241
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Molecular modelling study to discover novel JAK2 signaling pathway inhibitor

&
Pages 5827-5838 | Received 09 May 2022, Accepted 28 Jun 2022, Published online: 15 Jul 2022

References

  • Alicea-Velazquez, N. L., & Boggon, T. J. (2011). The use of structural biology in Janus kinase targeted drug discovery. Current Drug Targets, 12(4), 546–555. https://doi.org/10.2174/138945011794751528
  • Asnafi, V., Le Noir, S., Lhermitte, L., Gardin, C., Legrand, F., Vallantin, X., Malfuson, J. V., Ifrah, N., Dombret, H., & Macintyre, E. (2010). JAK1 mutations are not frequent events in adult T-ALL: A GRAALL study. British Journal of Haematology, 148(1), 178–179. https://doi.org/10.1111/j.1365-2141.2009.07912.x
  • Atak, Z. K., Gianfelici, V., Hulselmans, G., De Keersmaecker, K., Devasia, A. G., Geerdens, E., Mentens, N., Chiaretti, S., Durinck, K., Uyttebroeck, A., Vandenberghe, P., Wlodarska, I., Cloos, J., Foa, R., Speleman, F., Cools, J., & Aerts, S. (2013). Comprehensive analysis of transcriptome variation uncovers known and novel driver events in T-cell acute lymphoblastic leukemia. PLoS Genetics, 9(12), e1003997. https://doi.org/10.1371/journal.pgen.1003997
  • Baxter, E. J., Scott, L. M., Campbell, P. J., East, C., Fourouclas, N., Swanton, S., Vassiliou, G. S., Bench, A. J., Boyd, E. M., Curtin, N., Scott, M. A., Erber, W. N., & Green, A. R. (2005). Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet (London, England), 365(9464), 1054–1061. https://doi.org/10.1016/S0140-6736(05)71142-9
  • Brown, R. D. (2001). Tools for designing diverse, drug-like, cost-effective combinatorial libraries. In Combinatorial library design and evaluation (pp. 328). Marcel Dekker, Inc.
  • Casanova, J. L., Holland, S. M., & Notarangelo, L. D. (2012). Inborn errors of human JAKs and STATs. Immunity, 36(4), 515–528. https://doi.org/10.1016/j.immuni.2012.03.016
  • Christ, C. D., Mark, A. E., & van Gunsteren, W. F. (2009). Basic ingredients of free energy calculations: A review. Journal of Computational Chemistry, 31, 1569–1582.
  • Craven, R. J., Xu, L., Weiner, T. M., Fridell, Y. W., Dent, G. A., Srivastava, S., Varnum, B., Liu, E. T., & Cance, W. G. (1995). Receptor tyrosine kinases expressed in metastatic colon-cancer. International Journal of Cancer, 60(6), 791–797. https://doi.org/10.1002/ijc.2910600611
  • Das, D., Koh, Y., Tojo, Y., Ghosh, A. K., & Mitsuya, H. (2009). Prediction of potency of protease inhibitors using free energy simulations with polarizable quantum mechanics-based ligand charges and a hybrid water model. Journal of Chemical Information and Modeling, 49(12), 2851–2862. https://doi.org/10.1021/ci900320p
  • Du, W., Hong, J., Wang, Y.-C., Zhang, Y.-J., Wang, P., Su, W.-Y., Lin, Y.-W., Lu, R., Zou, W.-P., Xiong, H., & Fang, J.-Y. (2012). Inhibition of JAK2/STAT3 signaling induces colorectal cancer cell apoptosis via mitochondrial pathway. Journal of Cellular and Molecular Medicine, 16(8), 1878–1888. https://doi.org/10.1111/j.1582-4934.2011.01483.x
  • Garrido-Trigo, A., & Salas, A. (2020). Molecular structure and function of Janus Kinases: Implications for the development of inhibitors. Journal of Crohn's & Colitis, 14(Suppl_2), S713–S724. https://doi.org/10.1093/ecco-jcc/jjz206
  • Ghoreschi, K., Laurence, A., & O’Shea, J. J. (2009). Janus kinases in immune cell signaling. Immunological Reviews, 228(1), 273–287. https://doi.org/10.1111/j.1600-065X.2008.00754.x
  • Giese, B., Au-Yeung, C. K., Herrmann, A., Diefenbach, S., Haan, C., Kuster, A., Wortmann, S. B., Roderburg, C., Heinrich, P. C., Behrmann, I., & Muller-Newen, G. (2003). Long term association of the cytokine receptor gp130 and the Janus kinase Jak1 revealed by FRAP analysis. The Journal of Biological Chemistry, 278(40), 39205–39213. https://doi.org/10.1074/jbc.M303347200
  • Glide. (2015). Glide, version 6.7. Schrödinger, LLC.
  • Gohlke, H., Kiel, C., & Case, D. A. (2003). Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RaI GDS complexes. Journal of Molecular Biology, 330(4), 891–913. https://doi.org/10.1016/S0022-2836(03)00610-7
  • Gohlke, H., & Klebe, G. (2002). Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. Angewandte Chemie International Edition, 41(15), 2644–2676. https://doi.org/10.1002/1521-3773(20020802)41:15<2644::AID-ANIE2644>3.0.CO;2-O
  • Haan, C., Kreis, S., Margue, C., & Behrmann, I. (2006). Jaks and cytokine receptors – An intimate relationship. Biochemical Pharmacology, 72(11), 1538–1546. https://doi.org/10.1016/j.bcp.2006.04.013
  • Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J. Y., Wang, L., Lupyan, D., Dahlgren, M. K., Knight, J. L., Kaus, J. W., Cerutti, D. S., Krilov, G., Jorgensen, W. L., Abel, R., & Friesner, R. A. (2016). OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation, 12(1), 281–296. https://doi.org/10.1021/acs.jctc.5b00864
  • Hitoshi, Y., Lin, N., Payan, D. G., & Markovtsov, V. (2010). The current status and the future of JAK2 inhibitors for the treatment of myeloproliferative diseases. International Journal of Hematology, 91(2), 189–200. https://doi.org/10.1007/s12185-010-0531-y
  • Irvine, J. D., Takahashi, L., Lockhart, K., Cheong, J., Tolan, J. W., Selick, H. E., & Grove, J. R. (1999). MDCK (Madin-Darby canine kidney) cells: A tool for membrane permeability screening. Journal of Pharmaceutical Sciences, 88(1), 28–33. https://doi.org/10.1021/js9803205 PMID: 9874698.
  • Jakubík, J., Randáková, A., & Doležal, V. (2013). On homology modeling of the M2 muscarinic acetylcholine receptor subtype. Journal of Computer-Aided Molecular Design, 27(6), 525–538. https://doi.org/10.1007/s10822-013-9660-8
  • Kevin, J. B., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D., Salmon, J. K., Shan, Y., & Shaw, D. E. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters [Paper presentation]. Proceedings of the ACM/IEEE Conference on Supercomputing (SC06), , November 11–17, Tampa, FL.
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S. H., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., & Cheatham, T. E. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33(12), 889–897. https://doi.org/10.1021/ar000033j
  • Kralovics, R., Passamonti, F., Buser, A. S., Teo, S.-S., Tiedt, R., Passweg, J. R., Tichelli, A., Cazzola, M., & Skoda, R. C. (2005). A gain-of-function mutation of JAK2 in myeloproliferative disorders. The New England Journal of Medicine, 352(17), 1779–1790. https://doi.org/10.1056/NEJMoa051113
  • Leroy, E., & Constantinescu, S. N. (2017). Rethinking JAK2 inhibition: towards novel strategies of more specific and versatile janus kinase inhibition. Leukemia, 31(5), 1023–1038. https://doi.org/10.1038/leu.2017.43
  • Li, J., Abel, R., Zhu, K., Cao, Y., Zhao, S., & Friesner, R. A. (2011). Proteins struct funct. Proteins, 79(10), 2794–2812. https://doi.org/10.1002/prot.23106
  • Lipinski, C., Lombardo, F., Dominy, B., & Feeney, P. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1-3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
  • MacroModel. (2015). MacroModel, version 10.8. Schrödinger, LLC.
  • McGregor, M. J. (2007). A pharmacophore map of small molecule protein kinase inhibitors. Journal of Chemical Information and Modeling, 47(6), 2374–2382. https://doi.org/10.1021/ci700244t
  • Mesa, R. A., Yasothan, U., & Kirkpatrick, P. (2012). Ruxolitinib. Nature Reviews. Drug Discovery, 11(2), 103–104. https://doi.org/10.1038/nrd3652
  • Mishra, A., Kaur, U., & Singh, A. (2022). Fisetin 8-C-glucoside as entry inhibitor in SARS CoV-2 infection: molecular modelling study. Journal of Biomolecular Structure and Dynamics, 40(11), 5128–5137. https://doi.org/10.1080/07391102.2020.1868335
  • Mullighan, C. G., Zhang, J. H., Harvey, R. C., Collins, Underwood, J. R., Schulman, B. A., Phillips, L. A., Tasian, S. K., Loh, M. L., Su, X. P., Liu, W., Devidas, M., Atlas, S. R., Chen, I. M., Clifford, R. J., Gerhard, D. S., Carroll, W. L., Reaman, G. H., Smith, M., Downing, J. R., … Willman, C. L. (2009). JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 106(23), 9414–9418. https://doi.org/10.1073/pnas.0811761106
  • O’Shea, J. J., & Plenge, R. (2012). JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity, 36(4), 542–550. https://doi.org/10.1016/j.immuni.2012.03.014
  • Olsson, M. H., Søndergaard, C. R., Rostkowski, M., & Jensen, J. H. (2011). PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions. Journal of Chemical Theory and Computation, 87(2), 525–537. https://doi.org/10.1021/ct100578z Epub 2011 Jan 6. PMID: 26596171.
  • Prime. (2015). Prime, version 4.0., Schrödinger, LLC.
  • Sanachai, K., Mahalapbutr, P., Choowongkomon, K., Poo-arporn, R. P., Wolschann, P., & Rungrotmongkol, T. (2020). Insights into the Binding Recognition and Susceptibility of Tofacitinib toward Janus Kinases. ACS Omega, 5(1), 369–377. https://doi.org/10.1021/acsomega.9b02800
  • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Sato, T., Toki, T., Kanezaki, R., Xu, G., Terui, K., Kanegane, H., Miura, M., Adachi, S., Migita, M., Morinaga, S., Nakano, T., Endo, M., Kojima, S., Kiyoi, H., Mano, H., & Ito, E. (2008). Functional analysis of JAK3 mutations in transient myeloproliferative disorder and acute megakaryoblastic leukaemia accompanying Down syndrome. British Journal of Haematology, 141(5), 681–688. https://doi.org/10.1111/j.1365-2141.2008.07081.x
  • Schindler, C., Levy, D. E., & Decker, T. (2007). JAK-STAT signaling: From interferons to cytokines. The Journal of Biological Chemistry, 282(28), 20059–20063. https://doi.org/10.1074/jbc.R700016200
  • Schrödinger. (2020). Schrödinger Release 2018-4: QikProp. Schrödinger, LLC.
  • Shelley, J. C., Cholleti, A., Frye, L. L., Greenwood, J. R., Timlin, M. R., & Uchimaya, M. (2007). Epik: A software program for pK(a) prediction and protonation state generation for drug-like molecules. Journal of Computer-Aided Molecular Design, 21(12), 681–691. https://doi.org/10.1007/s10822-007-9133-z
  • Singh, A., & Mishra, A. (2021). Leucoefdin a potential inhibitor against SARS CoV-2 Mpro. Journal of Biomolecular Structure & Dynamics, 39(12), 4427–4432. https://doi.org/10.1080/07391102.2020.1777903
  • Singh, P., & Roberts, M. S. (1993). Dermal and underlying tissue pharmacokinetics of salicylic-acid after topical application. Journal of Pharmacokinetics and Biopharmaceutics, 21(4), 337–373. https://doi.org/10.1007/BF01061687
  • Springuel, L., Hornakova, T., Losdyck, E., Lambert, F., Leroy, E., Constantinescu, S. N., Flex, E., Tartaglia, M., Knoops, L., & Renauld, J. C. (2014). Cooperating JAK1 and JAK3 mutants increase resistance to JAK inhibitors. Blood, 124(26), 3924–3931. https://doi.org/10.1182/blood-2014-05-576652
  • Srivastava, H., & Sastry, G. (2012). Molecular dynamics investigation on a series of HIV protease inhibitors: Assessing the performance of MM-PBSA and MM-GBSA approaches. Journal of Chemical Information and Modeling, 52(11), 3088–3098. https://doi.org/10.1021/ci300385h
  • Teague, S., Davis, A., Leeson, P., & Oprea, T. (1999). The design of lead like combinatorial libraries. Angewandte Chemie International Edition, 38(24), 3743–3748. https://doi.org/10.1002/(SICI)1521-3773(19991216)38:24<3743::AID-ANIE3743>3.0.CO;2-U
  • Vasbinder, M. M., Alimzhanov, M., Augustin, M., Bebernitz, G., Bell, K., Chuaqui, C., Deegan, T., Ferguson, A. D., Goodwin, K., Huszar, D., Kawatkar, A., Kawatkar, S., Read, J., Shi, J., Steinbacher, S., Steuber, H., Su, Q., Toader, D., Wang, H., … Zinda, M. (2016). Identification of azabenzimidazoles as potent JAK1 selective inhibitors. Bioorganic & Medicinal Chemistry Letters, 26(1), 60–67. https://doi.org/10.1016/j.bmcl.2015.11.031
  • Wang, W., Donini, O., Reyes, C. M., & Kollman, P. A. (2001). Biomolecular simulations: Recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions. Annual Review of Biophysics and Biomolecular Structure, 30(1), 211–243. https://doi.org/10.1146/annurev.biophys.30.1.211
  • Wang, J. M., Hou, T. J., & Xu, X. J. (2006). Recent advances in free energy calculations with a combination of molecular mechanics and continuum models. Current Computer Aided-Drug Design, 2(3), 287–306. https://doi.org/10.2174/157340906778226454
  • Wang, Y., Huang, W., Xin, M., Chen, P., Gui, L., Zhao, X., Tang, F., Wang, J., & Liu, F. (2017). Identification of 4-(2-furanyl)pyrimidin-2- amines as Janus kinase 2 inhibitors. Bioorganic & Medicinal Chemistry, 25(1), 75–83. https://doi.org/10.1016/j.bmc.2016.10.011
  • Wu, P., Nielsen, T. E., & Clausen, M. H. (2015). FDA-approved small molecule kinase inhibitors. Trends in Pharmacological Sciences, 36(7), 422–439. https://doi.org/10.1016/j.tips.2015.04.005
  • Xiong, H., Du, W., Zhang, Y.-J., Hong, J., Su, W.-Y., Tang, J.-T., Wang, Y.-C., Lu, R., & Fang, J.-Y. (2012). Trichostatin A, a histone deacetylase inhibitor, suppresses JAK2/STAT3 signaling via inducing the promoter-associated histone acetylation of SOCS1 and SOCS3 in human colorectal cancer cells. Molecular Carcinogenesis, 51(2), 174–184. https://doi.org/10.1002/mc.20777
  • Yamaoka, K., Saharinen, P., Pesu, M., Holt, V. E. T., Silvennoinen, O., & O’Shea, J. J. (2004). The Janus kinases (Jaks). Genome Biology, 5(253)
  • Yamashita, S., Furubayashi, T., Kataoka, M., Sakane, T., Sezaki, H., & Tokuda, H. (2000). Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. European Journal of Pharmaceutical Sciences, 10(3), 195–204. PMID: 10767597. https://doi.org/10.1016/S0928-0987(00)00076-2
  • Zhang, X., Hu, F., Li, G., Li, G., Yang, X., Liu, L., Zhang, R., Zhang, B., & Feng, Y. (2018). Human colorectal cancer-derived mesenchymal stem cells promote colorectal cancer progression through IL-6/JAK2/STAT3 signaling. Cell Death & Disease, 9(2), 25. https://doi.org/10.1038/s41419-017-0176-3.
  • Zhang, J., Yang, P. L., & Gray, N. S. (2009). Targeting cancer with small molecule kinase inhibitors. Nature Reviews. Cancer, 9(1), 28–39. https://doi.org/10.1038/nrc2559

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.