), 463–476.e6. https://doi.org/10.1016/j.chom.2021.02.003
  • Hachim, A., Kavian, N., & Valkenburg, S. A. (2021). Antibody landscapes of SARS-CoV-2 can reveal novel vaccine and diagnostic targets. Current Opinion in Virology, 50, 139–146. https://doi.org/10.1016/j.coviro.2021.08.006
  • Halfmann, P. J., Iida, S., Iwatsuki-Horimoto, K., Maemura, T., Kiso, M., Scheaffer, S. M., Darling, T. L., Joshi, A., Loeber, S., Singh, G., Foster, S. L., Ying, B., Case, J. B., Chong, Z., Whitener, B., Moliva, J., Floyd, K., Ujie, M., Nakajima, N., … Kawaoka, Y. Consortium Mount Sinai Pathogen Surveillance (PSP) Study Group. (2022). SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters. Nature, 603(7902), 687–692. https://doi.org/10.1038/s41586-022-04441-6
  • Han, P., Li, L., Liu, S., Wang, Q., Zhang, D., Xu, Z., Han, P., Li, X., Peng, Q., Su, C., Huang, B., Li, D., Zhang, R., Tian, M., Fu, L., Gao, Y., Zhao, X., Liu, K., Qi, J., Gao, G. F., & Wang, P. (2022). Receptor binding and complex structures of human ACE2 to spike RBD from Omicron and Delta SARS-CoV-2. Cell, 185(4), 630–640. https://doi.org/10.1016/j.cell.2022.01.001
  • Hanai, T. (2022). Quantitative in silico analysis of SARS-CoV-2 S-RBD omicron mutant transmissibility. Talanta, 240, 123206. https://doi.org/10.1016/j.talanta.2022.123206
  • Harrison, A. G., Lin, T., & Wang, P. (2020). Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends in Immunology, 41(12), 1100–1115. https://doi.org/10.1016/j.it.2020.10.004
  • Hastie, K. M., Li, H., Bedinger, D., Schendel, S. L., Dennison, S. M., Li, K., Rayaprolu, V., Yu, X., Mann, C., Zandonatti, M., Diaz Avalos, R., Zyla, D., Buck, T., Hui, S., Shaffer, K., Hariharan, C., Yin, J., Olmedillas, E., Enriquez, A., … Saphire, E. O. CoVIC-DB Team1. (2021). Defining variant-resistant epitopes targeted by SARS-CoV-2 antibodies: A global consortium study. Science (New York, N.Y.), 374(6566), 472–478. https://doi.org/10.1126/science.abh2315
  • Hoffmann, M., Arora, P., Groß, R., Seidel, A., Hörnich, B. F., Hahn, A. S., Krüger, N., Graichen, L., Hofmann-Winkler, H., Kempf, A., Winkler, M. S., Schulz, S., Jäck, H.-M., Jahrsdörfer, B., Schrezenmeier, H., Müller, M., Kleger, A., Münch, J., & Pöhlmann, S. (2021a). SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies. Cell, 184(9), 2384–2393.e12. https://doi.org/10.1016/j.cell.2021.03.036
  • Hoffmann, M., Krüger, N., Schulz, S., Cossmann, A., Rocha, C., Kempf, A., Nehlmeier, I., Graichen, L., Moldenhauer, A.-S., Winkler, M. S., Lier, M., Dopfer-Jablonka, A., Jäck, H.-M., Behrens, G. M. N., & Pöhlmann, S. (2021b). The Omicron variant is highly resistant against antibody-mediated neutralization: Implications for control of the COVID-19 pandemic. Cell, 185(3), 447–456. https://doi.org/10.1016/j.cell.2021.12.032
  • Hu, J., Peng, P., Cao, X., Wu, K., Chen, J., Wang, K., Tang, N., & Huang, A. (2022). Increased immune escape of the new SARS-CoV-2 variant of concern Omicron. Cellular & Molecular Immunology, 19(2), 293–295. https://doi.org/10.1038/s41423-021-00836-z
  • Hu, W., Zhang, Y., Fei, P., Zhang, T., Yao, D., Gao, Y., Liu, J., Chen, H., Lu, Q., Mudianto, T., Zhang, X., Xiao, C., Ye, Y., Sun, Q., Zhang, J., Xie, Q., Wang, P.-H., Wang, J., Li, Z., Lou, J., & Chen, W. (2021). Mechanical activation of spike fosters SARS-CoV-2 viral infection. Cell Research, 31(10), 1047–1060. https://doi.org/10.1038/s41422-021-00558-x
  • Hwang, S., Baek, S.-H., & Park, D. (2022). Interaction analysis of the spike protein of delta and Omicron variants of SARS-CoV-2 with hACE2 and eight monoclonal antibodies using the fragment molecular orbital method. Journal of Chemical Information and Modeling, 62(7), 1771–1782. https://doi.org/10.1021/acs.jcim.2c00100
  • Hyltegren, K., Polimeni, M., Skepö, M., & Lund, M. (2020). Integrating all-atom and coarse-grained simulations: Toward understanding of IDPs at surfaces. Journal of Chemical Theory and Computation, 16(3), 1843–1853. https://doi.org/10.1021/acs.jctc.9b01041
  • Ibrahim, B., McMahon, D. P., Hufsky, F., Beer, M., Deng, L., Mercier, P. L., Palmarini, M., Thiel, V., & Marz, M. (2018). A new era of virus bioinformatics. Virus Research, 251, 86–90. https://doi.org/10.1016/j.virusres.2018.05.009
  • Ireson, N. J., Tait, J. S., MacGregor, G. A., & Baker, E. H. (2001). Comparison of nasal pH values in black and white individuals with normal and high blood pressure. Clinical Science (London, England: 1979), 100(3), 327–333. https://doi.org/10.1042/CS20000259
  • Ishikawa, T., Ozono, H., Akisawa, K., Hatada, R., Okuwaki, K., & Mochizuki, Y. (2021). Interaction analysis on the SARS-CoV-2 spike protein receptor binding domain using visualization of the interfacial electrostatic complementarity. The Journal of Physical Chemistry Letters, 12(46), 11267–11272. https://doi.org/10.1021/acs.jpclett.1c02788
  • Iyer, S. (2021). Apart, together: reflections on the COVID-19 pandemic. Trends in Microbiology, 29(12), 1049–1051. https://doi.org/10.1016/j.tim.2021.09.009
  • Jafary, F., Jafari, S., & Ganjalikhany, M. R. (2021). In silico investigation of critical binding pattern in SARS-CoV-2 spike protein with angiotensin-converting enzyme 2. Scientific Reports, 11(1), 6927. https://doi.org/10.1038/s41598-021-86380-2
  • Jawad, B., Adhikari, P., Podgornik, R., & Ching, W.-Y. (2022). Binding interactions between receptor-binding domain of spike protein and human angiotensin converting enzyme-2 in omicron variant. The Journal of Physical Chemistry Letters, 13(17), 3915–3921. https://doi.org/10.1021/acs.jpclett.2c00423
  • Jaworski, J. P. (2021). Neutralizing monoclonal antibodies for COVID-19 treatment and prevention. Biomedical Journal, 44(1), 7–17. https://doi.org/10.1016/j.bj.2020.11.011
  • Jurado de Carvalho, S., Ghiotto, R. C. T., & Barroso da Silva, F. L. (2006). Monte Carlo and modified Tanford − Kirkwood results for macromolecular electrostatics calculations. The Journal of Physical Chemistry. B, 110(17), 8832–8839. https://doi.org/10.1021/jp054891e
  • Khan, K., Karim, F., Cele, S., San, J. E., & Lustig, G. (2021b). Omicron infection enhances neutralizing immunity against the Delta variant. https://doi.org/10.1101/2021.12.27.21268439
  • Khan, A., Zia, T., Suleman, M., Khan, T., Ali, S. S., Abbasi, A. A., Mohammad, A., & Wei, D. (2021a). Higher infectivity of the SARS‐CoV‐2 new variants is associated with K417N/T, E484K, and N501Y mutants: An insight from structural data. Journal of Cellular Physiology, 236(10), 7045–7057. https://doi.org/10.1002/jcp.30367
  • Khetan, R., Curtis, R., Deane, C. M., Hadsund, J. T., Kar, U., Krawczyk, K., Kuroda, D., Robinson, S. A., Sormanni, P., Tsumoto, K., Warwicker, J., & Martin, A. C. R. (2022). Current advances in biopharmaceutical informatics: guidelines, impact and challenges in the computational developability assessment of antibody therapeutics. mAbs, 14(1), 2020082. https://doi.org/10.1080/19420862.2021.2020082
  • King, A. C., Woods, M., Liu, W., Lu, Z., Gill, D., & Krebs, M. R. H. (2011). High-throughput measurement, correlation analysis, and machine-learning predictions for pH and thermal stabilities of Pfizer-generated antibodies. Protein Science : a Publication of the Protein Society, 20(9), 1546–1557. https://doi.org/10.1002/pro.680
  • Kirkwood, J. G., & Shumaker, J. B. (1952). Forces between protein molecules in solution arising from fluctuations in proton charge and configuration. Proceedings of the National Academy of Sciences of the United States of America, 38(10), 863–871. https://doi.org/10.1073/pnas.38.10.863
  • Klasse, P. J. (2014). Neutralization of virus infectivity by antibodies: old problems in new perspectives. Advances in Biology, 2014, 1–24. https://doi.org/10.1155/2014/157895
  • Kozlov, M. (2021). Omicron overpowers key COVID antibody treatments in early tests. Nature, d41586-021-03829–0. https://doi.org/10.1038/d41586-021-03829-0
  • Kozlov, M. (2022). How does Omicron spread so fast? A high viral load isn’t the answer. Nature, d41586-022-00129-z. https://doi.org/10.1038/d41586-022-00129-z
  • Kumar, R., Murugan, N. A., & Srivastava, V. (2022). Improved binding affinity of omicron’s spike protein for the human angiotensin-converting enzyme 2 receptor is the key behind its increased virulence. International Journal of Molecular Sciences, 23(6), 3409. https://doi.org/10.3390/ijms23063409
  • Kumar, S., Plotnikov, N. V., Rouse, J. C., & Singh, S. K. (2018a). Biopharmaceutical Informatics: supporting biologic drug development via molecular modelling and informatics. The Journal of Pharmacy and Pharmacology, 70(5), 595–608. https://doi.org/10.1111/jphp.12700
  • Kumar, A., Prasoon, P., Kumari, C., Pareek, V., Faiq, M. A., Narayan, R. K., Kulandhasamy, M., & Kant, K. (2021). SARS‐CoV‐2‐specific virulence factors in COVID‐19. Journal of Medical Virology, 93(3), 1343–1350. https://doi.org/10.1002/jmv.26615
  • Kumar, S., Roffi, K., Tomar, D. S., Cirelli, D., Luksha, N., Meyer, D., Mitchell, J., Allen, M. J., & Li, L. (2018b). Rational optimization of a monoclonal antibody for simultaneous improvements in its solution properties and biological activity A. Protein Engineering, Design & Selection : PEDS, 31(7-8), 313–325. https://doi.org/10.1093/protein/gzy020
  • Kupferschmidt, K. (2021a). New mutations raise specter of ‘immune escape. Science (New York, N.Y.), 371(6527), 329–330. https://doi.org/10.1126/science.371.6527.329
  • Kupferschmidt, K. (2021b). Where did ‘weird’ Omicron come from? Science, 374(6572), 1179–1179. https://doi.org/10.1126/science.acx9738
  • Lan, J., He, X., Ren, Y., Wang, Z., Zhou, H., Fan, S., Zhu, C., Liu, D., Shao, B., Liu, T.-Y., Wang, Q., Zhang, L., Ge, J., Wang, T., & Wang, X. (2022). Structural and computational insights into the SARS-CoV-2 Omicron RBD-ACE2 interaction. https://doi.org/10.1101/2022.01.03.474855
  • Laurini, E., Marson, D., Aulic, S., Fermeglia, M., & Pricl, S. (2020). Computational alanine scanning and structural analysis of the SARS-CoV-2 spike protein/angiotensin-converting enzyme 2 complex. ACS Nano, 14(9), 11821–11830. https://doi.org/10.1021/acsnano.0c04674
  • Leach, A. R. (2001). Molecular modelling: principles and applications. 2nd ed. Prentice Hall.
  • Li, F. (2016). Structure, function, and evolution of coronavirus spike proteins. Annual Review of Virology, 3(1), 237–261. https://doi.org/10.1146/annurev-virology-110615-042301
  • Li, J. Z., & Gandhi, R. T. (2022). Realizing the potential of anti–SARS-CoV-2 monoclonal antibodies for COVID-19 management. JAMA, 327(5), 427. https://doi.org/10.1001/jama.2021.19994
  • Liu, L., Iketani, S., Guo, Y., Chan, J. F.-W., Wang, M., Liu, L., Luo, Y., Chu, H., Huang, Y., Nair, M. S., Yu, J., Chik, K. K.-H., Yuen, T. T.-T., Yoon, C., To, K. K.-W., Chen, H., Yin, M. T., Sobieszczyk, M. E., Huang, Y., … Ho, D. D. (2021a). Striking antibody evasion manifested by the omicron variant of SARS-CoV-2. Nature, 602(7898), 676–681. https://doi.org/10.1038/s41586-021-04388-0
  • Liu, Y., Soh, W. T., Kishikawa, J.-I., Hirose, M., Nakayama, E. E., Li, S., Sasai, M., Suzuki, T., Tada, A., Arakawa, A., Matsuoka, S., Akamatsu, K., Matsuda, M., Ono, C., Torii, S., Kishida, K., Jin, H., Nakai, W., Arase, N., … Arase, H. (2021b). An infectivity-enhancing site on the SARS-CoV-2 spike protein targeted by antibodies. Cell, 184(13), 3452–3466.e18. https://doi.org/10.1016/j.cell.2021.05.032
  • Lousa, D., Soares, C., & Barroso Da Silva, F. L. (2022). EDITORIAL: Computational approaches to foster innovation in the treatment and diagnosis of infectious diseases. Frontiers in Medical Technology, 4, 841088. https://doi.org/10.3389/fmedt.2022.841088
  • Lu, L., Mok, B. W.-Y., Chen, L.-L., Chan, J. M.-C., Tsang, O. T.-Y., Lam, B. H.-S., Chuang, V. W.-M., Chu, A. W.-H., Chan, W.-M., Ip, J. D., Chan, B. P.-C., Zhang, R., Yip, C. C.-Y., Cheng, V. C.-C., Chan, K.-H., Jin, D.-Y., Hung, I. F.-N., Yuen, K.-Y., Chen, H., & To, K. K.-W. (2021). Neutralization of SARS-CoV-2 Omicron variant by sera from BNT162b2 or Coronavac vaccine recipients. Clinical Infectious Diseases, ciab1041. https://doi.org/10.1093/cid/ciab1041
  • Lupala, C. S., Ye, Y., Chen, H., Su, X.-D., & Liu, H. (2022). Mutations on RBD of SARS-CoV-2 Omicron variant result in stronger binding to human ACE2 receptor. Biochemical and Biophysical Research Communications, 590, 34–41. https://doi.org/10.1016/j.bbrc.2021.12.079
  • Maher, M. C., Bartha, I., Weaver, S., di Iulio, J., Ferri, E., Soriaga, L., Lempp, F. A., Hie, B. L., Bryson, B., Berger, B., Robertson, D. L., Snell, G., Corti, D., Virgin, H. W., Kosakovsky Pond, S. L., & Telenti, A. (2022). Predicting the mutational drivers of future SARS-CoV-2 variants of concern. Science Translational Medicine, 14(633) https://doi.org/10.1126/scitranslmed.abk3445
  • Mallapaty, S., Callaway, E., Kozlov, M., Ledford, H., Pickrell, J., & Van Noorden, R. (2021). How COVID vaccines shaped 2021 in eight powerful charts. Nature, 600(7890), 580–583. https://doi.org/10.1038/d41586-021-03686-x
  • Mannar, D., Saville, J. W., Zhu, X., Srivastava, S. S., Berezuk, A. M., Tuttle, K. S., Marquez, A. C., Sekirov, I., & Subramaniam, S. (2022). SARS-CoV-2 Omicron variant: Antibody evasion and cryo-EM structure of spike protein–ACE2 complex. Science (New York, N.Y.), 375(6582), 760–764. https://doi.org/10.1126/science.abn7760
  • Marovich, M., Mascola, J. R., & Cohen, M. S. (2020). Monoclonal antibodies for prevention and treatment of COVID-19. JAMA, 324(2), 131–132. https://doi.org/10.1001/jama.2020.10245
  • Mascolo, S., Carleo, M. A., Contieri, M., Izzo, S., Perna, A., De Luca, A., & Esposito, V. (2021). SARS‐CoV‐2 and inflammatory responses: From mechanisms to the potential therapeutic use of intravenous immunoglobulin. Journal of Medical Virology, 93(5), 2654–2661. https://doi.org/10.1002/jmv.26651
  • Maslo, C., Friedland, R., Toubkin, M., Laubscher, A., Akaloo, T., & Kama, B. (2022). Characteristics and outcomes of hospitalized patients in South Africa during the COVID-19 omicron wave compared with previous waves. JAMA, 327(6), 583–584. https://doi.org/10.1001/jama.2021.24868
  • McCallum, M., Czudnochowski, N., Rosen, L. E., Zepeda, S. K., Bowen, J. E., Walls, A. C., Hauser, K., Joshi, A., Stewart, C., Dillen, J. R., Powell, A. E., Croll, T. I., Nix, J., Virgin, H. W., Corti, D., Snell, G., & Veesler, D. (2022). Structural basis of SARS-CoV-2 Omicron immune evasion and receptor engagement. Science (New York, N.Y.), 375(6583), 864–868. https://doi.org/10.1126/science.abn8652
  • McEwan, W. A., & James, L. C. (2015). TRIM21-dependent intracellular antibody neutralization of virus infection. In: Progress in Molecular Biology and Translational Science (129, 167–187). Elsevier. https://doi.org/10.1016/bs.pmbts.2014.10.006
  • Mendonça, D. C., Macedo, J. N., Guimarães, S. L., Barroso da Silva, F. L., Cassago, A., Garratt, R. C., Portugal, R. V., & Araujo, A. P. U. (2019). A revised order of subunits in mammalian septin complexes. Cytoskeleton (Hoboken, N.J.), 76(9–10), 457–466. https://doi.org/10.1002/cm.21569
  • Meng, B., Abdullahi, A., Ferreira, I. A. T. M., Goonawardane, N., Saito, A., Kimura, I., Yamasoba, D., Gerber, P. P., Fatihi, S., Rathore, S., Zepeda, S. K., Papa, G., Kemp, S. A., Ikeda, T., Toyoda, M., Tan, T. S., Kuramochi, J., Mitsunaga, S., Ueno, T., … Gupta, R. K, Ecuador-COVID19 Consortium. (2022). Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature, 603(7902), 706–714. https://doi.org/10.1038/s41586-022-04474-x
  • Metzger, C., Lienhard, R., Seth-Smith, H. M. B., Roloff, T., Wegner, F., Sieber, J., Bel, M., Greub, G., & Egli, A. (2021). PCR performance in the SARS-CoV-2 Omicron variant of concern? Swiss Medical Weekly, 151, w30120–50. https://doi.org/10.4414/smw.2021.w30120
  • Möhlendick, B., Schönfelder, K., Breuckmann, K., Elsner, C., Babel, N., Balfanz, P., Dahl, E., Dreher, M., Fistera, D., Herbstreit, F., Hölzer, B., Koch, M., Kohnle, M., Marx, N., Risse, J., Schmidt, K., Skrzypczyk, S., Sutharsan, S., Taube, C., … Kribben, A. (2021). ACE2 polymorphism and susceptibility for SARS-CoV-2 infection and severity of COVID-19. Pharmacogenetics and Genomics, 31(8), 165–171. https://doi.org/10.1097/FPC.0000000000000436
  • Morton, S. P., & Phillips, J. L. (2020). Computational electrostatics predict variations in SARS-CoV-2 spike and human ACE2 interactions. https://doi.org/10.1101/2020.04.30.071175
  • Mullard, A. (2021). FDA approves 100th monoclonal antibody product. Nature Reviews. Drug Discovery, 20(7), 491–495. https://doi.org/10.1038/d41573-021-00079-7
  • Nanda, H., Datta, S. A. K., Heinrich, F., Lösche, M., Rein, A., Krueger, S., & Curtis, J. E. (2010). Electrostatic interactions and binding orientation of HIV-1 matrix studied by neutron reflectivity. Biophysical Journal, 99(8), 2516–2524. https://doi.org/10.1016/j.bpj.2010.07.062
  • Narayanan, H., Dingfelder, F., Condado Morales, I., Patel, B., Heding, K. E., Bjelke, J. R., Egebjerg, T., Butté, A., Sokolov, M., Lorenzen, N., & Arosio, P. (2021). Design of biopharmaceutical formulations accelerated by machine learning. Molecular Pharmaceutics, 18(10), 3843–3853. https://doi.org/10.1021/acs.molpharmaceut.1c00469
  • Neamtu, A., Mocci, F., Laaksonen, A., & Barroso da Silva, F. L. (2022). Towards an optimal monoclonal antibody with higher binding affinity to the receptor-binding domain of SARS-CoV-2 spike proteins from different variants. https://doi.org/10.1101/2022.01.04.474958
  • Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3), 443–453. https://doi.org/10.1016/0022-2836(70)90057-4
  • Nguyen, H., Lan, P. D., Nissley, D. A., O'Brien, E. P., & Li, M. S. (2021). Electrostatic interactions explain the higher binding affinity of the CR3022 antibody for SARS-CoV-2 than the 4A8 antibody. The Journal of Physical Chemistry. B, 125(27), 7368–7379. https://doi.org/10.1021/acs.jpcb.1c03639
  • Nie, C., Sahoo, A. K., Herrmann, A., Ballauff, M., Netz, R. R., & Haag, R. (2022). Charge Matters: Mutations in Omicron variant favor binding to cells. ChemBioChem. 23(6) https://doi.org/10.1002/cbic.202100681
  • O’Toole, Á., Scher, E., Underwood, A., Jackson, B., Hill, V., McCrone, J. T., Colquhoun, R., Ruis, C., Abu-Dahab, K., Taylor, B., Yeats, C., du Plessis, L., Maloney, D., Medd, N., Attwood, S. W., Aanensen, D. M., Holmes, E. C., Pybus, O. G., & Rambaut, A. (2021). Assignment of epidemiological lineages in an emerging pandemic using the pangolin tool. Virus Evolution, 7(2), veab064. https://doi.org/10.1093/ve/veab064
  • Ortega, J. T., Jastrzebska, B., & Rangel, H. R. (2021). Omicron SARS-CoV-2 variant spike protein shows an increased affinity to the human ACE2 receptor: An in silico analysis. Pathogens, 11(1), 45. https://doi.org/10.3390/pathogens11010045
  • Ou, J., Lan, W., Wu, X., Zhao, T., Duan, B., Yang, P., Ren, Y., Quan, L., Zhao, W., Seto, D. and Chodosh, J. (2022). Tracking SARS-CoV-2 Omicron diverse spike gene mutations identifies multiple inter-variant recombination events. Signal Transduction and Targeted Therapy, 7(1), 1–9.
  • Park, Y.-J., De Marco, A., Starr, T. N., Liu, Z., Pinto, D., Walls, A. C., Zatta, F., Zepeda, S. K., Bowen, J. E., Sprouse, K. R., Joshi, A., Giurdanella, M., Guarino, B., Noack, J., Abdelnabi, R., Foo, S.-Y C., Rosen, L. E., Lempp, F. A., Benigni, F., … Veesler, D. (2022). Antibody-mediated broad sarbecovirus neutralization through ACE2 molecular mimicry. Science, 375(6579), eabm8143–454. https://doi.org/10.1126/science.abm8143
  • Parums, D. V. (2021). Editorial: Revised World Health Organization (WHO) terminology for variants of concern and variants of interest of SARS-CoV-2. Medical Science Monitor, 27 https://doi.org/10.12659/MSM.933622
  • Peckham, H., de Gruijter, N. M., Raine, C., Radziszewska, A., Ciurtin, C., Wedderburn, L. R., Rosser, E. C., Webb, K., & Deakin, C. T. (2020). Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nature Communications, 11(1), 6317. https://doi.org/10.1038/s41467-020-19741-6
  • Pereira, F., Tosta, S., Lima, M. M., Reboredo de Oliveira da Silva, L., Nardy, V. B., Gómez, M. K. A., Lima, J. G., Fonseca, V., de Oliveira, T., Lourenço, J., Alcantara, L. C., Jr., Giovanetti, M., & Leal, A. (2021). Genomic surveillance activities unveil the introduction of the SARS-CoV-2 B.1.525 variant of interest in Brazil: Case report. Journal of Medical Virology, 93(9), 5523–5526. https://doi.org/10.1002/jmv.27086
  • Pérez-Then, E., Lucas, C., Monteiro, V. S., Miric, M., & Brache, V. (2021). Immunogenicity of heterologous BNT162b2 booster in fully vaccinated individuals with CoronaVac against SARS-CoV-2 variants Delta and Omicron: the Dominican Republic Experience. https://doi.org/10.1101/2021.12.27.21268459
  • Persson, B. A., Lund, M., Forsman, J., Chatterton, D. E. W., & Åkesson, T. (2010). Molecular evidence of stereo-specific lactoferrin dimers in solution. Biophysical Chemistry, 151(3), 187–189. https://doi.org/10.1016/j.bpc.2010.06.005
  • Petrides, D., Carmichael, D., Siletti, C., & Koulouris, A. (2014). Biopharmaceutical process optimization with simulation and scheduling tools. Bioengineering (Basel, Switzerland), 1(4), 154–187. https://doi.org/10.3390/bioengineering1040154
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera? A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pinto, D., Park, Y.-J., Beltramello, M., Walls, A. C., Tortorici, M. A., Bianchi, S., Jaconi, S., Culap, K., Zatta, F., De Marco, A., Peter, A., Guarino, B., Spreafico, R., Cameroni, E., Case, J. B., Chen, R. E., Havenar-Daughton, C., Snell, G., Telenti, A., … Corti, D. (2020). Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature, 583(7815), 290–295. https://doi.org/10.1038/s41586-020-2349-y
  • Planas, D., Veyer, D., Baidaliuk, A., Staropoli, I., Guivel-Benhassine, F., Rajah, M. M., Planchais, C., Porrot, F., Robillard, N., Puech, J., Prot, M., Gallais, F., Gantner, P., Velay, A., Le Guen, J., Kassis-Chikhani, N., Edriss, D., Belec, L., Seve, A., … Schwartz, O. (2021). Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature, 596(7871), 276–280. https://doi.org/10.1038/s41586-021-03777-9
  • Plante, J. A., Mitchell, B. M., Plante, K. S., Debbink, K., Weaver, S. C., & Menachery, V. D. (2021). The variant gambit: COVID-19’s next move. Cell Host & Microbe, 29(4), 508–515. https://doi.org/10.1016/j.chom.2021.02.020
  • Poveda-Cuevas, S. A., Etchebest, C., & Barroso da Silva, F. L. (2018). Insights into the ZIKV NS1 virology from different strains through a fine analysis of physicochemical properties. ACS Omega, 3(11), 16212–16229. https://doi.org/10.1021/acsomega.8b02081
  • Poveda-Cuevas, S. A., Etchebest, C., & Barroso da Silva, F. L. (2020). Identification of electrostatic epitopes in flavivirus by computer simulations: The PROCEEDpKa method. Journal of Chemical Information and Modeling, 60(2), 944–963. https://doi.org/10.1021/acs.jcim.9b00895
  • Poveda-Cuevas, S. A., Etchebest, C., & Barroso da Silva, F. L. (2022). Self-association features of NS1 proteins from different flaviviruses. Virus Research. https://doi.org/10.1016/j.virusres.2022.198838
  • Ramaraj, T., Angel, T., Dratz, E. A., Jesaitis, A. J., & Mumey, B. (2012). Antigen–antibody interface properties: Composition, residue interactions, and features of 53 non-redundant structures. Biochimica et Biophysica Acta, 1824(3), 520–532. https://doi.org/10.1016/j.bbapap.2011.12.007
  • Reis, G., Dos Santos Moreira-Silva, E. A., Silva, D. C. M., Thabane, L., Milagres, A. C., Ferreira, T. S., Dos Santos, C. V. Q., de Souza Campos, V. H., Nogueira, A. M. R., de Almeida, A. P. F. G., Callegari, E. D., de Figueiredo Neto, A. D., Savassi, L. C. M., Simplicio, M. I. C., Ribeiro, L. B., Oliveira, R., Harari, O., Forrest, J. I., Ruton, H., … Mills, E. J. Together Investigators. (2022). Effect of early treatment with fluvoxamine on risk of emergency care and hospitalisation among patients with COVID-19: the TOGETHER randomised, platform clinical trial. The Lancet. Global Health, 10(1), e42–e51. https://doi.org/10.1016/S2214-109X(21)00448-4
  • Renn, A., Fu, Y., Hu, X., Hall, M. D., & Simeonov, A. (2020). Fruitful neutralizing antibody pipeline brings hope to defeat SARS-Cov-2. Trends in Pharmacological Sciences, 41(11), 815–829. https://doi.org/10.1016/j.tips.2020.07.004
  • Rich, R. R., Shearer, W. T., Frew, A. J., Fleisher, T. A., Schroeder, H. W., & Weyand, C. M. (2019). Clinical Immunology. Elsevier. https://doi.org/10.1016/C2015-0-00344-6
  • Rockett, R. J., Basile, K., Maddocks, S., Fong, W., & Agius, J. E. (2021). Resistance Conferring Mutations in SARS-CoV-2 delta following sotrovimab infusion. https://doi.org/10.1101/2021.12.18.21267628
  • Rössler, A., Riepler, L., Bante, D., von Laer, D., & Kimpel, J. (2022). SARS-CoV-2 Omicron variant neutralization in serum from vaccinated and convalescent persons. The New England Journal of Medicine, 386(7), 698–700. https://doi.org/10.1056/NEJMc2119236
  • S. Wu-Pong & Y. Rojanasakul (eds.). (2008). Biopharmaceutical drug design and development. Humana Press. https://doi.org/10.1007/978-1-59745-532-9
  • Sabino, E. C., Buss, L. F., Carvalho, M. P. S., Prete, C. A., Crispim, M. A. E., Fraiji, N. A., Pereira, R. H. M., Parag, K. V., da Silva Peixoto, P., Kraemer, M. U. G., Oikawa, M. K., Salomon, T., Cucunuba, Z. M., Castro, M. C., de Souza Santos, A. A., Nascimento, V. H., Pereira, H. S., Ferguson, N. M., Pybus, O. G., … Faria, N. R. (2021). Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence. The Lancet, 397(10273), 452–455. https://doi.org/10.1016/S0140-6736(21)00183-5
  • Sato, H., Yokoyama, M., & Toh, H. (2013). Genomics and computational science for virus research. Frontiers in Microbiology, 4, 42. https://doi.org/10.3389/fmicb.2013.00042
  • Sayed, S. (2021). COVID-19 and diabetes; possible role of polymorphism and rise of telemedicine. Primary Care Diabetes, 15(1), 4–9. https://doi.org/10.1016/j.pcd.2020.08.018
  • Scheepers, C., Everatt, J., Amoako, D. G., Tegally, H., Wibmer, C. K., Mnguni, A., Ismail, A., Mahlangu, B., Lambson, B. E., Martin, D. P., Wilkinson, E., San, J. E., Giandhari, J., Manamela, N., Ntuli, N., Kgagudi, P., Cele, S., Richardson, S. I., Pillay, S., … Bhiman, J. N. (2022). Emergence and phenotypic characterization of the global SARS-CoV-2 C.1.2 lineage. Nature Communications, 13(1), 1976. https://doi.org/10.1038/s41467-022-29579-9
  • Schlick, T., & Portillo-Ledesma, S. (2021). Biomolecular modeling thrives in the age of technology. Nature Computational Science, 1(5), 321–331. https://doi.org/10.1038/s43588-021-00060-9
  • Schmidt, F., Muecksch, F., Weisblum, Y., Da Silva, J., Bednarski, E., Cho, A., Wang, Z., Gaebler, C., Caskey, M., Nussenzweig, M. C., Hatziioannou, T., & Bieniasz, P. D. (2022). Plasma neutralization of the SARS-CoV-2 Omicron variant. The New England Journal of Medicine, 386(6), 599–601. https://doi.org/10.1056/NEJMc2119641
  • Schubert, M., Bertoglio, F., Steinke, S., Heine, P.A., Ynga-Durand, M.A., Maass, H., Sammartino, J.C., Cassaniti, I., Zuo, F., Du, L. & Korn, J. (2022). Human serum from SARS-CoV-2-vaccinated and COVID-19 patients shows reduced binding to the RBD of SARS-CoV-2 Omicron variant. BMC medicine, 20(1), 1–11.
  • Shah, M., & Woo, H. G. (2021). Omicron: A heavily mutated SARS-CoV-2 variant exhibits stronger binding to ACE2 and potently escapes approved COVID-19 therapeutic antibodies. Frontiers in Immunology, 12, 830527. https://doi.org/10.3389/fimmu.2021.830527
  • Shang, J., Ye, G., Shi, K., Wan, Y., Luo, C., Aihara, H., Geng, Q., Auerbach, A., & Li, F. (2020). Structural basis of receptor recognition by SARS-CoV-2. Nature, 581(7807), 221–224. https://doi.org/10.1038/s41586-020-2179-y
  • Sharma, V. K., Patapoff, T. W., Kabakoff, B., Pai, S., Hilario, E., Zhang, B., Li, C., Borisov, O., Kelley, R. F., Chorny, I., Zhou, J. Z., Dill, K. A., & Swartz, T. E. (2014). In silico selection of therapeutic antibodies for development: Viscosity, clearance, and chemical stability. Proceedings of the National Academy of Sciences of the United States of America, 111(52), 18601–18606. https://doi.org/10.1073/pnas.1421779112
  • Sharma, D., Priyadarshini, P., & Vrati, S. (2015). Unraveling the Web of Viroinformatics: Computational Tools and Databases in Virus Research S.P. Goff (ed.). Journal of Virology, 89(3), 1489–1501. https://doi.org/10.1128/JVI.02027-14
  • Simmons, G., Reeves, J. D., Rennekamp, A. J., Amberg, S. M., Piefer, A. J., & Bates, P. (2004). Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proceedings of the National Academy of Sciences of the United States of America, 101(12), 4240–4245. https://doi.org/10.1073/pnas.0306446101
  • Sokal, A., Broketa, M., Barba-Spaeth, G., Meola, A., Fernández, I., Fourati, S., Azzaoui, I., de La Selle, A., Vandenberghe, A., Roeser, A., Bouvier-Alias, M., Crickx, E., Languille, L., Michel, M., Godeau, B., Gallien, S., Melica, G., Nguyen, Y., Zarrouk, V., … Mahévas, M. (2022). Analysis of mRNA vaccination-elicited RBD-specific memory B cells reveals strong but incomplete immune escape of the SARS-CoV-2 Omicron variant. Immunity, 55(6), 1096–1104.e4. https://doi.org/10.1016/j.immuni.2022.04.002
  • Starr, T. N., Greaney, A. J., Dingens, A. S., & Bloom, J. D. (2021). Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016. Cell Reports. Medicine, 2(4), 100255. https://doi.org/10.1016/j.xcrm.2021.100255
  • Starr, T. N., Greaney, A. J., Hilton, S. K., Ellis, D., Crawford, K. H. D., Dingens, A. S., Navarro, M. J., Bowen, J. E., Tortorici, M. A., Walls, A. C., King, N. P., Veesler, D., & Bloom, J. D. (2020). Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell, 182(5), 1295–1310.e20. https://doi.org/10.1016/j.cell.2020.08.012
  • Suryamohan, K., Diwanji, D., Stawiski, E. W., Gupta, R., Miersch, S., Liu, J., Chen, C., Jiang, Y.-P., Fellouse, F. A., Sathirapongsasuti, J. F., Albers, P. K., Deepak, T., Saberianfar, R., Ratan, A., Washburn, G., Mis, M., Santhosh, D., Somasekar, S., Hiranjith, G. H., … Seshagiri, S. (2021). Human ACE2 receptor polymorphisms and altered susceptibility to SARS-CoV-2. Communications Biology, 4(1), 475. https://doi.org/10.1038/s42003-021-02030-3
  • Tao, K., Tzou, P. L., Nouhin, J., Gupta, R. K., de Oliveira, T., Kosakovsky Pond, S. L., Fera, D., & Shafer, R. W. (2021). The biological and clinical significance of emerging SARS-CoV-2 variants. Nature Reviews. Genetics, 22(12), 757–773. https://doi.org/10.1038/s41576-021-00408-x
  • Tegally, H., Wilkinson, E., Giovanetti, M., Iranzadeh, A., Fonseca, V., Giandhari, J., Doolabh, D., Pillay, S., San, E. J., Msomi, N., Mlisana, K., von Gottberg, A., Walaza, S., Allam, M., Ismail, A., Mohale, T., Glass, A. J., Engelbrecht, S., Van Zyl, G., … de Oliveira, T. (2021). Detection of a SARS-CoV-2 variant of concern in South Africa. Nature, 592(7854), 438–443. https://doi.org/10.1038/s41586-021-03402-9
  • Teixeira, A. A. R., Lund, M., & Barroso da Silva, F. L. (2010). Fast proton titration scheme for multiscale modeling of protein solutions. Journal of Chemical Theory and Computation, 6(10), 3259–3266. https://doi.org/10.1021/ct1003093
  • Tian, X., Li, C., Huang, A., Xia, S., Lu, S., Shi, Z., Lu, L., Jiang, S., Yang, Z., Wu, Y., & Ying, T. (2020). Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerging Microbes & Infections, 9(1), 382–385. https://doi.org/10.1080/22221751.2020.1729069
  • Tian, F., Tong, B., Sun, L., Shi, S., Zheng, B., Wang, Z., Dong, X., & Zheng, P. (2021). N501Y mutation of spike protein in SARS-CoV-2 strengthens its binding to receptor ACE2. eLife, 10, e69091. https://doi.org/10.7554/eLife.69091
  • Toyoshima, Y., Nemoto, K., Matsumoto, S., Nakamura, Y., & Kiyotani, K. (2020). SARS-CoV-2 genomic variations associated with mortality rate of COVID-19. Journal of Human Genetics, 65(12), 1075–1082. https://doi.org/10.1038/s10038-020-0808-9
  • Tracking SARS-CoV-2 Variants. https://www.who.int/emergencies/what-we-do/tracking-SARS-CoV-2-variants [Accessed: 7 January 2022b].
  • Tso, F. Y., Lidenge, S. J., Poppe, L. K., Peña, P. B., Privatt, S. R., Bennett, S. J., Ngowi, J. R., Mwaiselage, J., Belshan, M., Siedlik, J. A., Raine, M. A., Ochoa, J. B., Garcia-Diaz, J., Nossaman, B., Buckner, L., Roberts, W. M., Dean, M. J., Ochoa, A. C., West, J. T., & Wood, C. (2021). Presence of antibody-dependent cellular cytotoxicity (ADCC) against SARS-CoV-2 in COVID-19 plasma L. Margolis (ed.). PloS One, 16(3), e0247640. https://doi.org/10.1371/journal.pone.0247640
  • Tuckerman, M. E. (2010). Statistical mechanics: Theory and molecular simulation. Oxford University Press.
  • Ubah, O. C., Lake, E. W., Gunaratne, G. S., Gallant, J. P., Fernie, M., Robertson, A. J., Marchant, J. S., Bold, T. D., Langlois, R. A., Matchett, W. E., Thiede, J. M., Shi, K., Yin, L., Moeller, N. H., Banerjee, S., Ferguson, L., Kovaleva, M., Porter, A. J., Aihara, H., LeBeau, A. M., & Barelle, C. J. (2021). Mechanisms of SARS-CoV-2 neutralization by shark variable new antigen receptors elucidated through X-ray crystallography. Nature Communications, 12(1), 7325. https://doi.org/10.1038/s41467-021-27611-y
  • Uriu, K., Kimura, I., Shirakawa, K., Takaori-Kondo, A., Nakada, T., Kaneda, A., Nakagawa, S., & Sato, K, Genotype to Phenotype Japan (G2P-Japan) Consortium. (2021). Neutralization of the SARS-CoV-2 Mu variant by convalescent and vaccine serum. The New England Journal of Medicine, 385(25), 2397–2399. https://doi.org/10.1056/NEJMc2114706
  • VanBlargan, L. A., Errico, J. M., Halfmann, P. J., Zost, S. J., Crowe, J. E., Purcell, L. A., Kawaoka, Y., Corti, D., Fremont, D. H., & Diamond, M. S. (2022). An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nature Medicine, 28(3), 490–495. https://doi.org/10.1038/s41591-021-01678-y
  • Viana, R., Moyo, S., Amoako, D. G., Tegally, H., Scheepers, C., Althaus, C. L., Anyaneji, U. J., Bester, P. A., Boni, M. F., Chand, M., Choga, W. T., Colquhoun, R., Davids, M., Deforche, K., Doolabh, D., du Plessis, L., Engelbrecht, S., Everatt, J., Giandhari, J., … de Oliveira, T. (2022). Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature, 603(7902), 679–686. https://doi.org/10.1038/s41586-022-04411-y
  • Voloch, C. M., da Silva Francisco, R., de Almeida, L. G. P., Cardoso, C. C., Brustolini, O. J., Gerber, A. L., Guimarães, A. P. d C., Mariani, D., da Costa, R. M., Ferreira, O. C., Cavalcanti, A. C., Frauches, T. S., de Mello, C. M. B., Leitão, I. d C., Galliez, R. M., Faffe, D. S., Castiñeiras, T. M. P. P., Tanuri, A., & de Vasconcelos, A. T. R. Covid19-UFRJ Workgroup. (2021). Genomic Characterization of a Novel SARS-CoV-2 Lineage from Rio de Janeiro, Brazil C.R. Parrish (ed. Journal of Virology, 95(10) https://doi.org/10.1128/JVI.00119-21
  • Wade, R. C., Gabdoulline, R. R., Ludemann, S. K., & Lounnas, V. (1998). Electrostatic steering and ionic tethering in enzyme-ligand binding: Insights from simulations. Proceedings of the National Academy of Sciences of the United States of America, 95(11), 5942–5949. https://doi.org/10.1073/pnas.95.11.5942
  • Walls, A. C., Park, Y.-J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181(2), 281–292.e6. https://doi.org/10.1016/j.cell.2020.02.058
  • Walls, A. C., Xiong, X., Park, Y.-J., Tortorici, M. A., Snijder, J., Quispe, J., Cameroni, E., Gopal, R., Dai, M., Lanzavecchia, A., Zambon, M., Rey, F. A., Corti, D., & Veesler, D. (2019). Unexpected receptor functional mimicry elucidates activation of coronavirus fusion. Cell, 176(5), 1026–1039.e15. https://doi.org/10.1016/j.cell.2018.12.028
  • Wang, R., Chen, J., Hozumi, Y., Yin, C., & Wei, G.-W. (2022). Emerging vaccine-breakthrough SARS-CoV-2 variants. ACS Infectious Diseases, 8(3), 546–556. https://doi.org/10.1021/acsinfecdis.1c00557
  • Wang, D., Ge, Y., Zhong, B., & Liu, D. (2021a). Specific epitopes form extensive hydrogen-bonding networks to ensure efficient antibody binding of SARS-CoV-2: Implications for advanced antibody design. Computational and Structural Biotechnology Journal, 19, 1661–1671. https://doi.org/10.1016/j.csbj.2021.03.021
  • Wang, Z., Schmidt, F., Weisblum, Y., Muecksch, F., Barnes, C. O., Finkin, S., Schaefer-Babajew, D., Cipolla, M., Gaebler, C., Lieberman, J. A., Oliveira, T. Y., Yang, Z., Abernathy, M. E., Huey-Tubman, K. E., Hurley, A., Turroja, M., West, K. A., Gordon, K., Millard, K. G., … Nussenzweig, M. C. (2021b). mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature, 592(7855), 616–622. https://doi.org/10.1038/s41586-021-03324-6
  • Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K.-Y., Wang, Q., Zhou, H., Yan, J., & Qi, J. (2020). Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 181(4), 894–904.e9. 2020) https://doi.org/10.1016/j.cell.2020.03.045
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • Weinreich, D. M., Sivapalasingam, S., Norton, T., Ali, S., Gao, H., Bhore, R., Musser, B. J., Soo, Y., Rofail, D., Im, J., Perry, C., Pan, C., Hosain, R., Mahmood, A., Davis, J. D., Turner, K. C., Hooper, A. T., Hamilton, J. D., Baum, A., … Yancopoulos, G. D. Trial Investigators. (2021b). REGN-COV2, a neutralizing antibody cocktail, in outpatients with Covid-19. The New England Journal of Medicine, 384(3), 238–251. https://doi.org/10.1056/NEJMoa2035002
  • Weinreich, D. M., Sivapalasingam, S., Norton, T., Ali, S., Gao, H., Bhore, R., Xiao, J., Hooper, A. T., Hamilton, J. D., Musser, B. J., Rofail, D., Hussein, M., Im, J., Atmodjo, D. Y., Perry, C., Pan, C., Mahmood, A., Hosain, R., Davis, J. D., … Yancopoulos, G. D. (2021a). REGEN-COV antibody combination and outcomes in outpatients with Covid-19. New England Journal of Medicine, 385(23), e81. https://doi.org/10.1056/NEJMoa2108163
  • Weisblum, Y., Schmidt, F., Zhang, F., DaSilva, J., Poston, D., Lorenzi, J. C., Muecksch, F., Rutkowska, M., Hoffmann, H.-H., Michailidis, E., Gaebler, C., Agudelo, M., Cho, A., Wang, Z., Gazumyan, A., Cipolla, M., Luchsinger, L., Hillyer, C. D., Caskey, M., … Bieniasz, P. D. (2020). Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. eLife, 9, e61312. https://doi.org/10.7554/eLife.61312
  • West, A. P., Wertheim, J. O., Wang, J. C., Vasylyeva, T. I., Havens, J. L., Chowdhury, M. A., Gonzalez, E., Fang, C. E., Di Lonardo, S. S., Hughes, S., Rakeman, J. L., Lee, H. H., Barnes, C. O., Gnanapragasam, P. N. P., Yang, Z., Gaebler, C., Caskey, M., Nussenzweig, M. C., Keeffe, J. R., & Bjorkman, P. J. (2021). Detection and characterization of the SARS-CoV-2 lineage B.1.526 in New York. Nature Communications, 12(1), 4886. https://doi.org/10.1038/s41467-021-25168-4
  • Whittaker, G. R. (2021). SARS-CoV-2 spike and its adaptable furin cleavage site. The Lancet. Microbe, 2(10), e488–e489. https://doi.org/10.1016/S2666-5247(21)00174-9
  • Wibmer, C. K., Ayres, F., Hermanus, T., Madzivhandila, M., Kgagudi, P., Oosthuysen, B., Lambson, B. E., de Oliveira, T., Vermeulen, M., van der Berg, K., Rossouw, T., Boswell, M., Ueckermann, V., Meiring, S., von Gottberg, A., Cohen, C., Morris, L., Bhiman, J. N., & Moore, P. L. (2021). SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nature Medicine, 27(4), 622–625. https://doi.org/10.1038/s41591-021-01285-x
  • Wilhelm, A., Widera, M., Grikscheit, K., Toptan, T., Schenk, B., Pallas, C., Metzler, M., Kohmer, N., Hoehl, S., Helfritz, F. A., Wolf, T., Goetsch, U., & Ciesek, S. (2021). Reduced neutralization of SARS-CoV-2 Omicron variant by vaccine sera and monoclonal antibodies. https://doi.org/10.1101/2021.12.07.21267432
  • Willett, B.J., Grove, J., MacLean, O., Wilkie, C., Logan, N., De Lorenzo, G., Furnon, W., Scott, S., Manali, M., Szemiel, A., Ashraf, S., Vink, E., Harvey, W. T., Davis, C., Orton, R., Hughes, J., Holland, P., Silva, V., Pascall, D., … & Thomson. E. C. (2022). The hyper-transmissible SARS-CoV-2 Omicron variant exhibits significant antigenic change, vaccine escape and a switch in cell entry mechanism. medRxiv. https://doi.org/10.1101/2022.01.03.21268111
  • World Health Organization. (2021). Classification of Omicron (B.1.1.529): SARS-CoV-2 variant of concern. November 2021. World Health Organization. https://www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern [Accessed: 6 January 2022].
  • Xie, Y., Guo, W., Lopez-Hernadez, A., Teng, S., & Li, L. (2022). The pH effects on SARS-CoV and SARS-CoV-2 spike proteins in the process of binding to hACE2. Pathogens, 11(2), 238. https://doi.org/10.3390/pathogens11020238
  • Xie, X., Han, J.-B., Ma, G., Feng, X.-L., Li, X., Zou, Q.-C., Deng, Z.-H., & Zeng, J. (2021). China. Emerging SARS-CoV-2 B.1.621/Mu variant is prominently resistant to inactivated vaccine-elicited antibodies. Zoological Research, 42(6), 789–791. https://doi.org/10.24272/j.issn.2095-8137.2021.343
  • Xie, Y., Karki, C. B., Du, D., Li, H., Wang, J., Sobitan, A., Teng, S., Tang, Q., & Li, L. (2020). Spike proteins of SARS-CoV and SARS-CoV-2 utilize different mechanisms to bind with human ACE2. Frontiers in Molecular Biosciences, 7, 591873. https://doi.org/10.3389/fmolb.2020.591873
  • Yadav, R., Chaudhary, J. K., Jain, N., Chaudhary, P. K., Khanra, S., Dhamija, P., Sharma, A., Kumar, A., & Handu, S. (2021). Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19. Cells, 10(4), 821. https://doi.org/10.3390/cells10040821
  • Yan, W., Zheng, Y., Zeng, X., He, B., & Cheng, W. (2022). Structural biology of SARS-CoV-2: open the door for novel therapies. Signal Transduction and Targeted Therapy, 7(1), 26. https://doi.org/10.1038/s41392-022-00884-5
  • Yang, Q., Syed, A. A. S., Fahira, A., & Shi, Y. (2021a). Structural analysis of the SARS-CoV-2 Omicron variant proteins. Research (Washington, D.C.), 2021, 9769586–9769584. https://doi.org/10.34133/2021/9769586
  • Yang, T.-J., Yu, P.-Y., Chang, Y.-C., Liang, K.-H., Tso, H.-C., Ho, M.-R., Chen, W.-Y., Lin, H.-T., Wu, H.-C., & Hsu, S.-T. D. (2021b). Effect of SARS-CoV-2 B.1.1.7 mutations on spike protein structure and function. Nature Structural & Molecular Biology, 28(9), 731–739. https://doi.org/10.1038/s41594-021-00652-z
  • Yu, J., Collier, A. Y., Rowe, M., Mardas, F., Ventura, J. D., Wan, H., Miller, J., Powers, O., Chung, B., Siamatu, M., Hachmann, N. P., Surve, N., Nampanya, F., Chandrashekar, A., & Barouch, D. H. (2022). Neutralization of the SARS-CoV-2 Omicron BA.1 and BA.2 Variants. The New England Journal of Medicine, 386(16), 1579–1580. https://doi.org/10.1056/NEJMc2201849
  • Yuan, S., Ye, Z.-W., Liang, R., Tang, K., & Zhang, A. J. (2022). The SARS-CoV-2 Omicron (B.1.1.529) variant exhibits altered pathogenicity, transmissibility, and fitness in the golden Syrian hamster model. https://doi.org/10.1101/2022.01.12.476031
  • Zemla, A., Desautels, T., Lau, E. Y., Zhu, F., Arrildt, K. T., Segelke, B. W., Sundaram, S., & Faissol, D. (2021). SARS-COV-2 Omicron variant predicted to exhibit higher affinity to ACE-2 receptor and lower affinity to a large range of neutralizing antibodies, using a rapid computational platform. https://doi.org/10.1101/2021.12.16.472843
  • Zhang, W., Davis, B. D., Chen, S. S., Sincuir Martinez, J. M., Plummer, J. T., & Vail, E. (2021b). Emergence of a Novel SARS-CoV-2 Variant in Southern California. JAMA, 325(13), 1324–1326. https://doi.org/10.1001/jama.2021.1612
  • Zhang, J., Xiao, T., Cai, Y., Lavine, C. L., Peng, H., Zhu, H., Anand, K., Tong, P., Gautam, A., Mayer, M. L., Walsh, R. M., Rits-Volloch, S., Wesemann, D. R., Yang, W., Seaman, M. S., Lu, J., & Chen, B. (2021a). Membrane fusion and immune evasion by the spike protein of SARS-CoV-2 Delta variant. Science (New York, N.Y.), 374(6573), 1353–1360. https://doi.org/10.1126/science.abl9463
  • Zhao, X., Xiong, D., Luo, S., & Duan, L. (2022). Origin of the tight binding mode to ACE2 triggered by multi-point mutations in the omicron variant: a dynamic insight. Physical Chemistry Chemical Physics: PCCP, 24(15), 8724–8737. https://doi.org/10.1039/d2cp00449f
  • Zhu, Z., Chakraborti, S., He, Y., Roberts, A., Sheahan, T., Xiao, X., Hensley, L. E., Prabakaran, P., Rockx, B., Sidorov, I. A., Corti, D., Vogel, L., Feng, Y., Kim, J.-O., Wang, L.-F., Baric, R., Lanzavecchia, A., Curtis, K. M., Nabel, G. J., … Dimitrov, D. S. (2007). Potent cross-reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies. Proceedings of the National Academy of Sciences of the United States of America, 104(29), 12123–12128. https://doi.org/10.1073/pnas.0701000104
  • Zuo, F., Abolhassani, H., Du, L., Piralla, A., & Bertoglio, F. (2022). Heterologous immunization with inactivated vaccine followed by mRNA booster elicits strong humoral and cellular immune responses against the SARS-CoV-2 Omicron variant. https://doi.org/10.1101/2022.01.04.22268755

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.