468
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Biochemical characterization and structure-based in silico screening of potent inhibitor molecules against the 1 cys peroxiredoxin of bacterioferritin comigratory protein family from Candidatus Liberibacter asiaticus

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 5776-5788 | Received 27 Apr 2022, Accepted 26 Jun 2022, Published online: 09 Jul 2022

References

  • Berendsen, H. J., Postma, J. v., van Gunsteren, W. F., DiNola, A., & Haak, J. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118[Mismatch]
  • Boina, D. R., & Bloomquist, J. R. (2015). Chemical control of the Asian citrus psyllid and of huanglongbing disease in citrus. Pest Management Science, 71(6), 808–823. https://doi.org/10.1002/ps.3957
  • Bove, J. M. (2006). Huanglongbing: A destructive, newly-emerging, century-old disease of citrus. Journal of Plant Pathology, 7–37. https://www.jstor.org/stable/41998278
  • Chen, V. B., Arendall, W. B., 3rd, Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S., & Richardson, D. C. (2010). MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallographica. Section D, Biological Crystallography, 66(Pt 1), 12–21. https://doi.org/10.1107/S0907444909042073
  • Dalal, V., Dhankhar, P., Singh, V., Singh, V., Rakhaminov, G., Golemi-Kotra, D., & Kumar, P. (2021). Structure-based identification of potential drugs against FmtA of Staphylococcus aureus: Virtual screening, molecular dynamics, MM-GBSA, and QM/MM. The Protein Journal, 40(2), 148–165. https://doi.org/10.1007/s10930-020-09953-6
  • Dalal, V., Kumar, P., Rakhaminov, G., Qamar, A., Fan, X., Hunter, H., Tomar, S., Golemi-Kotra, D., & Kumar, P. (2019). Repurposing an ancient protein core structure: Structural studies on FmtA, a novel esterase of Staphylococcus aureus. Journal of Molecular Biology, 431(17), 3107–3123. https://doi.org/10.1016/j.jmb.2019.06.019
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Methods in Molecular Biology (Clifton, N.J.), 1263, 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19
  • DeLano, W. L. (2002). The pymol molecular graphics system. https://pymol.org/2/
  • Dhankhar, P., Dalal, V., Kotra, D. G., & Kumar, P. (2020). In silico approach to identify novel potent inhibitors against GraR of S. aureus. Frontiers in Bioscience (Landmark Edition), 25(7), 1337–1360. https://doi.org/10.2741/4859
  • Dhankhar, P., Dalal, V., Mahto, J. K., Gurjar, B. R., Tomar, S., Sharma, A. K., & Kumar, P. (2020). Characterization of dye-decolorizing peroxidase from Bacillus subtilis. Archives of Biochemistry and Biophysics, 693, 108590. https://doi.org/10.1016/j.abb.2020.108590
  • Dhankhar, P., Dalal, V., Singh, V., Tomar, S., & Kumar, P. (2020). Computational guided identification of novel potent inhibitors of N-terminal domain of nucleocapsid protein of severe acute respiratory syndrome coronavirus 2. Journal of Biomolecular Structure & Dynamics, 40(9), 4084–4099. https://doi.org/10.1080/07391102.2020.1852968
  • Dubbs, J. M., & Mongkolsuk, S. (2007). Peroxiredoxins in bacterial antioxidant defense. Sub-Cellular Biochemistry, 44, 143–193. https://doi.org/10.1007/978-1-4020-6051-9_7
  • Eisenberg, D., Lüthy, R., & Bowie, J. U. (1997). VERIFY3D: assessment of protein models with three-dimensional profiles. In Methods in Enzymology, 277, 396–404. https://doi.org/10.1016/S0076-6879(97)77022-8
  • Fang, F. C. (2004). Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nature Reviews Microbiology, 2(10), 820–832. https://doi.org/10.1038/nrmicro1004
  • Fiser, A., & Sali, A. (2003). ModLoop: Automated modeling of loops in protein structures. Bioinformatics (Oxford, England), 19(18), 2500–2501. https://doi.org/10.1093/bioinformatics/btg362
  • Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Barone, V., Petersson, G., & Nakatsuji, H. (2016). Gaussian 16. Gaussian, Inc.
  • Guex, N., & Peitsch, M. C. (1997). SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis, 18(15), 2714–2723. https://doi.org/10.1002/elps.1150181505
  • Gunsteren, W. v., Billeter, S., Eising, A., Hünenberger, P., Krüger, P., Mark, A., Scott, W., & Tironi, I. (1996). Biomolecular simulation: The GROMOS96 manual and user guide. Verlag der Fachvereine Hochschulverlag AG an der ETH Zurich.
  • Gupta, D. N., Dalal, V., Savita, B. K., Dhankhar, P., Ghosh, D. K., Kumar, P., & Sharma, A. K. (2021). In-silico screening and identification of potential inhibitors against 2Cys peroxiredoxin of Candidatus Liberibacter asiaticus. Journal of Biomolecular Structure and Dynamics, 1–15. https://doi.org/10.1080/07391102.2021.1916597
  • Gupta, D. N., Rani, R., Kokane, A. D., Ghosh, D. K., Tomar, S., & Sharma, A. K. (2022). Characterization of a cytoplasmic 2-Cys peroxiredoxin from Citrus sinensis and its potential role in protection from oxidative damage and wound healing. International Journal of Biological Macromolecules, 209, 1088–1099. https://doi.org/10.1016/j.ijbiomac.2022.04.086
  • Halbert, S. E., & Manjunath, K. L. (2004). Asian citrus psyllids (Sternorrhyncha: Psyllidae) and greening disease of citrus: A literature review and assessment of risk in Florida. Florida Entomologist, 87(3), 330–353. https://doi.org/10.1653/0015-4040(2004)087[0330:ACPSPA2.0.CO;2]
  • Hall, A., Karplus, P. A., & Poole, L. B. (2009). Typical 2-Cys peroxiredoxins–structures, mechanisms and functions. The FEBS Journal, 276(9), 2469–2477. https://doi.org/10.1111/j.1742-4658.2009.06985.x
  • Hall, A., Nelson, K., Poole, L. B., & Karplus, P. A. (2011). Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins. Antioxidants & Redox Signaling, 15(3), 795–815. https://doi.org/10.1089/ars.2010.3624
  • He, T., Hatem, E., Vernis, L., Lei, M., & Huang, M. E. (2015). PRX1 knockdown potentiates vitamin K3 toxicity in cancer cells: A potential new therapeutic perspective for an old drug. Journal of Experimental & Clinical Cancer Research: CR, 34, 152. https://doi.org/10.1186/s13046-015-0270-2
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Horta, B. B., de Oliveira, M. A., Discola, K. F., Cussiol, J. R., & Netto, L. E. (2010). Structural and biochemical characterization of peroxiredoxin Qbeta from Xylella fastidiosa: Catalytic mechanism and high reactivity. The Journal of Biological Chemistry, 285(21), 16051–16065. https://doi.org/10.1074/jbc.M109.094839
  • Hou, J. K., Huang, Y., He, W., Yan, Z. W., Fan, L., Liu, M. H., Xiao, W. L., Sun, H. D., & Chen, G. Q. (2014). Adenanthin targets peroxiredoxin I/II to kill hepatocellular carcinoma cells. Cell Death & Disease, 5(9), e1400. https://doi.org/10.1038/cddis.2014.345
  • Imlay, J. A. (2008). Cellular defenses against superoxide and hydrogen peroxide. Annual Review of Biochemistry, 77, 755–776. https://doi.org/10.1146/annurev.biochem.77.061606.161055
  • Jagoueix, S., Bove, J. M., & Garnier, M. (1994). The phloem-limited bacterium of greening disease of citrus is a member of the alpha subdivision of the Proteobacteria. International Journal of Systematic Bacteriology, 44(3), 379–386. https://doi.org/10.1099/00207713-44-3-379
  • Jeong, W., Cha, M. K., & Kim, I. H. (2000). Thioredoxin-dependent hydroperoxide peroxidase activity of bacterioferritin comigratory protein (BCP) as a new member of the thiol-specific antioxidant protein (TSA)/Alkyl hydroperoxide peroxidase C (AhpC) family. The Journal of Biological Chemistry, 275(4), 2924–2930. https://doi.org/10.1074/jbc.275.4.2924
  • Joshi, N., Tripathi, D. K., Nagar, N., & Poluri, K. M. (2021). Hydroxyl groups on annular ring-B dictate the affinities of flavonol-CCL2 chemokine binding interactions. ACS Omega, 6(15), 10306–10317. https://doi.org/10.1021/acsomega.1c00655
  • Juan, C. A., Pérez de la Lastra, J. M., Plou, F. J., & Pérez-Lebeña, E. (2021). The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, Lipids and Proteins) and induced pathologies. International Journal of Molecular Sciences, 22(9), 4642. https://doi.org/10.3390/ijms22094642
  • Kang, S. W., Baines, I. C., & Rhee, S. G. (1998). Characterization of a mammalian peroxiredoxin that contains one conserved cysteine. The Journal of Biological Chemistry, 273(11), 6303–6311. https://doi.org/10.1074/jbc.273.11.6303
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2019). PubChem 2019 update: Improved access to chemical data. Nucleic Acids Research, 47(D1), D1102–D1109. https://doi.org/10.1093/nar/gky1033
  • Knoops, B., Loumaye, E., & Van Der Eecken, V. (2007). Evolution of the peroxiredoxins. Sub-Cellular Biochemistry, 44, 27–40. https://doi.org/10.1007/978-1-4020-6051-9_2
  • Kumari, N., Dalal, V., Kumar, P., & Rath, S. N. (2022). Antagonistic interaction between TTA-A2 and paclitaxel for anti-cancer effects by complex formation with T-type calcium channel. Journal of Biomolecular Structure & Dynamics, 40(6), 2395–2406. https://doi.org/10.1080/07391102.2020.1839558
  • Kumari, R., Kumar, R., Lynn, A, & Open Source Drug Discovery Consortium. (2014). g_mmpbsa–a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Liu, C. X., Yin, Q. Q., Zhou, H. C., Wu, Y. L., Pu, J. X., Xia, L., Liu, W., Huang, X., Jiang, T., Wu, M. X., He, L. C., Zhao, Y. X., Wang, X. L., Xiao, W. L., Chen, H. Z., Zhao, Q., Zhou, A. W., Wang, L. S., Sun, H. D., & Chen, G. Q. (2012). Adenanthin targets peroxiredoxin I and II to induce differentiation of leukemic cells. Nature Chemical Biology, 8(5), 486–493. https://doi.org/10.1038/nchembio.935
  • Malik, A., Dalal, V., Ankri, S., & Tomar, S. (2019). Structural insights into Entamoeba histolytica arginase and structure-based identification of novel non-amino acid-based inhibitors as potential antiamoebic molecules. The FEBS Journal, 286(20), 4135–4155. https://doi.org/10.1111/febs.14960
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Nathan, C., & Shiloh, M. U. (2000). Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proceedings of the National Academy of Sciences of the United States of America, 97(16), 8841–8848. https://doi.org/10.1073/pnas.97.16.8841
  • Nelson, K. J., Knutson, S. T., Soito, L., Klomsiri, C., Poole, L. B., & Fetrow, J. S. (2011). Analysis of the peroxiredoxin family: Using active-site structure and sequence information for global classification and residue analysis. Proteins, 79(3), 947–964. https://doi.org/10.1002/prot.22936
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open babel: An open chemical toolbox. Journal of Cheminformatics, 3, 33. https://doi.org/10.1186/1758-2946-3-33
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Perkins, A., Poole, L. B., & Karplus, P. A. (2014). Tuning of peroxiredoxin catalysis for various physiological roles. Biochemistry, 53(49), 7693–7705. https://doi.org/10.1021/bi5013222
  • Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Reeves, S. A., Parsonage, D., Nelson, K. J., & Poole, L. B. (2011). Kinetic and thermodynamic features reveal that Escherichia coli BCP is an unusually versatile peroxiredoxin. Biochemistry, 50(41), 8970–8981. https://doi.org/10.1021/bi200935d
  • Rhee, S. G., Woo, H. A., Kil, I. S., & Bae, S. H. (2012). Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. The Journal of Biological Chemistry, 287(7), 4403–4410. https://doi.org/10.1074/jbc.R111.283432
  • Saini, G., Dalal, V., Gupta, D. N., Sharma, N., Kumar, P., & Sharma, A. K. (2021). A molecular docking and dynamic approach to screen inhibitors against ZnuA1 of Candidatus Liberibacter asiaticus. Molecular Simulation, 47(6), 510–525. https://doi.org/10.1080/08927022.2021.1888948
  • Savita, B. K., Dalal, V., Choudhary, S., Gupta, D. N., Das, N., Tomar, S., Kumar, P., Roy, P., & Sharma, A. K. (2021). Characterization of recombinant pumpkin 2S albumin and mutation studies to unravel potential DNA/RNA binding site. Biochemical and Biophysical Research Communications, 580, 28–34. https://doi.org/10.1016/j.bbrc.2021.09.076
  • Schlegel, H. B. (1982). Optimization of equilibrium geometries and transition structures. Journal of Computational Chemistry, 3(2), 214–218. https://doi.org/10.1002/jcc.540030212
  • Schüttelkopf, A. W., & van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica. Section D, Biological Crystallography, 60(8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Research, 31(13), 3381–3385. https://doi.org/10.1093/nar/gkg520
  • Singh, A., Kumar, N., Tomar, P., Bhose, S., Ghosh, D. K., Roy, P., & Sharma, A. K. (2017). Characterization of a bacterioferritin comigratory protein family 1-Cys peroxiredoxin from Candidatus Liberibacter asiaticus. Protoplasma, 254(4), 1675–1691. https://doi.org/10.1007/s00709-016-1062-z
  • Singh, N., Dalal, V., Mahto, J. K., & Kumar, P. (2017). Biodegradation of phthalic acid esters (PAEs) and in silico structural characterization of mono-2-ethylhexyl phthalate (MEHP) hydrolase on the basis of close structural homolog. Journal of Hazardous Materials, 338, 11–22. https://doi.org/10.1016/j.jhazmat.2017.04.055
  • Storz, G., & Imlay, J. A. (1999). Oxidative stress. Current Opinion in Microbiology, 2(2), 188–194. https://doi.org/10.1016/S1369-5274(99)80033-2
  • Texeira, D., Ayres, J., Kitajima, E., Danet, L., Jagoueix-Eveillard, S., Saillard, C., & Bove, J. (2005). First report of a huanglongbing-like disease of citrus in Sao Paulo State, Brazil and association of a new Liberibacter species, “Candidatus Liberibacter americanus”, with the disease. Plant Disease, 89(1), 107–107. https://doi.org/10.1094/PD-89-0107A
  • Thurman, R. G., Ley,, H. G., & Scholz, R. (1972). Hepatic microsomal ethanol oxidation. Hydrogen peroxide formation and the role of catalase. European journal of biochemistry, 25(3), 420–430. https://doi.org/10.1111/j.1432-1033.1972.tb01711.x
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server), W407–W410. https://doi.org/10.1093/nar/gkm290
  • Xie, X., He, Z., Chen, N., Tang, Z., Wang, Q., & Cai, Y. (2019). The roles of environmental factors in regulation of oxidative stress in plant. BioMed Research International, 2019, 9732325. https://doi.org/10.1155/2019/9732325
  • You, J., & Chan, Z. (2015). ROS regulation during abiotic stress responses in crop plants. Frontiers in Plant Science, 6, 1092. https://doi.org/10.3389/fpls.2015.01092
  • Zhou, S., Sorokina, E. M., Harper, S., Li, H., Ralat, L., Dodia, C., Speicher, D. W., Feinstein, S. I., & Fisher, A. B. (2016). Peroxiredoxin 6 homodimerization and heterodimerization with glutathione S-transferase pi are required for its peroxidase but not phospholipase A2 activity. Free Radical Biology & Medicine, 94, 145–156. https://doi.org/10.1016/j.freeradbiomed.2016.02.012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.