544
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

In silico homology modeling, docking and sequence analysis of some bacterial laccases to unravel enzymatic specificity towards lignin biodegradation

, ORCID Icon, & ORCID Icon
Pages 5757-5775 | Received 31 Mar 2022, Accepted 26 Jun 2022, Published online: 15 Jul 2022

References

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
  • Antunes, D. A., Moll, M., Devaurs, D., Jackson, K. R., Lizée, G., & Kavraki, L. E. (2017). DINC 2.0: a new protein–peptide docking webserver using an incremental approach. Cancer Research, 77(21), e55–e57. https://doi.org/10.1158/0008-5472.CAN-17-0511
  • Arregui, L., Ayala, M., Gómez-Gil, X., Gutiérrez-Soto, G., Hernández-Luna, C. E., Herrera de los Santos, M., Levin, L., Rojo-Domínguez, A., Romero-Martínez, D., Saparrat, M. C. N., Trujillo-Roldán, M. A., & Valdez-Cruz, N. A. (2019). Laccases: Structure, function, and potential application in water bioremediation. Microbial Cell Factories, 18(1), 1–33. https://doi.org/10.1186/s12934-019-1248-0
  • Avanthi, A., & Banerjee, R. (2016). A strategic laccase mediated lignin degradation of lignocellulosic feedstocks for ethanol production. Industrial Crops and Products, 92, 174–185. https://doi.org/10.1016/j.indcrop.2016.08.009
  • Baruah, J., Nath, B. K., Sharma, R., Kumar, S., Deka, R. C., Baruah, D. C., & Kalita, E. (2018). Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Frontiers in Energy Research, 6, 141. https://doi.org/10.3389/fenrg.2018.00141
  • Bertrand, T., Jolivalt, C., Briozzo, P., Caminade, E., Joly, N., Madzak, C., & Mougin, C. (2002). Crystal structure of a four-copper laccase complexed with an arylamine: Insights into substrate recognition and correlation with kinetics. Biochemistry, 41(23), 7325–7333. https://doi.org/10.1021/bi0201318
  • Cárdenas-Moreno, Y., Espinosa, L. A., Vieyto, J. C., González-Durruthy, M., del Monte-Martinez, A., Guerra-Rivera, G., & López, M. I. S. (2019). Theoretical study on binding interactions of laccase-enzyme from Ganodermaweberianum with multiples ligand substrates with environmental impact. Annals of Proteomics and Bioinformatics, 3(1), 1–9.
  • Chai, B., Qiao, Y., Wang, H., Zhang, X., Wang, J., Wang, C., Zhou, P., & Chen, X. (2017). Identification of YfiH and the catalase CatA As polyphenol oxidases of Aeromonas media and CatA as a regulator of pigmentation by its peroxyl radical scavenging capacity. Frontiers in Microbiology, 8, 1939. https://doi.org/10.3389/fmicb.2017.01939
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science: a Publication of the Protein Society, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Corpet, F. (1988). Multiple sequence alignment with hierarchical clustering. Nucleic Acids Research, 16(22), 10881–10890. https://doi.org/10.1093/nar/16.22.10881
  • de Gonzalo, G., Colpa, D. I., Habib, M. H., & Fraaije, M. W. (2016). Bacterial enzymes involved in lignin degradation. Journal of Biotechnology, 236, 110–119. https://doi.org/10.1016/j.jbiotec.2016.08.011
  • DeLano, W. L. (2002). Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr, 40(1), 82–92.
  • Emsley, P., & Cowtan, K. (2004). Coot: Model-building tools for molecular graphics. Acta Crystallographica Section D Biological Crystallography, 60(12), 2126–2132. https://doi.org/10.1107/S0907444904019158
  • Freitas, E. N. D., Alnoch, R. C., Contato, A. G., Nogueira, K. M. V., Crevelin, E. J., Moraes, L., Silva, R. N., Martínez, C. A., & Polizeli, M. D. L. (2021). Enzymatic pretreatment with laccases from Lentinus sajor-caju induces structural modification in lignin and enhances the digestibility of tropical forage grass (Panicum maximum) grown under future climate conditions. International Journal of Molecular Sciences, 22(17), 9445. https://doi.org/10.3390/ijms22179445
  • Hemaraju, S. and Narasegowda, P.N., (2018). Screening and Characterization of High Laccase Producing Enterobacter sp. from Devarayanadurga Forest Soil, Tumkur District. International Journal of Pure and Applied Bioscience, 6(4), 203–213.
  • Hoegger, P. J., Kilaru, S., James, T. Y., Thacker, J. R., & Kües, U. (2006). Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. The FEBS Journal, 273(10), 2308–2326. https://doi.org/10.1111/j.1742-4658.2006.05247.x
  • Janusz, G., Pawlik, A., Sulej, J., Swiderska-Burek, U., Jarosz-Wilkolazka, A., & Paszczynski, A. (2017). Lignin degradation: Microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiology Reviews, 41(6), 941–962. https://doi.org/10.1093/femsre/fux049
  • Janusz, G., Pawlik, A., Świderska-Burek, U., Polak, J., Sulej, J., Jarosz-Wilkołazka, A., & Paszczyński, A. (2020). Laccase properties, physiological functions, and evolution. International Journal of Molecular Sciences, 21(3), 966. https://doi.org/10.3390/ijms21030966
  • Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845–858. https://doi.org/10.1038/nprot.2015.053
  • Kontro, J., Lyra, C., Koponen, M., Kuuskeri, J., Kähkönen, M. A., Wallenius, J., Wan, X., Sipilä, J., Mäkelä, M. R., Nousiainen, P., & Hildén, K. (2021). Production of recombinant laccase from Coprinopsis cinerea and its effect in mediator promoted lignin oxidation at neutral pH. Frontiers in Bioengineering and Biotechnology, 9, 767139. https://doi.org/10.3389/fbioe.2021.767139
  • Krieger, E., Joo, K., Lee, J., Lee, J., Raman, S., Thompson, J., Tyka, M., Baker, D., & Karplus, K. (2009). Improving physical realism, stereochemistry, and side‐chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins: Structure, Function, and Bioinformatics, 77(S9), 114–122. https://doi.org/10.1002/prot.22570
  • Kumar, A., & Chandra, R. (2020). Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon, 6(2), e03170. https://doi.org/10.1016/j.heliyon.2020.e03170
  • Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874. https://doi.org/10.1093/molbev/msw054
  • Kumari, R., Kumar, R. & Lynn, A. (2014). Open source drug discovery C. g_mmpbsa-A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54, 1951–1962.
  • Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics (Oxford, England), 23(21), 2947–2948. https://doi.org/10.1093/bioinformatics/btm404
  • Laskowski, R. A., Jabłońska, J., Pravda, L., Vařeková, R. S., & Thornton, J. M. (2018). PDBsum: Structural summaries of PDB entries. Protein Science: A Publication of the Protein Society, 27(1), 129–134. https://doi.org/10.1002/pro.3289
  • Lee, S., Kang, M., Bae, J. H., Sohn, J. H., & Sung, B. H. (2019). Bacterial valorization of lignin: Strains, enzymes, conversion pathways, biosensors, and perspectives. Frontiers in Bioengineering and Biotechnology, 7, 209. https://doi.org/10.3389/fbioe.2019.00209
  • Lüthy, R., Bowie, J. U., & Eisenberg, D. (1992). Assessment of protein models with three-dimensional profiles. Nature, 356(6364), 83–85. https://doi.org/10.1038/356083a0
  • Maia, E. H. B., Assis, L. C., De Oliveira, T. A., Da Silva, A. M., & Taranto, A. G. (2020). Structure-based virtual screening: From classical to artificial intelligence. Frontiers in Chemistry, 8, 343. https://doi.org/10.3389/fchem.2020.00343
  • Matera, I., Gullotto, A., Tilli, S., Ferraroni, M., Scozzafava, A., & Briganti, F. (2008). Crystal structure of the blue multicopper oxidase from the white-rot fungus Trametes trogii complexed with p-toluate. Inorganica Chimica Acta, 361(14–15), 4129–4137. https://doi.org/10.1016/j.ica.2008.03.091
  • Mehra, R., Muschiol, J., Meyer, A. S., & Kepp, K. P. (2018). A structural-chemical explanation of fungal laccase activity. Scientific Reports, 8(1), 1–16. https://doi.org/10.1038/s41598-018-35633-8
  • Mengist, H. M., Dilnessa, T., & Jin, T. (2021). Structural basis of potential inhibitors targeting SARS-CoV-2 main protease. Frontiers in Chemistry, 9, 622898. https://doi.org/10.3389/fchem.2021.622898
  • Pardo, I., & Camarero, S. (2015). Laccase engineering by rational and evolutionary design. Cellular and Molecular Life Sciences : CMLS, 72(5), 897–910. https://doi.org/10.1007/s00018-014-1824-8
  • Piovesan, D., Minervini, G., & Tosatto, S. C. (2016). The RING 2.0 web server for high quality residue interaction networks. Nucleic Acids Research, 44(W1), W367–W374. https://doi.org/10.1093/nar/gkw315
  • Pramanik, K., Soren, T., Mitra, S., & Maiti, T. K. (2017). In silico structural and functional analysis of Mesorhizobium ACC deaminase. Computational Biology and Chemistry, 68, 12–21. https://doi.org/10.1016/j.compbiolchem.2017.02.005
  • Qiu, J., Chen, K., Zhong, C., Zhu, S. and Ma, X. (2021). Network-based protein-protein interaction prediction method maps perturbations of cancer interactome. PLoS genetics, 17(11), p.e1009869.
  • Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R., & Lopez, R. (2005). InterProScan: Protein domains identifier. Nucleic Acids Research, 33(Web Server issue), W116–W120. https://doi.org/10.1093/nar/gki442
  • Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F., & Schroeder, M. (2015). PLIP: Fully automated protein–ligand interaction profiler. Nucleic Acids Research, 43(W1), W443–W447. https://doi.org/10.1093/nar/gkv315
  • Scheiblbrandner, S., Breslmayr, E., Csarman, F., Paukner, R., Führer, J., Herzog, P. L., Shleev, S. V., Osipov, E. M., Tikhonova, T. V., Popov, V. O., Haltrich, D., Ludwig, R., & Kittl, R. (2017). Evolving stability and pH-dependent activity of the high redox potential Botrytis aclada laccase for enzymatic fuel cells. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/s41598-017-13734-0
  • Schüttelkopf, A. W., & Van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica Section D Biological Crystallography, 60(8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Selvam, K., Senbagam, D., Selvankumar, T., Sudhakar, C., Kamala-Kannan, S., Senthilkumar, B., & Govarthanan, M. (2017). Cellulase enzyme: Homology modeling, binding site identification and molecular docking. Journal of Molecular Structure, 1150, 61–67. https://doi.org/10.1016/j.molstruc.2017.08.067
  • Sharma, P., Goel, R., & Capalash, N. (2007). Bacterial laccases. World Journal of Microbiology and Biotechnology, 23(6), 823–832. https://doi.org/10.1007/s11274-006-9305-3
  • Silva, J. P., Ticona, A. R., Hamann, P. R., Quirino, B. F., & Noronha, E. F. (2021). Deconstruction of lignin: From enzymes to microorganisms. Molecules, 26(8), 2299. https://doi.org/10.3390/molecules26082299
  • Singh, A. K., Bilal, M., Iqbal, H. M., & Raj, A. (2021). Trends in predictive biodegradation for sustainable mitigation of environmental pollutants: Recent progress and future outlook. The Science of the Total Environment, 770, 144561. https://doi.org/10.1016/j.scitotenv.2020.144561
  • Singh, D., Sharma, K. K., Dhar, M. S., & Virdi, J. S. (2014). Molecular modeling and docking of novel laccase from multiple serotype of Yersinia enterocolitica suggests differential and multiple substrate binding. Biochemical and Biophysical Research Communications, 449(1), 157–162. https://doi.org/10.1016/j.bbrc.2014.05.003
  • Su, J., Fu, J., Wang, Q., Silva, C., & Cavaco-Paulo, A. (2018). Laccase: A green catalyst for the biosynthesis of poly-phenols. Critical Reviews in Biotechnology, 38(2), 294–307. https://doi.org/10.1080/07388551.2017.1354353
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Wang, W., Shen, M., Fischer, C., Basu, R., Hazra, S., Couvineau, P., Paul, M., Wang, F., Toth, S., Mix, D.S. and Poglitsch, M. (2019). Apelin protects against abdominal aortic aneurysm and the therapeutic role of neutral endopeptidase resistant apelin analogs. Proceedings of the National Academy of Sciences, 116(26), 13006–13015.
  • Wright, P. E., & Dyson, H. J. (2015). Intrinsically disordered proteins in cellular signalling and regulation. Nature Reviews. Molecular Cell Biology, 16(1), 18–29. https://doi.org/10.1038/nrm3920

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.