326
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Synergistic combination of ritonavir and cisplatin as an efficacious therapy in human cervical cancer cells: a computational drug discovery and in vitro insight

, , , , , ORCID Icon & ORCID Icon show all
Pages 5802-5816 | Received 01 Mar 2022, Accepted 28 Jun 2022, Published online: 12 Jul 2022

References

  • Kirby, B. J., Collier, A. C., Kharasch, E. D., Dixit, V., Desai, P., Whittington, D., Thummel, K. E., & Unadkat, J. D. (2011). Complex drug interactions of HIV protease inhibitors 2: In vivo induction and in vitro to in vivo correlation of induction of cytochrome P450 1A2, 2B6, and 2C9 by ritonavir or nelfinavir. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 39(12), 2329–2337. https://doi.org/10.1124/dmd.111.038646
  • Gote, V., Sharma, A. D., & Pal, D. (2021). Hyaluronic acid-targeted stimuli-sensitive nanomicelles co-encapsulating paclitaxel and ritonavir to overcome multi-drug resistance in metastatic breast cancer and triple-negative breast cancer cells. International Journal of Molecular Sciences, 22(3), 1257. https://doi.org/10.3390/ijms22031257
  • Bardelmeijer, H. A., Ouwehand, M., Buckle, T., Huisman, M. T., Schellens, J. H. M., Beijnen, J. H., & van Tellingen, O. (2002). Low systemic exposure of oral docetaxel in mice resulting from extensive first-pass metabolism is boosted by Ritonavir. Cancer Research, 62(21), 6158–6164.
  • Merry, C., Barry, M. G., Mulcahy, F., Ryan, M., Heavey, J., Tjia, J. F., Gibbons, S. E., Breckenridge, A. M., & Back, D. J. (1997). Saquinavir pharmacokinetics alone and in combination with ritonavir in HIV-infected patients. AIDS (London, England), 11(4), F29–F33.
  • Akinleye, A., & Rasool, Z. (2019). Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. Journal of Hematology & Oncology, 12(1), 1–13. https://doi.org/10.1186/s13045-019-0779-5
  • Almahmoud, S., & Zhong, H. A. (2019). Molecular modeling studies on the binding mode of the PD-1/PD-L1 complex inhibitors. International Journal of Molecular Sciences, 20(18), 4654. https://doi.org/10.3390/ijms20184654
  • Bandiera, E., Todeschini, P., Romani, C., Zanotti, L., Erba, E., Colmegna, B., Bignotti, E., Santin, A. D., Sartori, E., Odicino, F. E., Pecorelli, S., Tassi, R. A., & Ravaggi, A. (2016). The HIV-protease inhibitor saquinavir reduces proliferation, invasion and clonogenicity in cervical cancer cell lines. Oncology Letters, 12(4), 2493–2500. https://doi.org/10.3892/ol.2016.5008
  • Batchu, R. B., Gruzdyn, O. V., Bryant, C. S., Qazi, A. M., Kumar, S., Chamala, S., Kung, S. T., Sanka, R. S., Puttagunta, U. S., Weaver, D. W., & Gruber, S. A. (2014). Ritonavir-mediated induction of apoptosis in pancreatic cancer occurs via the RB/E2F-1 and AKT pathways. Pharmaceuticals (Basel, Switzerland), 7(1), 46–57. https://doi.org/10.3390/ph7010046
  • Bukowski, K., Kciuk, M., & Kontek, R. (2020). Mechanisms of multidrug resistance in cancer chemotherapy. International Journal of Molecular Sciences, 21(9), 3233. https://doi.org/10.3390/ijms21093233
  • Chakrabarti, A., Oehme, I., Witt, O., Oliveira, G., Sippl, W., Romier, C., Pierce, R. J., & Jung, M. (2015). HDAC8: A multifaceted target for therapeutic interventions. Trends in Pharmacological Sciences, 36(7), 481–492. https://doi.org/10.1016/j.tips.2015.04.013
  • Chou, T. C. (2010). Drug combination studies and their synergy quantification using the Chou–Talalay method. Cancer Research, 70(2), 440–446. https://doi.org/10.1158/0008-5472.CAN-09-1947
  • Chow, W. A., Jiang, C., & Guan, M. (2009). Anti-HIV drugs for cancer therapeutics: Back to the future? Lancet Oncology. 10(1), 61–71. https://doi.org/10.1016/S1470-2045(08)70334-6
  • Chu, C. M., Cheng, V. C. C., Hung, I. F. N., Wong, M. M. L., Chan, K. H., & Chan, K. S. (2004). Role of lopinavir/ritonavir in the treatment of SARS: Initial virological and clinical findings. Thorax, 59(3), 252–256. https://doi.org/10.1136/thorax.2003.012658
  • da Silva, T. U., Pougy K de, C., Albuquerque, M. G., da Silva Lima, C. H., & Machado S de, P. (2020). Development of parameters compatible with the CHARMM36 force field for [Fe4S4]2+ clusters and molecular dynamics simulations of adenosine-5’-phosphosulfate reductase in GROMACS 2019. Journal of Biomolecular Structure and Dynamics, 40(8), 1–11.
  • D'Abramo, C. M., & Archambault, J. (2011). Small molecule inhibitors of human papillomavirus protein – Protein interactions. The Open Virology Journal, 5(1), 80–95. https://doi.org/10.2174/1874357901105010080
  • De Clercq, E. (2004). Antiviral drugs in current clinical use. Journal of Clinical Virology: The Official Publication of the Pan American Society for Clinical Virology, 30(2), 115–133. https://doi.org/10.1016/j.jcv.2004.02.009
  • Eagling, V. A., Back, D. J., & Barry, M. G. (1997). Differential inhibition of cytochrome P450 isoforms by the protease inhibitors, ritonavir, saquinavir and indinavir. British Journal of Clinical Pharmacology, 44(2), 190–194. https://doi.org/10.1046/j.1365-2125.1997.00644.x
  • Ekroos, M., & Sjögren, T. (2006). Structural basis for ligand promiscuity in cytochrome P450 3A4. Proceedings of the National Academy of Sciences of the United States of America, 103(37), 13682–13687. https://doi.org/10.1073/pnas.0603236103
  • Esposito, V., Palescandolo, E., Spugnini, E. P., Montesarchio, V., De Luca, A., Cardillo, I., Cortese, G., Baldi, A., & Chirianni, A. (2006). Evaluation of antitumoral properties of the protease inhibitor indinavir in a murine model of hepatocarcinoma. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 12(8), 2634–2639. https://doi.org/10.1158/1078-0432.CCR-05-2188
  • Flexner, C. (1998). HIV-protease inhibitors. The New England Journal of Medicine, 338(18), 1281–1292. https://doi.org/10.1056/NEJM199804303381808
  • Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., & Olson, A. J. (2016). Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nature Protocols, 11(5), 905–919. https://doi.org/10.1038/nprot.2016.051
  • Gaedicke, S., Firat-Geier, E., Constantiniu, O., Lucchiari-Hartz, M., Freudenberg, M., Galanos, C., & Niedermann, G. (2002). Antitumor effect of the human immunodeficiency virus protease inhibitor ritonavir: Induction of tumor-cell apoptosis associated with perturbation of proteasomal proteolysis. Cancer Research, 62(23), 6901–6908.
  • Gantt, S., Casper, C., & Ambinder, R. F. (2013). Insights into the broad cellular effects of nelfinavir and the HIV protease inhibitors supporting their role in cancer treatment and prevention. Current Opinion in Oncology, 25(5), 495–502. https://doi.org/10.1097/CCO.0b013e328363dfee
  • Ghosh, D., Griswold, J., Erman, M., & Pangborn, W. (2009). Structural basis for androgen specificity and oestrogen synthesis in human aromatase. Nature, 457(7226), 219–223. https://doi.org/10.1038/nature07614
  • González de Requena, D., Gallego, O., de Mendoza, C., Corral, A., Jiménez-Nácher, I., & Soriano, V. (2003). Indinavir plasma concentrations and resistance mutations in patients experiencing early virological failure. AIDS Research and Human Retroviruses, 19(6), 457–459. https://doi.org/10.1089/088922203766774496
  • Grosdidier, A., Zoete, V., & Michielin, O. (2011). SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Research, 39(Web Server issue), W270–W277. https://doi.org/10.1093/nar/gkr366
  • Guedes, I. A., de Magalhães, C. S., & Dardenne, L. E. (2014). Receptor–ligand molecular docking. Biophysical Reviews, 6(1), 75–87. https://doi.org/10.1007/s12551-013-0130-2
  • Hampson, L., Kitchener, H. C., & Hampson, IN. (2006). Specific HIV protease inhibitors inhibit the ability of Hpv16 E6 to degrade P53 and selectively kill E6-dependent cervical carcinoma cells in vitro. Antiviral Therapy, 11(6), 813–825. https://doi.org/10.1177/135965350601100607
  • Hsu, A., Granneman, G. R., & Bertz, R. J. (1998). Ritonavir. Clinical pharmacokinetics and interactions with other anti-HIV agents. Clinical Pharmacokinetics, 35(4), 275–291. https://doi.org/10.2165/00003088-199835040-00002
  • Huang, H., Feng, Y.-L., Wan, T., Zhang, Y.-N., Cao, X.-P., Huang, Y.-W., Xiong, Y., Huang, X., Zheng, M., Li, Y.-F., Li, J.-D., Chen, G.-D., Li, H., Chen, Y.-L., Ma, L.-G., Yang, H.-Y., Li, L., Yao,S.-Z.,Ye, ˙˙˙ & Liu, J.-H. (2021). Effectiveness of sequential chemoradiation vs concurrent chemoradiation or radiation alone in adjuvant treatment after hysterectomy for cervical cancer: The STARS phase 3 randomized clinical trial. JAMA Oncology, 7(3), 361–369. https://doi.org/10.1001/jamaoncol.2020.7168
  • Huang, P.-J., Chiu, C.-C., Hsiao, M.-H., Yow, J., Tzang, B.-S., & Hsu, T.-C. (2021). Potential of antiviral drug oseltamivir for the treatment of liver cancer. International Journal of Oncology, 59(6), 1–21. https://doi.org/10.3892/ijo.2021.5289
  • Ikezoe, T., Hisatake, Y., Takeuchi, T., Ohtsuki, Y., Yang, Y., Said, J. W., Taguchi, H., & Koeffler, H. P. (2004). HIV-1 protease inhibitor. Cancer Research, 64(20), 7426–7431. https://doi.org/10.1158/0008-5472.CAN-03-2677
  • Isono, M., Sato, A., Asano, T., Okubo, K., & Asano, T. (2018). Delanzomib interacts with ritonavir synergistically to cause endoplasmic reticulum stress in renal cancer cells. Anticancer Research, 38(6), 3493–3500. https://doi.org/10.21873/anticanres.12620
  • Jarada, T. N., Rokne, J. G., & Alhajj, R. (2020). A review of computational drug repositioning: Strategies, approaches, opportunities, challenges, and directions. Journal of Cheminformatics, 12(1), 1–23. https://doi.org/10.1186/s13321-020-00450-7
  • Jász, Á., Rák, Á., Ladjánszki, I., & Cserey, G. (2019). Optimized GPU implementation of Merck molecular force field and universal force field. Journal of Molecular Structure. 1188, 227–233. https://doi.org/10.1016/j.molstruc.2019.04.007
  • Jejurikar, B. L., & Rohane, S. H. (2021). Drug designing in discovery studio. Asian J Res Chem, 14(2), 135–138.
  • Jourdan, J. P., Bureau, R., Rochais, C., & Dallemagne, P. (2020). Drug repositioning: A brief overview. The Journal of Pharmacy and Pharmacology, 72(9), 1145–1151. https://doi.org/10.1111/jphp.13273
  • Justesen, U. S., Levring, A. M., Thomsen, A., Lindberg, J. A., Pedersen, C., & Tauris, P. (2003). Low-dose indinavir in combination with low-dose ritonavir: Steady-state pharmacokinetics and long-term clinical outcome follow-up. HIV Medicine, 4(3), 250–254. https://doi.org/10.1046/j.1468-1293.2003.00153.x
  • Kappert, K., Caglayan, E., Bäumer, A. T., Südkamp, M., Fätkenheuer, G., & Rosenkranz, S. (2004). Ritonavir exhibits anti-atherogenic properties on vascular smooth muscle cells. AIDS, 18(3), 403–411.
  • Kumar, S., Bryant, C. S., Chamala, S., Qazi, A., Seward, S., Pal, J., Steffes, C. P., Weaver, D. W., Morris, R., Malone, J. M., Shammas, M. A., Prasad, M., & Batchu, R. B. (2009). Ritonavir blocks AKT signaling, activates apoptosis and inhibits migration and invasion in ovarian cancer cells. Molecular Cancer, 8(26), 26–21. https://doi.org/10.1186/1476-4598-8-26
  • Kwon, Y. J., Shin, S., & Chun, Y. J. (2021). Biological roles of cytochrome P450 1A1, 1A2, and 1B1 enzymes. Archives of Pharmacal Research, 44(1), 63–83. https://doi.org/10.1007/s12272-021-01306-w
  • Lee, A., Saito, E., Ekins, S., & McMurtray, A. (2019). Extracellular binding of indinavir to matrix metalloproteinase-2 and the alpha-7-nicotinic acetylcholine receptor: Implications for use in cancer treatment. Heliyon, 5(9), e02526. https://doi.org/10.1016/j.heliyon.2019.e02526
  • Lee, J. Y., Lee, H. T., Shin, W., Chae, J., Choi, J., Kim, S. H., Lim, H., Won Heo, T., Park, K. Y., Lee, Y. J., Ryu, S. E., Son, J. Y., Lee, J. U., & Heo, Y.-S. (2016). Structural basis of checkpoint blockade by monoclonal antibodies in cancer immunotherapy. Nature Communications, 7(1), 13354–13310. https://doi.org/10.1038/ncomms13354
  • Lewis, R. T., Bode, C. M., Choquette, D. M., Potashman, M., Romero, K., Stellwagen, J. C., Teffera, Y., Moore, E., Whittington, D. A., Chen, H., Epstein, L. F., Emkey, R., Andrews, P. S., Yu, V. L., Saffran, D. C., Xu, M., Drew, A., Merkel, P., Szilvassy, S., & Brake, R. L, RCSB PDB - 4FOC. (2012). The discovery and optimization of a novel class of potent, selective, and orally bioavailable anaplastic lymphoma kinase (ALK) inhibitors with potential utility for the treatment of cancer. Journal of Medicinal Chemistry, 55(14), 6523–6540. https://doi.org/10.1021/jm3005866
  • Li, H., & Li, C. (2010). Multiple ligand simultaneous docking: Orchestrated dancing of ligands in binding sites of protein. Journal of Computational Chemistry, 31(10), 2014–2022.
  • Li, H., Liu, T., Wu, X., & Chen, Q. (2020). An optimized VMD method and its applications in bearing fault diagnosis. Measurement, 166, 108185. https://doi.org/10.1016/j.measurement.2020.108185
  • Li, W., Sparidans, R. W., Wang, Y., Lebre, M. C., Beijnen, J. H., & Schinkel, A. H. (2019). Oral coadministration of elacridar and ritonavir enhances brain accumulation and oral availability of the novel ALK/ROS1 inhibitor lorlatinib. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V, 136, 120–130. https://doi.org/10.1016/j.ejpb.2019.01.016
  • Longatto-Filho, A., Pinheiro, C., Martinho, O., Moreira, M. A., Ribeiro, L. F., Queiroz, G. S., Schmitt, F. C., Baltazar, F., & Reis, R. M. (2009). Molecular characterization of EGFR, PDGFRA and VEGFR2 in cervical adenosquamous carcinoma. BMC Cancer, 9(1), 212–218. https://doi.org/10.1186/1471-2407-9-212
  • Mabuchi, S., Isohashi, F., Yoshioka, Y., Temma, K., Takeda, T., Yamamoto, T., Enomoto, T., Morishige, K., Inoue, T., & Kimura, T. (2010). Prognostic factors for survival in patients with recurrent cervical cancer previously treated with radiotherapy. International Journal of Gynecological Cancer: Official Journal of the International Gynecological Cancer Society, 20(5), 834–840. https://doi.org/10.1111/IGC.0b013e3181dcadd1
  • Majumder, R., & Mandal, M. (2022). Screening of plant-based natural compounds as a potential COVID-19 main protease inhibitor: An in silico docking and molecular dynamics simulation approach. Journal of Biomolecular Structure & Dynamics, 40(2), 696–711. https://doi.org/10.1080/07391102.2020.1817787
  • Makinson, A., Pujol, J. L., Le Moing, V., Peyriere, H., & Reynes, J. (2010). Interactions between cytotoxic chemotherapy and antiretroviral treatment in human immunodeficiency virus-infected patients with lung cancer. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer, 5(4), 562–571. https://doi.org/10.1097/JTO.0b013e3181d3ccf2
  • Matsuki, M., Hoshi, T., Yamamoto, Y., Ikemori-Kawada, M., Minoshima, Y., Funahashi, Y., & Matsui, J. (2018). Lenvatinib inhibits angiogenesis and tumor fibroblast growth factor signaling pathways in human hepatocellular carcinoma models. Cancer Medicine, 7(6), 2641–2653. https://doi.org/10.1002/cam4.1517
  • Metzler, W. J., Bajorath, J., Fenderson, W., Shaw, S. Y., Constantine, K. L., Naemura, J., Leytze, G., Peach, R. J., Lavoie, T. B., Mueller, L., & Linsley, P. S. (1997). Solution structure of human CTLA-4 and delineation of a CD80/CD86 binding site conserved in CD28. Nature Structural Biology, 4(7), 527–531. https://doi.org/10.1038/nsb0797-527
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Nair, H. B., Luthra, R., Kirma, N., Liu, Y.-G., Flowers, L., Evans, D., & Tekmal, R. R. (2005). Induction of aromatase expression in cervical carcinomas: Effects of endogenous estrogen on cervical cancer cell proliferation. Cancer Research, 65(23), 11164–11173. https://doi.org/10.1158/0008-5472.CAN-05-1087
  • Nakagawa, S., Yoshikawa, H., Yasugi, T., Kimura, M., Kawana, K., Matsumoto, K., Yamada, M., Onda, T., & Taketani, Y. (2000). Ubiquitous presence of E6 and E7 transcripts in human papillomavirus-positive cervical carcinomas regardless of its type. Journal of Medical Virology, 62(2), 251–256. https://doi.org/10.1002/1096-9071(200010)62:2<251::AID-JMV18>3.0.CO;2-V
  • Okubo, K., Isono, M., Asano, T., & Sato, A. (2019). Lopinavir-ritonavir combination induces endoplasmic reticulum stress and kills urological cancer cells. Anticancer Research, 39(11), 5891–5901. https://doi.org/10.21873/anticanres.13793
  • Okunade, K. S. (2020). Human papillomavirus and cervical cancer. Journal of Obstetrics and Gynaecology: The Journal of the Institute of Obstetrics and Gynaecology, 40(5), 602–608. https://doi.org/10.1080/01443615.2019.1634030
  • Páll, S., Zhmurov, A., Bauer, P., Abraham, M., Lundborg, M., Gray, A., Hess, B., & Lindahl, E. (2020). Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS. The Journal of Chemical Physics, 153(13), 134110. https://doi.org/10.1063/5.0018516
  • Patel, A. K., Patel, K. K., Patel, J. K., Sharma, R. L., & Ranjan, R. R. (2006). Effectiveness of low-dose indinavir/ritonavir at 400/100 mg twice a day with 2 nucleoside reverse transcriptase inhibitors in nonnucleoside reverse transcriptase inhibitor-experienced HIV-infected patients in India: 1-year follow-up. Journal of Acquired Immune Deficiency Syndromes (1999), 43(1), 123–126. https://doi.org/10.1097/01.qai.0000230522.86964.5d
  • PDB - 5VCC, R. C. S. B., & Sevrioukova, I. F. (2017). High-level production and properties of the cysteine-depleted cytochrome P450 3A4. Biochemistry, 56(24), 3058–3067. https://doi.org/10.1021/acs.biochem.7b00334
  • Pfab, C., Schnobrich, L., Eldnasoury, S., Gessner, A., & El-Najjar, N. (2021). Repurposing of antimicrobial agents for cancer therapy: What do we know? Cancers (Basel), 13(13), 3193. https://doi.org/10.3390/cancers13133193
  • Poirson, J., Suarez, I. P., Cousido-Siah, A., Forster, A., Chebaro, Y., Mitschler, A., Straub, M., Altschuh, D., Podjarny, A., Trave, G., & Masson, M. (2017). RCSB PDB – 6SJA: Deciphering de molecular and structural interaction between IRF3 and HPV16 E6. (To be published)
  • Qiu, Y., Maione, F., Capano, S., Meda, C., Picconi, O., Brundu, S., Pisacane, A., Sapino, A., Palladino, C., Barillari, G., Monini, P., Bussolino, F., Ensoli, B., Sgadari, C., & Giraudo, E. (2020). HIV protease inhibitors block HPV16-induced murine cervical carcinoma and promote vessel normalization in association with MMP-9 inhibition and TIMP-3 induction. Molecular Cancer Therapeutics, 19(12), 2476–2489. https://doi.org/10.1158/1535-7163.MCT-20-0055
  • Quiroga, I., & Scior, T. (2019). Induced fit for cytochrome P450 3A4 based on molecular dynamics. Admet & Dmpk, 7(4), 252–266. https://doi.org/10.5599/admet.729
  • Rana, K. Z., & Dudley, M. N. (1999). Human immunodeficiency virus protease inhibitors (1999). Pharmacotherapy, 19(1), 35–59. https://doi.org/10.1592/phco.19.1.35.30513
  • Rauf, M. A., Zubair, S., & Azhar, A. (2015). Ligand docking and binding site analysis with pymol and autodock/vina. International Journal of Basic and Applied Sciences, 4(2), 168–177. https://doi.org/10.14419/ijbas.v4i2.4123
  • Rauschenbach, L., Wieland, A., Reinartz, R., Kebir, S., Till, A., Darkwah Oppong, M., Dobersalske, C., Ullrich, V., Ahmad, A., Jabbarli, R., Pierscianek, D., Fröhlich, H., Simon, M., Brüstle, O., Sure, U., Glas, M., & Scheffler, B. (2020). Drug repositioning of antiretroviral ritonavir for combinatorial therapy in glioblastoma. European Journal of Cancer (Oxford, England : 1990), 140, 130–139. https://doi.org/10.1016/j.ejca.2020.09.017
  • Reichheld, A., Mukherjee, P. K., Rahman, S. M., David, K. V., & Pricilla, R. A. (2020). Prevalence of cervical cancer screening and awareness among women in an urban community in South India–A Cross sectional study. Annals of Global Health, 86(1), 30.
  • Reis, G., Moreira Silva, E. A. D. S., Medeiros Silva, D. C., Thabane, L., Singh, G., Park, J. J. H., Forrest, J. I., Harari, O., Quirino Dos Santos, C. V., Guimarães de Almeida, A. P. F., Figueiredo Neto, A. D. d., Savassi, L. C. M., Milagres, A. C., Teixeira, M. M., Simplicio, M. I. C., Ribeiro, L. B., Oliveira, R., & Mills, E. J. (2021). Effect of early treatment with hydroxychloroquine or lopinavir and ritonavir on risk of hospitalization among patients with COVID-19: The together randomized clinical trial. JAMA Network Open, 4(4), e216468–e216468. https://doi.org/10.1001/jamanetworkopen.2021.6468
  • Rock, B. M., Hengel, S. M., Rock, D. A., Wienkers, L. C., & Kunze, K. L. (2014). Characterization of ritonavir-mediated inactivation of cytochrome P450 3A4. Molecular Pharmacology, 86(6), 665–674. https://doi.org/10.1124/mol.114.094862
  • Rodriguez-Antona, C., & Ingelman-Sundberg, M. (2006). Cytochrome P450 pharmacogenetics and cancer. Oncogene, 25(11), 1679–1691. https://doi.org/10.1038/sj.onc.1209377
  • Rudrapal, M., Khairnar, S. J., & Jadhav, A. G. (2020). Drug repurposing (DR): An emerging approach in drug discovery. In F. A. Badria (Ed.) Drug repurposing – Hypothesis, molecular aspects and therapeutic applications. IntechOpen.
  • Seidel, J. A., Otsuka, A., & Kabashima, K. (2018). Anti-PD-1 and anti-CTLA-4 therapies in cancer: Mechanisms of action, efficacy, and limitations. Frontiers in Oncology, 8, 86. https://doi.org/10.3389/fonc.2018.00086
  • Seshacharyulu, P., Ponnusamy, M. P., Haridas, D., Jain, M., Ganti, A. K., & Batra, S. K. (2012). Targeting the EGFR signaling pathway in cancer therapy. Expert Opinion on Therapeutic Targets, 16(1), 15–31. https://doi.org/10.1517/14728222.2011.648617
  • Sgadari, C., Barillari, G., Toschi, E., Carlei, D., Bacigalupo, I., Baccarini, S., Palladino, C., Leone, P., Bugarini, R., Malavasi, L., Cafaro, A., Falchi, M., Valdembri, D., Rezza, G., Bussolino, F., Monini, P., & Ensoli, B. (2002). HIV protease inhibitors are potent anti-angiogenic molecules and promote regression of Kaposi sarcoma. Nature Medicine, 8(3), 225–232. https://doi.org/10.1038/nm0302-225
  • Shih, W. L., Fang, C. T., & Chen, P. J. (2014). Anti-viral treatment and cancer control. Recent Results in Cancer Research. Fortschritte Der Krebsforschung. Progres Dans Les Recherches Sur le Cancer, 193, 269–290. https://doi.org/10.1007/978-3-642-38965-8_14
  • Srirangam, A., Milani, M., Mitra, R., Guo, Z., Rodriguez, M., Kathuria, H., Fukuda, S., Rizzardi, A., Schmechel, S., Skalnik, D. G., Pelus, L. M., & Potter, D. A. (2011). The HIV protease inhibitor ritonavir inhibits lung cancer cells, in part, by inhibition of survivin. Journal of Thoracic Oncology, 6(4), 661–670. https://doi.org/10.1097/JTO.0b013e31820c9e3c
  • Srirangam, A., Mitra, R., Wang, M., Gorski, J. C., Badve, S., Baldridge, L., Hamilton, J., Kishimoto, H., Hawes, J., Li, L., Orschell, C. M., Srour, E. F., Blum, J. S., Donner, D., Sledge, G. W., Nakshatri, H., & Potter, D. A. (2006). Effects of HIV protease inhibitor ritonavir on Akt-regulated cell proliferation in breast cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 12(6), 1883–1896.
  • Taja-Chayeb, L., Chavez-Blanco, A., Martínez-Tlahuel, J., González-Fierro, A., Candelaria, M., Chanona-Vilchis, J., Robles, E., & Dueñas-Gonzalez, A. (2006). Expression of platelet derived growth factor family members and the potential role of imatinib mesylate for cervical cancer. Cancer Cell International, 6(1), 22–21. https://doi.org/10.1186/1475-2867-6-22
  • Tan, S., Zhang, H., Chai, Y., Song, H., Tong, Z., Wang, Q., Qi, J., Wong, G., Zhu, X., Liu, W. J., Gao, S., Wang, Z., Shi, Y., Yang, F., Gao, G. F., & Yan, J. (2017). An unexpected N-terminal loop in PD-1 dominates binding by nivolumab. Nature Communications, 8(1), 14369–14310. https://doi.org/10.1038/ncomms14369
  • Tian, W., Chen, C., Lei, X., Zhao, J., & Liang, J. (2018). CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Research, 46(W1), W363–W367. https://doi.org/10.1093/nar/gky473
  • Tolbert, M., Morgan, C. E., Pollum, M., Crespo-Hernández, C. E., Li, M.-L., Brewer, G., & Tolbert, B. S. (2017). HnRNP A1 alters the structure of a conserved enterovirus IRES domain to stimulate viral translation. Journal of Molecular Biology, 429(19), 2841–2858. https://doi.org/10.1016/j.jmb.2017.06.007
  • Tuli, H. S., Sak, K., Gupta, D. S., Kaur, G., Aggarwal, D., Chaturvedi Parashar, N., Choudhary, R., Yerer, M. B., Kaur, J., Kumar, M., Garg, V. K., & Sethi, G. (2021). Anti-inflammatory and anticancer properties of birch bark-derived betulin: Recent developments. Plants, 10(12), 2663. https://doi.org/10.3390/plants10122663
  • Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). Gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. Journal of Chemical Theory and Computation, 17(10), 6281–6291. https://doi.org/10.1021/acs.jctc.1c00645
  • Vermunt, M. A. C., Robbrecht, D. G. J., Devriese, L. A., Janssen, J. M., Thijssen, B., Keessen, M., van Eijk, M., Kessels, R., Eskens, F. A. L. M., Beijnen, J. H., Mehra, N., & Bergman, A. M. (2021). ModraDoc006, an oral docetaxel formulation in combination with ritonavir (ModraDoc006/r), in metastatic castration-resistant prostate cancer patients: A phase Ib study. Cancer Reports (Hoboken, N.J.), 4(4), e1367. https://doi.org/10.1002/cnr2.1367
  • Vermunt, M. A. C., van der Heijden, L. T., Hendrikx, J. J. M. A., Schinkel, A. H., de Weger, V. A., van der Putten, E., van Triest, B., Bergman, A. M., & Beijnen, J. H. (2021). Pharmacokinetics of docetaxel and ritonavir after oral administration of ModraDoc006/r in patients with prostate cancer versus patients with other advanced solid tumours. Cancer Chemotherapy and Pharmacology, 87(6), 855–869. https://doi.org/10.1007/s00280-021-04259-5
  • von Moltke, L. L., Greenblatt, D. J., Grassi, J. M., Granda, B. W., Duan, S. X., Fogelman, S. M., Daily, J. P., Harmatz, J. S., & Shader, R. I. (1998). Protease inhibitors as inhibitors of human cytochromes P450: High risk associated with ritonavir. Journal of Clinical Pharmacology, 38(2), 106–111. https://doi.org/10.1002/j.1552-4604.1998.tb04398.x
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055
  • Webb, T. R., Slavish, J., George, R. E., Look, A. T., Xue, L., Jiang, Q., Cui, X., Rentrop, W. B., & Morris, S. W. (2009). Anaplastic lymphoma kinase: Role in cancer pathogenesis and small-molecule inhibitor development for therapy. Expert Review of Anticancer Therapy, 9(3), 331–356. https://doi.org/10.1586/14737140.9.3.331
  • Yan, X. E., & Yun, C. H. (2021). RCSB PDB – 5GRN: Crystal structure of PDGFRA in complex with WQ-C-159 (To be published)
  • Yu, H., Hendrikx, J. J., Rottenberg, S., Schellens, J. H., Beijnen, J. H., & Huitema, A. D. (2016). Development of a tumour growth inhibition model to elucidate the effects of ritonavir on intratumoural metabolism and anti-tumour effect of docetaxel in a mouse model for hereditary breast cancer. The AAPS Journal, 18(2), 362–371. https://doi.org/10.1208/s12248-015-9838-1
  • Zhang, X., Gureasko, J., Shen, K., Cole, P. A., & Kuriyan, J. (2006). An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell, 125(6), 1137–1149. https://doi.org/10.1016/j.cell.2006.05.013
  • Zhang, Z., Zhou, L., Xie, N., Nice, E. C., Zhang, T., Cui, Y., & Huang, C. (2020). Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduction and Targeted Therapy, 5(1), 1–25. https://doi.org/10.1038/s41392-020-00213-8
  • Zhu, H., Luo, H., Zhang, W., Shen, Z., Hu, X., & Zhu, X. (2016). Molecular mechanisms of cisplatin resistance in cervical cancer. Drug Design, Development and Therapy, 10, 1885–1895.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.