94
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Chemoprofiling and insilico prioritization of bioactive compounds from Laetiporus versisporus (Lloyd) Imazeki reveals potential Bcl-2 inhibitor

, , &
Pages 6603-6615 | Received 16 Dec 2021, Accepted 31 Jul 2022, Published online: 16 Aug 2022

References

  • ACD/ChemSketch. (2018). ACD/chemsketch for academic and personal use: ACD/Labs.com. (n.d.). http://www.acdlabs.com/resources/freeware/chemsketch/
  • Barth, E., Kuczera, K., Leimkuhler, B., & Skeel, R. D. (1995). Algorithms for constrained molecular dynamics. Journal of Computational Chemistry, 16(10), 1192–1209. https://doi.org/10.1002/jcc.540161003
  • Bulatov, V. V., Rhee, M., & Cai, W. (2000). Periodic boundary conditions for dislocation dynamics simulations in three dimensions. Materials Research Society Symposia Proceedings. Materials Research Society, 653(Z1.3.1). https://doi.org/10.1557/PROC-653-Z1
  • Chakraborti, C. K. (2011). Vitamin D as a promising anticancer agent. Indian Journal of Pharmacology, 43(2), 113–120. https://doi.org/10.4103/0253-7613.77335.
  • Charo, J., Finkelstein, S. E., Grewal, N., Restifo, N. P., Robbins, P. F., & Rosenberg, S. A. (2005). BCL-2 over expression enhances tumor-specific T cell survival. Cancer Research, 65(5), 2001–2008. https://doi.org/10.1158/0008-5472.CAN-04-2006
  • Chaturvedi, V. K., Agarwal, S., Gupta, K. K., Ramteke, P. W., & Singh, M. P. (2018). Medicinal mushroom: boon for therapeutic applications. 3 Biotech, 8(8), 334. https://doi.org/10.1007/s13205-018-1358-0.
  • Díaz, G. D., Paraskeva, C., Thomas, M. G., Binderup, L., & Hague, A. (2000). Apoptosis is induced by the active metabolite of vitamin D3 and its analogue EB1089 in colorectal adenoma and carcinoma cells: possible implications for prevention and therapy. Cancer Research, 60(8), 2304–2312.
  • do Carmo, A. L., Bettanin, F., Oliveira Almeida, M., Pantaleão, S. Q., Rodrigues, T., Homem-de-Mello, P., & Honorio, K. M. (2020). Competition between phenothiazines and BH3 peptide for the binding site of the antiapoptotic BCL-2 protein. Frontiers in Chemistry, 8, 235. https://doi.org/10.3389/fchem.2020.00235
  • Doi, K., Li, R., Sung, S.-S., Wu, H., Liu, Y., Manieri, W., Krishnegowda, G., Awwad, A., Dewey, A., Liu, X., Amin, S., Cheng, C., Qin, Y., Schonbrunn, E., Daughdrill, G., Loughran, T. P., Sebti, S., & Wang, H.-G. (2012). Discovery of marinopyrrole A (Maritoclax) as a selective Mcl-1 antagonist that overcomes ABT-737 resistance by binding to and targeting Mcl-1 for proteasomal degradation. The Journal of Biological Chemistry, 287(13), 10224–10235. https://doi.org/10.1074/jbc.M111.334532
  • Ellis, H. M., & Horvitz, H. R. (1986). Genetic control of programmed cell death in the nematode C. elegans. Cell, 44(6), 817–829. https://doi.org/10.1016/0092-8674(86)90004-8[PMC][3955651]
  • Evans, D. J., & Holian, B. L. (1985). The nose–hoover thermostat. The Journal of Chemical Physics, 83(8), 4069–4074. https://doi.org/10.1063/1.449071
  • Fenton, R. G., & Longo, D. L. (2005). Cancer cell biology and angiogenesis. In D. L. Kasper, A. S. Fauci, D. L. Longo, E. Braunwald, S. L. Hauser, & J. L. Jameson (Eds.), Harrison's principles of internal medicine (16th ed., pp. 453–464). Mc Graw-Hill Medical Publishing Division.
  • Fernald, K., & Kurokawa, M. (2013). Evading apoptosis in cancer. Trends in Cell Biology, 23(12), 620–633. https://doi.org/10.1016/j.tcb.2013.07.006
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o.
  • Grienke, U., Zöll, M., Peintner, U., & Rollinger, J. M. (2014). European medicinal polypores–a modern view on traditional uses. Journal of Ethnopharmacology, 154(3), 564–583. https://doi.org/10.1016/j.jep.2014.04.030.
  • Gu, D., Yang, Y., Abdulla, R., & Aisa, H. A. (2012). Characterization and identification of chemical compositions in the extract of Artemisia rupestris L. by liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry. Rapid Communications in Mass Spectrometry: RCM, 26(1), 83–100.
  • Guzey, M., Kitada, S., & Reed, J. C. (2002). Apoptosis induction by 1alpha,25-dihydroxyvitamin D3 in prostate cancer. Molecular Cancer Therapeutics, 1(9), 667–677. PMID: 12479363.
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759. https://doi.org/10.1021/jm030644s.
  • Handayani, T., Sakinah, S., Nallappan, M., & Pihie, A. H. (2007). Regulation of p53-, Bcl-2- and caspase-dependent signaling pathway in xanthorrhizol-induced apoptosis of HepG2 hepatoma cells. Anticancer Research. 27(2), 965–971.
  • Huang, J., Yang, G., Huang, Y., Kong, W., & Zhang, S. (2016). 1,25(OH)2D3 inhibits the progression of hepatocellular carcinoma via downregulating HDAC2 and upregulating P21(WAFI/CIP1). Molecular Medicine Reports, 13(2), 1373–1380. https://doi.org/10.3892/mmr.2015.4676.
  • Huang, Z. (2000). Bcl-2 family proteins as targets for anticancer drug design. Oncogene, 19(56), 6627–6631. https://doi.org/10.1038/sj.onc.1204087
  • Joshi, R. K., Pai, S. R., Nagarajan, H., & Vetrivel, U. (2022). Identification of potentially bioactive compounds from Blumealacera essential oil by gas chromatography-mass spectroscopy and molecular docking studies for targeting inflammatory bowel disease. Natural Product Research, 10, 1–5. https://doi.org/10.1080/14786419.2021.2025368
  • Kevin, J. B., Edmond, C., Huafeng, X., Ron, O. D., Michael, P. E., Brent, A. G., John, L. K., Istvan Koloss vary, M. A. M., Federico, D. S., John, K. S., Yibing, S., & David, E. S. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the ACM/IEEE Conference on Supercomputing (SC06), Tampa, Florida, November 11-17.
  • Kizildag, S., Ates, H., & Kizildag, S. (2010). Treatment of K562 cells with 1, 25-dihydroxyvitamin D3 induces distinct alterations in the expression of apoptosis-related genes BCL2, BAX, BCLXL, and p21. Annals of Hematology, 89(1), 1–7. https://doi.org/10.1007/s00277-009-0766-y.
  • Klaus, A., Kozarski, M., Niksic, M., Jakovljevic, D., Todorovic, N., Stefanoska, I., & Griensven, L. J. (2013). The edible mushroom Laetiporussulphureus as potential source of natural antioxidants. International Journal of Food Sciences and Nutrition, 64(5), 599–610. https://doi.org/10.3109/09637486.2012.759190.
  • Li, J., Abel, R., Zhu, K., Cao, Y., Zhao, S., & Friesner, R. A. (2011). The VSGB 2.0 model: a next generation energy model for high resolution protein structure modeling. Proteins, 79(10), 2794–2812. https://doi.org/10.1002/prot.23106
  • Marcinkowska, E., Wallace, G. R., & Brown, G. (2016). The Use of 1α,25-Dihydroxyvitamin D3 as an anticancer agent. International Journal of Molecular Sciences, 17(5), 729. https://doi.org/10.3390/ijms17050729
  • Martyna, G. J., Tobias, D. J., & Klein, M. L. (1994). Constant pressure molecular dynamics algorithms. The Journal of Chemical Physics, 101(5), 4177–4189. https://doi.org/10.1063/1.467468
  • Patil, V. S., Harish, D. R., Vetrivel, U., Roy, S., Deshpande, S. H., & Hegde, H. V. (2022). Hepatitis C Virus NS3/4A inhibition and host immunomodulation by Tannins from Terminalia chebula: A structural perspective. Molecules, 27(3), 1076. https://doi.org/10.3390/molecules27031076
  • Pawar, D. S., Ghodke, J., & Nasreen, S. (2019). Antimicrobial activity and HR-LCMS analysis of methanolic extract of Calotropis gigantean. International Journal of Advanced Science and Research, 4, 19–24.
  • Perini, G. F., Ribeiro, G. N., Pinto Neto, J. V., Campos, L. T., & Hamerschlak, N. (2018). BCL-2 as therapeutic target for hematological malignancies. Journal of Hematology & Oncology, 11(1), 65. https://doi.org/10.1186/s13045-018-0608-2
  • Rang, H. P., Dale, M. M., Ritter, J. M., & Moore, P. K. (2003). Pharmacology (5th ed., pp. 69–79). Churchill Livingstone, Elsevier.
  • Razak, S., Afsar, T., Almajwal, A., Alam, I., & Jahan, S. (2019). Growth inhibition and apoptosis in colorectal cancer cells induced by Vitamin D-Nano emulsion (NVD): involvement of Wnt/β-catenin and other signal transduction pathways. Cell & Bioscience, 9(1), 15. https://doi.org/10.1186/s13578-019-0277-z
  • Ryckaert, J., P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n‐alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Shelley, J. C., Cholleti, A., Frye, L., Greenwood, J. R., Timlin, M. R., & Uchimaya, M. (2007). Epik: a software program for pKa prediction and protonation state generation for drug-like molecules. Journal of Computer-Aided Molecular Design, 21(12), 681–691. https://doi.org/10.1007/s10822-007-9133-z
  • Shoba, G., Vijayakumar, M., Sameer, A.-G., Mohammed, A., Ayman, G., Mohamed, A. A., Abubucker, P. M., Nasraddin, O. B., Thiyagarajan, R., & Usha, R. N. A. (2021). Investigation of phytochemical profile and in vivo anti-proliferative effect of Laetiporusversisporus (Lloyd) Imazeki mushroom against diethylnitrosamine-induced hepatocellular carcinoma. Journal of King Saud University – Science, 33(6), 101551. https://doi.org/10.1016/j.jksus.2021.101551
  • Sirin, S., Kumar, R., Martinez, C., Karmilowicz, M. J., Ghosh, P., Abramov, Y. A., Martin, V., & Sherman, W. (2014). A computational approach to enzyme design: Predicting ω-aminotransferase catalytic activity using docking and MM-GBSA scoring. Journal of Chemical Information and Modeling, 54(8), 2334–2346. https://doi.org/10.1021/ci5002185.
  • Sułkowska-Ziaja, K., Muszyńska, B., Gawalska, A., & Sałaciak, K. (2018). Laetiporussulphureus – Chemical composition and medicinal value. Acta Scientiarum Polonorum Hortorum Cultus, 17(1), 87–96. https://doi.org/10.24326/asphc.2018.1.8
  • Turkoglu, A., Duru, M. E., Mercan, N., Kivrak, I., & Gezer, K. (2007). Antioxidant and antimicrobial activities of Laetiporus sulphureus (Bull.) Murrill. Food Chemistry, 101(1), 267–273. https://doi.org/10.1016/j.foodchem.2006.01.025
  • Umashankar, V., Deshpande, S. H., Hegde, H. V., Singh, I., & Chattopadhyay, D. (2021). Phytochemical moieties from Indian traditional medicine for targeting dual hotspots on SARS-CoV-2 spike protein: An integrative in-silico approach. Frontiers in Medicine, 8(8), 672629. https://doi.org/10.3389/fmed.2021.672629.
  • Zhang, J.-W., Wen, G.-L., Zhang, L., Duan, D.-M., & Ren, Z.-H. (2015). Sulphureuine B, a Drimane type sesquiterpenoid isolated from laetiporussulphureus induces apoptosis in glioma cells. Bangladesh Journal of Pharmacology, 10(4), 844–853. https://doi.org/10.3329/bjp.v10i4.23708
  • Zhang, L., Fan, C., Liu, S., Zang, Z., & Jiao, L. (2011). Chemical composition and antitumor activity of polysaccharide from Inonotus obliquus. Journal of Medicinal Plants Research, 5(7), 1251–1260.
  • Zhou, M., Zhang, Q., Zhao, J., Liao, M., Wen, S., & Yang, M. (2017). Phosphorylation of Bcl-2 plays an important role in glycochenodeoxycholate-induced survival and chemoresistance in HCC. Oncology Reports, 38(3), 1742–1750. https://doi.org/10.3892/or.2017.5830
  • Zięba, P., Kała, K., Smoleń, Z., Lazur, J., Sułkowska-Ziaja, K., Sękara, A., & Muszyńska, B. (2018). Biological activity of polypore Mushrooms: Laetiporussulphureus. Piptoporusbetulinus, and Trametes Versicolor, 28(111), 62–67.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.