329
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

In silico based multi-epitope vaccine design against norovirus

, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 5696-5706 | Received 18 Dec 2021, Accepted 21 Jun 2022, Published online: 02 Aug 2022

References

  • Abraham Peele, K., Srihansa, T., Krupanidhi, S., Ayyagari, V. S., & Venkateswarulu, T. C. (2021). Design of multi-epitope vaccine candidate against SARS-CoV-2: a study. Journal of Biomolecular Structure & Dynamics, 39(10), 3793–3801. https://doi.org/10.1080/07391102.2020.1770127
  • Alberts, B. (2017). Molecular biology of the cell. Garland Science.
  • Bartsch, S. M., Lopman, B. A., Ozawa, S., Hall, A. J., & Lee, B. Y. (2016). Global economic burden of norovirus gastroenteritis. PLoS One, 11(4), e0151219. https://doi.org/10.1371/journal.pone.0151219
  • Bui, H.-H., Sidney, J., Li, W., Fusseder, N., & Sette, A. (2007). Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines. BMC Bioinformatics, 8, 361. https://doi.org/10.1186/1471-2105-8-361
  • Calis, J. J. A., Maybeno, M., Greenbaum, J. A., Weiskopf, D., De Silva, A. D., Sette, A., Keşmir, C., & Peters, B. (2013). Properties of MHC class I presented peptides that enhance immunogenicity. PLoS Computational Biology, 9(10), e1003266. https://doi.org/10.1371/journal.pcbi.1003266
  • Chen, X., Zaro, J. L., & Shen, W. C. (2013). Fusion protein linkers: Property, design and functionality. Advanced Drug Delivery Reviews, 65(10), 1357–1369.
  • Chisholm, H. (2018). The Encyclopaedia Britannica: A dictionary of arts, sciences, literature and general information (Vol. 10). Palala Press.
  • Choe, J., Kelker, M. S., & Wilson, I. A. (2005). Crystal structure of human toll-like receptor 3 (TLR3) ectodomain. Science (New York, NY), 309(5734), 581–585. https://doi.org/10.1126/science.1115253
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: patterns of nonbonded atomic interactions. Protein Science, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • DeLano, W. L. (2002). Pymol: An open-source molecular graphics tool. CCP4 Newsletter on Protein Crystallography, 40, 82–92.
  • Dhanda, S. K., Vir, P., & Raghava, G. P. S. (2013). Designing of interferon-gamma inducing MHC class-II binders. Biology Direct, 8, 30. https://doi.org/10.1186/1745-6150-8-30
  • Dimitrov, I., Bangov, I., Flower, D. R., & Doytchinova, I. (2014). AllerTOP v.2–A server for in silico prediction of allergens. Journal of Molecular Modeling, 20(6), 2278. https://doi.org/10.1007/s00894-014-2278-5
  • Doytchinova, I. A., & Flower, D. R. (2007a). Identifying candidate subunit vaccines using an alignment-independent method based on principal amino acid properties. Vaccine, 25(5), 856–866. https://doi.org/10.1016/j.vaccine.2006.09.032
  • Doytchinova, I. A., & Flower, D. R. (2007b). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(1), 4. https://doi.org/10.1186/1471-2105-8-4
  • Doytchinova, I. A., & Flower, D. R. (2008). Bioinformatic approach for identifying parasite and fungal candidate subunit vaccines. Open Vaccine Journal, 1(1), 4.
  • Eden, J.-S., Lim, K. L., & White, P. A. (2012). Complete genome of the human norovirus GIV.1 strain Lake Macquarie virus. Journal of Virology, 86(18), 10251–10252. https://doi.org/10.1128/JVI.01604-12
  • Eisenberg, D., Lüthy, R., & Bowie, J. U. (1997). VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods in Enzymology, 277, 396–404. https://doi.org/10.1016/s0076-6879(97)77022-8
  • Ertl, H. C., Dietzschold, B., & Otvos, L. (1991). T helper cell epitope of rabies virus nucleoprotein defined by tri‐and tetrapeptides. European Journal of Immunology, 21(1), 1–10.
  • Esposito, S., & Principi, N. (2020). Norovirus vaccine: Priorities for future research and development. Frontiers in Immunology, 11(1383), 1383.
  • Fleri, W., Paul, S., Dhanda, S. K., Mahajan, S., Xu, X., Peters, B., & Sette, A. (2017). The immune epitope database and analysis resource in epitope discovery and synthetic vaccine design. Frontiers in Immunology, 8, 278.
  • Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., & Appel, R. D. (2005). Protein identification and analysis tools on the ExPASy server. The Proteomics Protocols Handbook, 571–607. https://doi.org/10.1385/1-59259-890-0:571.
  • Guo, Y., Yu, L., Wen, Z., & Li, M. (2008). Using support vector machine combined with auto covariance to predict protein-protein interactions from protein sequences. Nucleic Acids Research, 36(9), 3025–3030. https://doi.org/10.1093/nar/gkn159
  • Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., & Raghava, G. P. S., Open Source Drug Discovery Consortium. (2013). In silico approach for predicting toxicity of peptides and proteins. PLoS One, 8(9), e73957. https://doi.org/10.1371/journal.pone.0073957
  • Hall, A. J., Lopman, B. A., Payne, D. C., Patel, M. M., Gastañaduy, P. A., Vinjé, J., & Parashar, U. D. (2013). Norovirus disease in the United States. Emerging Infectious Diseases, 19(8), 1198–1205. https://doi.org/10.3201/eid1908.130465
  • Hallowell, B. D., Parashar, U. D., & Hall, A. J. (2019). Epidemiologic challenges in norovirus vaccine development. Human Vaccines & Immunotherapeutics, 15(6), 1279–1283. https://doi.org/10.1080/21645515.2018.1553594
  • Hebditch, M., Alejandro Carballo-Amador, M., Charonis, S., Curtis, R., & Warwicker, J. (2017). Protein–Sol: A web tool for predicting protein solubility from sequence. Bioinformatics (Oxford, England), 33(19), 3098–3100. https://doi.org/10.1093/bioinformatics/btx345
  • Johnson, M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y., McGinnis, S., & Madden, T. L. (2008). NCBI BLAST: a better web interface. Nucleic Acids Research, 36(Web Server issue), W5–W9. https://doi.org/10.1093/nar/gkn201
  • Jones, D. T. (1999). Protein secondary structure prediction based on position-specific scoring matrices 1. Journal of Molecular Biology, 292(2), 195–202. https://doi.org/10.1006/jmbi.1999.3091
  • Khairkhah, N., Aghasadeghi, M. R., Namvar, A., & Bolhassani, A. (2020). Design of novel multiepitope constructs-based peptide vaccine against the structural S, N and M proteins of human COVID-19 using immunoinformatics analysis. PLoS One, 15(10), e0240577. https://doi.org/10.1371/journal.pone.0240577
  • Khan, M. T., Islam, R., Jerin, T. J., Mahmud, A., Khatun, S., Kobir, A., Islam, M. N., Akter, A., & Mondal, S. I. (2021). Immunoinformatics and molecular dynamics approaches: Next generation vaccine design against West Nile virus. PLoS One, 16(6), e0253393. https://doi.org/10.1371/journal.pone.0253393
  • Kirkland, T. N., Finley, F., Orsborn, K. I., & Galgiani, J. N. (1998). Evaluation of the proline-rich antigen of Coccidioides immitis as a vaccine candidate in mice. Infection and Immunity, 66(8), 3519–3522.
  • Kolla, H. B., Tirumalasetty, C., Sreerama, K., & Ayyagari, V. S. (2021). An immunoinformatics approach for the design of a multi-epitope vaccine targeting super antigen TSST-1 of Staphylococcus aureus. Journal of Genetic Engineering and Biotechnology, 19(1), 1–14. https://doi.org/10.1186/s43141-021-00160-z
  • Larsen, M. V., Lundegaard, C., Lamberth, K., Buus, S., Brunak, S., Lund, O., & Nielsen, M. (2005). An integrative approach to CTL epitope prediction: a combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions. European Journal of Immunology, 35(8), 2295–2303. https://doi.org/10.1002/eji.200425811
  • Larsen, M. V., Lundegaard, C., Lamberth, K., Buus, S., Lund, O., & Nielsen, M. (2007). Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics, 8, 424. https://doi.org/10.1186/1471-2105-8-424
  • Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., & Shaw, D. E. (2010). Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins, 78(8), 1950–1958. https://doi.org/10.1002/prot.22711
  • Lucero, Y., Vidal, R., & Miguel, O. G. (2018). Norovirus vaccines under development. Vaccine, 36(36), 5435–5441. https://doi.org/10.1016/j.vaccine.2017.06.043
  • Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. The Journal of Physical Chemistry A, 105(43), 9954–9960. https://doi.org/10.1021/jp003020w
  • Mattison, C. P., Cardemil, C. V., & Hall, A. J. (2018). Progress on norovirus vaccine research: public health considerations and future directions. Expert Review of Vaccines, 17(9), 773–784. https://doi.org/10.1080/14760584.2018.1510327
  • Parra, G. I. (2019). Emergence of norovirus strains: A tale of two genes. Virus Evolution, 5(2), vez048. https://doi.org/10.1093/ve/vez048
  • Parvizpour, S., Pourseif, M. M., Razmara, J., Rafi, M. A., & Omidi, Y. (2020). Epitope-based vaccine design: a comprehensive overview of bioinformatics approaches. Drug Discovery Today, 25(6), 1034–1042. https://doi.org/10.1016/j.drudis.2020.03.006
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pickett, B. E., Sadat, E. L., Zhang, Y., Noronha, J. M., Squires, R. B., Hunt, V., Liu, M., Kumar, S., Zaremba, S., Gu, Z., Zhou, L., Larson, C. N., Dietrich, J., Klem, E. B., & Scheuermann, R. H. (2012). ViPR: An open bioinformatics database and analysis resource for virology research. Nucleic Acids Research, 40(Database issue), D593–D598. https://doi.org/10.1093/nar/gkr859
  • Rapin, N., Lund, O., Bernaschi, M., & Castiglione, F. (2010). Computational immunology meets bioinformatics: the use of prediction tools for molecular binding in the simulation of the immune system. PLoS One, 5(4), e9862. https://doi.org/10.1371/journal.pone.0009862
  • Rawal, K., Sinha, R., Abbasi, B. A., Chaudhary, A., Nath, S. K., Kumari, P., Preeti, P., Saraf, D., Singh, S., Mishra, K., Gupta, P., Mishra, A., Sharma, T., Gupta, S., Singh, P., Sood, S., Subramani, P., Dubey, A. K., Strych, U., Hotez, P. J., & Bottazzi, M. E. (2021). Identification of vaccine targets in pathogens and design of a vaccine using computational approaches. Scientific Reports, 11(1), 17626. https://doi.org/10.1038/s41598-021-96863-x
  • Roy, A., Kucukural, A., & Zhang, Y. (2010). I-TASSER: A unified platform for automated protein structure and function prediction. Nature Protocols, 5(4), 725–738. https://doi.org/10.1038/nprot.2010.5
  • Saha, S., & Raghava, G. P. S. (2004). BcePred: Prediction of continuous B-cell epitopes in antigenic sequences using physico-chemical properties. Lecture Notes in Computer Science, 3239, 197–204. https://doi.org/10.1007/978-3-540-30220-9_16.
  • Sanchez-Trincado, J. L., Gomez-Perosanz, M., & Reche, P. A. (2017). Fundamentals and methods for T- and B-cell epitope prediction. Journal of Immunology Research, 2017, 2680160. https://doi.org/10.1155/2017/2680160
  • Sanders, R. W., & Moore, J. P. (2021). Virus vaccines: proteins prefer prolines. Cell Host & Microbe, 29(3), 327–333.
  • Singh, H., Ansari, H. R., & Raghava, G. P. (2013). Improved method for linear B-cell epitope prediction using antigen’s primary sequence. PLoS One, 8(5), e62216.
  • Sun, J., Duffy, K. E., Ranjith-Kumar, C. T., Xiong, J., Lamb, R. J., Santos, J., Masarapu, H., Cunningham, M., Holzenburg, A., Sarisky, R. T., Mbow, M. L., & Kao, C. (2006). Structural and functional analyses of the human Toll-like receptor 3. Role of glycosylation. The Journal of Biological Chemistry, 281(16), 11144–11151. https://doi.org/10.1074/jbc.M510442200. PMID: 16533755.
  • The Proteomics Protocols Handbook. (2005). https://doi.org/10.1385/1592598900.
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • van Zundert, G. C. P., Rodrigues, J. P. G. L. M., Trellet, M., Schmitz, C., Kastritis, P. L., Karaca, E., Melquiond, A. S. J., van Dijk, M., de Vries, S. J., & Bonvin, A. M. J. J. (2016). The HADDOCK2.2 web server: User-friendly integrative modeling of biomolecular complexes. Journal of Molecular Biology, 428(4), 720–725. https://doi.org/10.1016/j.jmb.2015.09.014
  • Vega, E., Barclay, L., Gregoricus, N., Shirley, S. H., Lee, D., & Vinje, J. (2014). Genotypic and epidemiologic trends of norovirus outbreaks in the United States, 2009 to 2013. Journal of Clinical Microbiology, 52(1), 147–155. https://doi.org/10.1128/JCM.02680-13
  • Vita, R., Mahajan, S., Overton, J. A., Dhanda, S. K., Martini, S., Cantrell, J. R., Wheeler, D. K., Sette, A., & Peters, B. (2019). The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Research, 47(D1), D339–D343. https://doi.org/10.1093/nar/gky1006
  • Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, 8(2), 127–134. https://doi.org/10.1093/protein/8.2.127
  • Wang, P., Sidney, J., Dow, C., Mothé, B., Sette, A., & Peters, B. (2008). A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Computational Biology, 4(4), e1000048. https://doi.org/10.1371/journal.pcbi.1000048
  • Wang, P., Sidney, J., Kim, Y., Sette, A., Lund, O., Nielsen, M., & Peters, B. (2010). Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinformatics, 11, 568. https://doi.org/10.1186/1471-2105-11-568
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–W410. https://doi.org/10.1093/nar/gkm290
  • Yang, J., & Zhang, Y. (2015). I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Research, 43(W1), W174–W181. https://doi.org/10.1093/nar/gkv342
  • Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2015). The I-TASSER Suite: protein structure and function prediction. Nature Methods, 12(1), 7–8. https://doi.org/10.1038/nmeth.3213
  • Ząbczyńska, M., & Pocheć, E. (2015). The role of protein glycosylation in immune system. Postepy Biochemii, 61(2), 129–137.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.