174
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Key interactions of pyrimethamine derivatives specific to wild-type and mutant P. falciparum dihydrofolate reductase based on 3D-QSAR, MD simulations and quantum chemical calculations

, , , , , ORCID Icon & ORCID Icon show all
Pages 5728-5743 | Received 02 Feb 2022, Accepted 26 Jun 2022, Published online: 09 Jul 2022

References

  • Abbat, S., Jain, V., & Bharatam, P. V. (2015). Origins of the specificity of inhibitor P218 toward wild-type and mutant PfDHFR: a molecular dynamics analysis. Journal of Biomolecular Structure & Dynamics, 33(9), 1913–1928. https://doi.org/10.1080/07391102.2014.979231
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Adane, L., & Bharatam, P. V. (2009). 3D-QSAR analysis of cycloguanil derivatives as inhibitors of A16V + S108T mutant Plasmodium falciparum dihydrofolate reductase enzyme. Journal of Molecular Graphics & Modelling, 28(4), 357–367. https://doi.org/10.1016/j.jmgm.2009.09.001
  • Aouidate, A., Ghaleb, A., Ghamali, M., Chtita, S., Choukrad, M., Sbai, A., Bouachrine, M., & Lakhlifi, T. (2017). Combined 3D-QSAR and molecular docking study on 7,8-dialkyl-1,3-diaminopyrrolo-[3,2-f] Quinazoline series compounds to understand the binding mechanism of DHFR inhibitors. Journal of Molecular Structure, 1139, 319–327. https://doi.org/10.1016/j.molstruc.2017.03.039
  • BIOVIA, Dassault Systèmes. (2017). Discovery Studio Visualizer. Dassault Systèmes.
  • Calic, P. P. S., Mansouri, M., Scammells, P. J., & McGowan, S. (2020). Driving antimalarial design through understanding of target mechanism. Biochemical Society Transactions, 48(5), 2067–2078. https://doi.org/10.1042/BST20200224
  • Chughlay, M. F., Rossignol, E., Donini, C., El Gaaloul, M., Lorch, U., Coates, S., Langdon, G., Hammond, T., Möhrle, J., & Chalon, S. (2020). First-in-human clinical trial to assess the safety, tolerability and pharmacokinetics of P218, a novel candidate for malaria chemoprotection. British Journal of Clinical Pharmacology, 86(6), 1113–1124. https://doi.org/10.1111/bcp.14219
  • Cramer, R. D., Patterson, D. E., & Bunce, J. D. (1988). Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. Journal of the American Chemical Society, 110(18), 5959–5967. https://doi.org/10.1021/ja00226a005
  • Cruciani, G., Carosati, E., & Clementi, S. (2003). 25—Three-dimensional quantitative structure-property relationships. In Camille G. Wermuth (Ed.), The Practice of Medicinal Chemistry (2nd ed., pp. 405–416). Academic Press.
  • Dewangan, D., Vaishnav, Y., Mishra, A., Jha, A. K., Verma, S., & Badwaik, H. (2021). Synthesis, molecular docking, and biological evaluation of Schiff base hybrids of 1,2,4-triazole-pyridine as dihydrofolate reductase inhibitors. Current Research in Pharmacology and Drug Discovery, 2, 100024. https://doi.org/10.1016/j.crphar.2021.100024
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., … Fox, D. J. (2016). Gaussian 09 Revision A.02.
  • Fu, Y., Liu, Y.-X., Yi, K.-H., Li, M.-Q., Li, J.-Z., & Ye, F. (2019). Quantitative structure activity relationship studies and molecular dynamics simulations of 2-(Aryloxyacetyl)cyclohexane-1,3-diones derivatives as 4-hydroxyphenylpyruvate dioxygenase inhibitors. Frontiers in Chemistry, 7, 556. https://doi.org/10.3389/fchem.2019.00556
  • Hadni, H., Bakhouch, M., & Elhallaoui, M. (2021). 3D-QSAR, molecular docking, DFT and ADMET studies on quinazoline derivatives to explore novel DHFR inhibitors. Journal of Biomolecular Structure and Dynamics, 1–15. https://doi.org/10.1080/07391102.2021.2004233
  • Harrach, M. F., & Drossel, B. (2014). Structure and dynamics of TIP3P, TIP4P, and TIP5P water near smooth and atomistic walls of different hydroaffinity. The Journal of Chemical Physics, 140(17), 174501. https://doi.org/10.1063/1.4872239
  • Hollingsworth, S. A., & Dror, R. O. (2018). Molecular dynamics simulation for all. Neuron, 99(6), 1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011
  • Honorio, P., Sainimnuan, S., Hannongbua, S., & Saparpakorn, P. (2021). Binding interaction of protoberberine alkaloids against acetylcholinesterase (AChE) using molecular dynamics simulations and QM/MM calculations. Chemico-Biological Interactions, 344, 109523. https://doi.org/10.1016/j.cbi.2021.109523
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins, 65(3), 712–725. https://doi.org/10.1002/prot.21123
  • Huang, H.-J., Yu, H. W., Chen, C.-Y., Hsu, C.-H., Chen, H.-Y., Lee, K.-J., Tsai, F.-J., & Chen, C. Y.-C. (2010). Current developments of computer-aided drug design. J Taiwan Inst Chem Eng,.41(6), 623–635. https://doi.org/10.1016/j.jtice.2010.03.017
  • Kamchonwongpaisan, S., Charoensetakul, N., Srisuwannaket, C., Taweechai, S., Rattanajak, R., Vanichtanankul, J., Vitsupakorn, D., Arwon, U., Thongpanchang, C., Tarnchompoo, B., Vilaivan, T., & Yuthavong, Y. (2020). Flexible diaminodihydrotriazine inhibitors of Plasmodium falciparum dihydrofolate reductase: Binding strengths, modes of binding and their antimalarial activities. European Journal of Medicinal Chemistry, 195, 112263. https://doi.org/10.1016/j.ejmech.2020.112263
  • Kirchmair, J., Markt, P., Distinto, S., Wolber, G., & Langer, T. (2008). Evaluation of the performance of 3D virtual screening protocols: RMSD comparisons, enrichment assessments, and decoy selection—What can we learn from earlier mistakes? Journal of Computer-Aided Molecular Design, 22(3-4), 213–228. https://doi.org/10.1007/s10822-007-9163-6
  • Klebe, G., Abraham, U., & Mietzner, T. (1994). Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. Journal of Medicinal Chemistry, 37(24), 4130–4146. https://doi.org/10.1021/jm00050a010
  • Kroemer, R. T., Vulpetti, A., McDonald, J. J., Rohrer, D. C., Trosset, J.-Y., Giordanetto, F., Cotesta, S., McMartin, C., Kihlén, M., & Stouten, P. F. W. (2004). Assessment of docking poses: Interactions-based accuracy classification (IBAC) versus crystal structure deviations. Journal of Chemical Information and Computer Sciences, 44(3), 871–881. https://doi.org/10.1021/ci049970m
  • Kumari, R., Kumar, R., & Lynn, A, Open Source Drug Discovery Consortium. (2014). g_mmpbsa–a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., & Shaw, D. E. (2010). Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins, 78(8), 1950–1958. https://doi.org/10.1002/prot.22711
  • Maitarad, P., Kamchonwongpaisan, S., Vanichtanankul, J., Vilaivan, T., Yuthavong, Y., & Hannongbua, S. (2009a). Interactions between cycloguanil derivatives and wild type and resistance-associated mutant Plasmodium falciparum dihydrofolate reductases. Journal of Computer-Aided Molecular Design, 23(4), 241–252. https://doi.org/10.1007/s10822-008-9254-z
  • Maitarad, P., Saparpakorn, P., Hannongbua, S., Kamchonwongpaisan, S., Tarnchompoo, B., & Yuthavong, Y. (2009). Particular interaction between pyrimethamine derivatives and quadruple mutant type dihydrofolate reductase of Plasmodium falciparum: CoMFA and quantum chemical calculations studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 24(2), 471–479. https://doi.org/10.1080/14756360802201223
  • Martínez, L. (2015). Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PloS One, 10(3), e0119264-e0119264. https://doi.org/10.1371/journal.pone.0119264
  • Mittal, R. R., Harris, L., McKinnon, R. A., & Sorich, M. J. (2009). Partial charge calculation method Affects CoMFA QSAR prediction accuracy. Journal of Chemical Information and Modeling, 49(3), 704–709. https://doi.org/10.1021/ci800390m
  • Mokmak, W., Chunsrivirot, S., Hannongbua, S., Yuthavong, Y., Tongsima, S., & Kamchonwongpaisan, S. (2014). Molecular dynamics of interactions between rigid and flexible antifolates and dihydrofolate reductase from pyrimethamine-sensitive and pyrimethamine-resistant Plasmodium falciparum. Chemical Biology & Drug Design, 84(4), 450–461. https://doi.org/10.1111/cbdd.12334
  • Morris, G. M., & Lim-Wilby, M. (2008). Molecular docking. Methods in Molecular Biology (Clifton, N.J.), 443, 365–382. https://doi.org/10.1007/978-1-59745-177-2_19
  • Nunrium, P., Kuno, M., Saen-oon, S., & Hannongbua, S. (2005). Particular interaction between efavirenz and the HIV-1 reverse transcriptase binding site as explained by the ONIOM2 method. Chemical Physics Letters. 405(1-3), 198–202. https://doi.org/10.1016/j.cplett.2005.02.023
  • Ojha, P. K., Kumar, V., Roy, J., & Roy, K. (2021). Recent advances in quantitative structure–activity relationship models of antimalarial drugs. Expert Opinion on Drug Discovery, 16(6), 659–695. https://doi.org/10.1080/17460441.2021.1866535
  • Patel, T. S., Bhatt, J. D., Vanparia, S. F., Patel, U. H., Dixit, R. B., Chudasama, C. J., Patel, B. D., & Dixit, B. C. (2017). Ionic liquid mediated stereoselective synthesis of alanine linked hybrid quinazoline-4(3H)-one derivatives perturbing the malarial reductase activity in folate pathway. Bioorganic & Medicinal Chemistry, 25(24), 6635–6646. https://doi.org/10.1016/j.bmc.2017.10.041
  • Paton, R. S., & Goodman, J. M. (2009). Hydrogen bonding and π-stacking: How reliable are force fields? A critical evaluation of force field descriptions of nonbonded interactions. Journal of Chemical Information and Modeling, 49(4), 944–955. https://doi.org/10.1021/ci900009f
  • Raimondi, M. V., Randazzo, O., La Franca, M., Barone, G., Vignoni, E., Rossi, D., & Collina, S. (2019). DHFR inhibitors: Reading the past for discovering novel anticancer agents. Molecules, 24(6), 1140. https://doi.org/10.3390/molecules24061140
  • Rana, R. M., Rampogu, S., Abid, N. B., Zeb, A., Parate, S., Lee, G., Yoon, S., Kim, Y., Kim, D., & Lee, K. W. (2020). In silico study identified methotrexate analog as potential inhibitor of drug resistant human dihydrofolate reductase for cancer therapeutics. Molecules, 25(15). 3510. https://doi.org/10.3390/molecules2515.
  • Roy, K., Kar, S., & Das, R. N. (2015). Chapter 8—introduction to 3D-QSAR. In Kunal Roy, Supratik Kar, & Rudra Narayan Das (Eds.), Understanding the basics of QSAR for applications in pharmaceutical sciences and risk assessment (pp. 291–317). Academic Press.
  • Saen-oon, S., Kuno, M., & Hannongbua, S. (2005). Binding energy analysis for wild-type and Y181C mutant HIV-1 RT/8-Cl TIBO complex structures: Quantum chemical calculations based on the ONIOM method. Proteins, 61(4), 859–869. https://doi.org/10.1002/prot.20690
  • Saepua, S., Sadorn, K., Vanichtanankul, J., Anukunwithaya, T., Rattanajak, R., Vitsupakorn, D., Kamchonwongpaisan, S., Yuthavong, Y., & Thongpanchang, C. (2019). 6-Hydrophobic aromatic substituent pyrimethamine analogues as potential antimalarials for pyrimethamine-resistant Plasmodium falciparum. Bioorganic & Medicinal Chemistry, 27(24), 115158. https://doi.org/10.1016/j.bmc.2019.115158
  • Sirawaraporn, W. (1998). Dihydrofolate reductase and antifolate resistance in malaria. Drug Resistance Updates: Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy, 1(6), 397–406. https://doi.org/10.1016/S1368-7646(98)80015-0
  • Sousa da Silva, A. W., & Vranken, W. F. (2012). ACPYPE—AnteChamber PYthon Parser interfacE. BMC Research Notes, 5(1), 367. https://doi.org/10.1186/1756-0500-5-367
  • Swegat, W., Schlitter, J., Krüger, P., & Wollmer, A. (2003). MD simulation of protein-ligand interaction: Formation and dissociation of an insulin-phenol complex. Biophysical Journal, 84(3), 1493–1506. https://doi.org/10.1016/S0006-3495(03)74962-5
  • SYBYL-X 2.0. (2015). Tripos Inc., St. Louis.
  • Sybyl-X Molecular Modeling Software Packages. (2012). TRIPOS Associates, Inc, St. Louis, MO, 498 USA.
  • Torres, P. H. M., Sodero, A. C. R., Jofily, P., & Silva, F. P. Jr, (2019). Key topics in molecular docking for drug design. International Journal of Molecular Sciences, 20(18), 4574. https://doi.org/10.3390/ijms20184574
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Vanichtanankul, J., Taweechai, S., Yuvaniyama, J., Vilaivan, T., Chitnumsub, P., Kamchonwongpaisan, S., & Yuthavong, Y. (2011). Trypanosomal dihydrofolate reductase reveals natural antifolate resistance. ACS Chemical Biology, 6(9), 905–911. https://doi.org/10.1021/cb200124r
  • Verdonk, M. L., Chessari, G., Cole, J. C., Hartshorn, M. J., Murray, C. W., Nissink, J. W. M., Taylor, R. D., & Taylor, R. (2005). Modeling water molecules in protein − Ligand docking using Gold. Journal of Medicinal Chemistry, 48(20), 6504–6515. https://doi.org/10.1021/jm050543p
  • Verdonk, M. L., Cole, J. C., Hartshorn, M. J., Murray, C. W., & Taylor, R. D. (2003). Improved protein–ligand docking using GOLD. Proteins, 52(4), 609–623. https://doi.org/10.1002/prot.10465
  • Wang, Y., Verma, P., Jin, X., Truhlar, D. G., & He, X. (2018). Revised M06 density functional for main-group and transition-metal chemistry. Proceedings of the National Academy of Sciences of the United States of America, 115(41), 10257–10262. https://doi.org/10.1073/pnas.1810421115
  • Yuthavong, Y., Kamchonwongpaisan, S., Leartsakulpanich, U., & Chitnumsub, P. (2006). Folate metabolism as a source of molecular targets for antimalarials. Future Microbiology, 1(1), 113–125. https://doi.org/10.2217/17460913.1.1.113
  • Yuthavong, Y., Tarnchompoo, B., Vilaivan, T., Chitnumsub, P., Kamchonwongpaisan, S., Charman, S. A., McLennan, D. N., White, K. L., Vivas, L., Bongard, E., Thongphanchang, C., Taweechai, S., Vanichtanankul, J., Rattanajak, R., Arwon, U., Fantauzzi, P., Yuvaniyama, J., Charman, W. N., & Matthews, D. (2012). Malarial dihydrofolate reductase as a paradigm for drug development against a resistance-compromised target. Proceedings of the National Academy of Sciences of the United States of America, 109(42), 16823–16828. https://doi.org/10.1073/pnas.1204556109
  • Yuthavong, Y., Yuvaniyama, J., Chitnumsub, P., Vanichtanankul, J., Chusacultanachai, S., Tarnchompoo, B., Vilaivan, T., & Kamchonwongpaisan, S. (2005). Malarial (Plasmodium falciparum) dihydrofolate reductase-thymidylate synthase: Structural basis for antifolate resistance and development of effective inhibitors. Parasitology, 130(Pt 3), 249–259. https://doi.org/10.1017/S003118200400664X
  • Yuvaniyama, J., Chitnumsub, P., Kamchonwongpaisan, S., Vanichtanankul, J., Sirawaraporn, W., Taylor, P., Walkinshaw, M. D., & Yuthavong, Y. (2003). Insights into antifolate resistance from malarial DHFR-TS structures. Nature Structural Biology, 10(5), 357–365. https://doi.org/10.1038/nsb921
  • Zhao, H., & Caflisch, A. (2015). Molecular dynamics in drug design. European Journal of Medicinal Chemistry, 91, 4–14. https://doi.org/10.1016/j.ejmech.2014.08.004
  • Zhao, Y., & Truhlar, D. G. (2008). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120(1-3), 215–241. https://doi.org/10.1007/s00214-007-0310-x
  • Zięba, A., Laitinen, T., Patel, J. Z., Poso, A., & Kaczor, A. A. (2021). Docking-Based 3D-QSAR Studies for 1,3,4-oxadiazol-2-one Derivatives as FAAH Inhibitors. International Journal of Molecular Sciences, 22(11), 6108. https://doi.org/10.3390/ijms22116108

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.