751
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Drug design of new therapeutic agents: molecular docking, molecular dynamics simulation, DFT and POM analyses of new Schiff base ligands and impact of substituents on bioactivity of their potential antifungal pharmacophore site

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 6695-6708 | Received 03 Mar 2022, Accepted 03 Aug 2022, Published online: 13 Aug 2022

References

  • Abdul-Rida, N. A., Mohammed, T. I., Al-Masoudi, N. A., & Frotscher, M. (2017). Synthesis, anti-17β-HSD and antiproliferative activity of new substituted 5-nitrosopyrimidine analogs. Medicinal Chemistry Research, 26(4), 830–840. https://doi.org/10.1007/s00044-017-1795-z
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • ACTUALITÉS. (n.d.) https://www.maroc.ma/fr/actualites/research-excellence-awards-une-vingtaine-de-travaux-de-recherche-et-dinnovation-primes.
  • Ahmed, O. M., Mohamed, M. A., Ahmed, R. R., & Ahmed, S. A. (2009). Synthesis and anti-tumor activities of some new pyridines and pyrazolo [1,5-a]pyrimidines. European Journal of Medicinal Chemistry, 44(9), 3519–3523. https://doi.org/10.1016/j.ejmech.2009.03.042
  • Akkoç, S. (2019). Derivatives of 1-(2-(Piperidin-1-yl)ethyl)-1H-benzo[d]imidazole: Synthesis, characterization, determining of electronic properties and cytotoxicity studies. ChemistrySelect, 4(17), 4938–4943. https://doi.org/10.1002/slct.201900353
  • Akkoç, S. (2021). Design, synthesis, characterization, and in vitro cytotoxic activity evaluation of 1,2-disubstituted benzimidazole compounds. Journal of Physical Organic Chemistry, 34(1), e4125. https://doi.org/10.1002/poc.4125
  • Alafeefy, A. M., Alqasoumi, S. I., Ashour, A. E., Masand, V., Al-Jaber, N. A., Ben Hadda, T., & Mohamed, M. A. (2012). Quinazoline–tyrphostin as a new class of antitumor agents, molecular properties prediction, synthesis and biological testing. European Journal of Medicinal Chemistry, 53, 133–140. https://doi.org/10.1016/j.ejmech.2012.03.044
  • Alvarez, C., Andes, D. R., Kang, J. Y., Krug, C., & Kwon, G. S. (2017). Antifungal efficacy of an ıntravenous formulation containing monomeric amphotericin B, 5-fluorocytosine, and saline for sodium supplementation. Pharmaceutical Research, 34(5), 1115–1124. https://doi.org/10.1007/s11095-017-2121-7
  • Amin, K. M., Hanna, M. M., Abo-Youssef, H. E., & George, R. F. (2009). Synthesis, analgesic and anti-inflammatory activities evaluation of some bi-, tri- and tetracyclic condensed pyrimidines. European Journal of Medicinal Chemistry, 44(11), 4572–4584. https://doi.org/10.1016/j.ejmech.2009.06.028
  • Aslan, H. G., Akkoç, S., & Kökbudak, Z. (2020). Anticancer activities of various new metal complexes prepared from a Schiff base on A549 cell line. Inorganic Chemistry Communications, 111, 107645. https://doi.org/10.1016/j.inoche.2019.107645
  • Bakr, R. B., Ghoneim, A. A., & Azouz, A. A. (2019). Selective cyclooxygenase inhibition and ulcerogenic liability of some newly prepared anti-inflammatory agents having thiazolo[4,5-d]pyrimidine scaffold. Bioorganic Chemistry, 88, 102964.
  • Becke, A. D. (1996). Density‐functional thermochemistry. IV. A new dynamical correlation functional and implications for exact‐exchange mixing. The Journal of Chemical Physics, 104(3), 1040–1046. https://doi.org/10.1063/1.470829
  • Bhat, A. R., Dongre, R. S., Almalki, F. A., Berredjem, M., Aissaoui, M., Touzani, R., Hadda, T. B., & Akhter, M. S. (2021). Synthesis, biological activity and POM/DFT/docking analyses of annulated pyrano[2,3-d]pyrimidine derivatives: Identification of antibacterial and antitumor pharmacophore sites. Bioorganic Chemistry, 106, 104480. https://doi.org/10.1016/j.bioorg.2020.104480
  • BIOVIA. (2020)., Dassault Systèmes, Discovery Studio.
  • Bjelkmar, P., Larsson, P., Cuendet, M. A., Hess, B., & Lindahl, E. (2010). Implementation of the CHARMM force field in GROMACS: Analysis of protein stability effects from correction maps, virtual ınteraction sites, and water models. Journal of Chemical Theory and Computation, 6(2), 459–466. https://doi.org/10.1021/ct900549r
  • Chander, S., Tang, C. R., Al-Maqtari, H. M., Jamalis, J., Penta, A., Hadda, T. B., Sirat, H. M., Zheng, Y. T., & Sankaranarayanan, M. (2017). Synthesis and study of anti-HIV-1 RT activity of 5-benzoyl-4-methyl-1,3,4,5-tetrahydro-2H-1,5-benzodiazepin-2-one derivatives. Bioorganic Chemistry, 72, 74–79. https://doi.org/10.1016/j.bioorg.2017.03.013
  • Chattaraj, P. K., Sarkar, U., & Roy, D. R. (2006). Electrophilicity ındex. Chemical Reviews, 106(6), 2065–2091. https://doi.org/10.1021/cr040109f
  • Chohan, Z. H., Sumrra, S. H., Youssoufi, M. H., & Hadda, T. B. (2010). Metal based biologically active compounds: design, synthesis, and antibacterial/antifungal/cytotoxic properties of triazole-derived Schiff bases and their oxovanadium(IV) complexes. European Journal of Medicinal Chemistry, 45(7), 2739–2747. https://doi.org/10.1016/j.ejmech.2010.02.053
  • Chohan, Z. H., Youssoufi, M. H., Jarrahpour, A., & Hadda, T. B. (2010). Identification of antibacterial and antifungal pharmacophore sites for potent bacteria and fungi inhibition: Indolenyl sulfonamide derivatives. European Journal of Medicinal Chemistry, 45(3), 1189–1199. https://doi.org/10.1016/j.ejmech.2009.11.029
  • Cousins, K. R. (2011). Computer review of ChemDraw ultra 12.0. Journal of the American Chemical Society, 133(21), 8388–8388. https://doi.org/10.1021/ja204075s
  • de Toledo, T. A., Pizani, P. S., da Silva, L. E., Teixeira, A. M. R., & Freire, P. T. C. (2015). Spectroscopy studies on Schiff base N,N′-bis(salicylidene)-1,2-phenylenediamine by NMR, infrared, Raman and DFT calculations. Journal of Molecular Structure, 1097, 106–111. https://doi.org/10.1016/j.molstruc.2015.04.038
  • Dennington, J. M., Keith, R. D., & Millam, T. A. (2008). GaussView 5.0.
  • Devim, M., Akkoç, S., Zeyrek, C. T., Aslan, H. G., & Kökbudak, Z. (2022). Design, synthesis, in vitro antiproliferative activity properties, quantum chemical and molecular docking studies of novel Schiff bases incorporating pyrimidine nucleus. Journal of Molecular Structure, 1254, 132421. https://doi.org/10.1016/j.molstruc.2022.132421
  • Doganc, F., Celik, I., Eren, G., Kaiser, M., Brun, R., & Goker, H. (2021). Synthesis, in vitro antiprotozoal activity, molecular docking and molecular dynamics studies of some new monocationic guanidinobenzimidazoles. European Journal of Medicinal Chemistry, 221, 113545. https://doi.org/10.1016/j.ejmech.2021.113545
  • Dongre, R. S., Meshram, J. S., Selokar, R. S., Almalki, F. A., & Hadda, T. B. (2018). Antibacterial activity of synthetic pyrido[2,3-d]pyrimidines armed with nitrile groups: POM analysis and identification of pharmacophore sites of nitriles as important pro-drugs. New Journal of Chemistry, 42(19), 15610–15617. https://doi.org/10.1039/C8NJ02081G
  • Eftekhari, S., Foroughifar, N., Hallajian, S., & Khajeh-Amiri, A. (2020). Green synthesis of some novel ımidazole schiff base derivatives under microwave ırradiation/reflux conditions and evaluations of the antibacterial activity. Current Microwave Chemistry, 7(3), 207–215. https://doi.org/10.2174/2213335607999200520124245
  • Elsharkawy, E. R., Almalki, F., Ben Hadda, T., Rastija, V., Lafridi, H., & Zgou, H. (2020). DFT calculations and POM analyses of cytotoxicity of some flavonoids from aerial parts of Cupressus sempervirens: Docking and identification of pharmacophore sites. Bioorganic Chemistry, 100, 103850. https://doi.org/10.1016/j.bioorg.2020.103850
  • Elzupir, A. O. (2021). Molecular docking and dynamics ınvestigations for ıdentifying potential ınhibitors of the 3-chymotrypsin-like protease of SARS-CoV-2: Repurposing of approved pyrimidonic pharmaceuticals for COVID-19 treatment. Molecules, 26(24), 7458. https://doi.org/10.3390/molecules26247458
  • Esharkawy, E. R., Almalki, F., & Hadda, T. B. (2022). In vitro potential antiviral SARS-CoV-19- activity of natural product thymohydroquinone and dithymoquinone from Nigella sativa. Bioorganic Chemistry, 120, 105587. https://doi.org/10.1016/j.bioorg.2021.105587
  • Frisch, D., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., & Ort, J. V. (2009). Gaussian 09.
  • Ganesan, A., Coote, M. L., & Barakat, K. (2017). Molecular dynamics-driven drug discovery: Leaping forward with confidence. Drug Discovery Today. 22(2), 249–269. https://doi.org/10.1016/j.drudis.2016.11.001
  • Hasan, A. H., Murugesan, S., Amran, S. I., Chander, S., Alanazi, M. M., Hadda, T. B., Shakya, S., Pratama, M. R. F., Das, B., Biswas, S., & Jamalis, J. (2022). Novel thiophene Chalcones-Coumarin as acetylcholinesterase inhibitors: Design, synthesis, biological evaluation, molecular docking, ADMET prediction and molecular dynamics simulation. Bioorganic Chemistry, 119, 105572. https://doi.org/10.1016/j.bioorg.2021.105572
  • Jang, Y., Shin, J. S., Lee, M. K., Jung, E., An, T., Kim, U.-I., Kim, K., & Kim, M. (2021). Comparison of antiviral activity of gemcitabine with 2′-fluoro-2′-deoxycytidine and combination therapy with remdesivir against SARS-CoV-2. International Journal of Molecular Sciences, 22(4), 1581. https://doi.org/10.3390/ijms22041581
  • Jeong, J.-H., Kim, Y.-S., Rojviriya, C., Ha, S.-C., Kang, B. S., & Kim, Y.-G. (2013). Crystal structures of bifunctional penicillin-binding protein 4 from Listeria monocytogenes. Antimicrobial Agents and Chemotherapy, 57(8), 3507–3512. https://doi.org/10.1128/AAC.00144-13
  • Karthikeyan, M. S., Prasad, D. J., Poojary, B., Subrahmanya Bhat, K., Holla, B. S., & Kumari, N. S. (2006). Synthesis and biological activity of Schiff and Mannich bases bearing 2,4-dichloro-5-fluorophenyl moiety. Bioorganic & Medicinal Chemistry, 14(22), 7482–7489. https://doi.org/10.1016/j.bmc.2006.07.015
  • Keri, R. S., Hosamani, K. M., Shingalapur, R. V., & Hugar, M. H. (2010). Analgesic, anti-pyretic and DNA cleavage studies of novel pyrimidine derivatives of coumarin moiety. European Journal of Medicinal Chemistry, 45(6), 2597–2605. https://doi.org/10.1016/j.ejmech.2010.02.048
  • Kökbudak, Z., Akkoç, S., Karataş, H., Tüzün, B., & Aslan, G. (2022). In silico and ın vitro antiproliferative activity assessment of new Schiff bases. ChemistrySelect, 7(3), e202103679. https://doi.org/10.1002/slct.202103679
  • Kökbudak, Z., Saracoglu, M., Akkoç, S., Çimen, Z., Yilmazer, M. I., & Kandemirli, F. (2020). Synthesis, cytotoxic activity and quantum chemical calculations of new 7-thioxopyrazolo[1,5-f]pyrimidin-2-one derivatives. Journal of Molecular Structure, 1202, 127261. https://doi.org/10.1016/j.molstruc.2019.127261
  • Koopmans, T. (1934). Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica, 1(1-6), 104–113. https://doi.org/10.1016/S0031-8914(34)90011-2
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa—A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical İnformation and Modeling, 54(7), 1951–1962.
  • Kwofie, S. K., Broni, E., Yunus, F. U., Nsoh, J., Adoboe, D., Miller, W. A., & Wilson, M. D. (2021). Molecular docking simulation studies ıdentifies potential natural product derived-antiwolbachial compounds as filaricides against onchocerciasis. Biomedicines, 9(11), 1682. https://doi.org/10.3390/biomedicines9111682
  • Mabkhot, Y. N., Barakat, A., Yousuf, S., Choudhary, M. I., Frey, W., Ben Hadda, T., & Mubarak, M. S. (2014). Substituted thieno[2,3-b]thiophenes and related congeners: Synthesis, β-glucuronidase inhibition activity, crystal structure, and POM analyses. Bioorganic & Medicinal Chemistry, 22(23), 6715–6725. https://doi.org/10.1016/j.bmc.2014.08.014
  • Machnikova, R., Janovska, L., & Brulikova, L. (2020). Solid-phase synthetic approach towards new pyrimidines as potential antibacterial agents. Journal of Molecular Structure. 1200, 127101.
  • Miar, M., Shiroudi, A., Pourshamsian, K., Oliaey, A. R., & Hatamjafari, F. (2021). Theoretical investigations on the HOMO–LUMO gap and global reactivity descriptor studies, natural bond orbital, and nucleus-independent chemical shifts analyses of 3-phenylbenzo[d]thiazole-2(3H)-imine and its para-substituted derivatives: Solvent and substituent effects. Journal of Chemical Research, 45(1–2), 147–158. https://doi.org/10.1177/1747519820932091
  • Misra, A., Jain, S., Kishore, D., Dave, V., Reddy, K. R., Sadhu, V., Dwivedi, J., & Sharma, S. (2019). A facile one pot synthesis of novel pyrimidine derivatives of 1,5-benzodiazepines via domino reaction and their antibacterial evaluation. J Microbiol Meth, 163, 105648.
  • Muhammed, M. T., & Aki-Yalcin, E. (2019). Homology modeling in drug discovery: Overview, current applications, and future perspectives. Chemical Biology & Drug Design, 93(1), 12–20. https://doi.org/10.1111/cbdd.13388
  • Muhammed, M. T., & Aki-Yalcin, E. (2021). Pharmacophore modeling in drug discovery: Methodology and current status. Journal of the Turkish Chemical Society Section A: Chemistry, 8, 759–772. https://doi.org/10.18596/jotcsa.927426
  • Naganna, J. B., & Goudgaon, N. M. (2021). A comprehensive review on pyrimidine analogs-versatile scaffold with medicinal and biological potential. Journal of Molecular Structure, 1246, 131168. https://doi.org/10.1016/j.molstruc.2021.131168
  • National Committee for Clinical Laboratory Standards. (2002). Reference methods for broth dilution antifungal susceptibility testing of filamentous fungi; approved standards. NCCLS Document M38-A. National Committee for Clinical Laboratory Standards.
  • Ngan, N. K., Lo, K. M., & Wong, C. S. R. (2011). Synthesis, structure studies and electrochemistry of molybdenum(VI) Schiff base complexes in the presence of different donor solvent molecules. Polyhedron, 30(17), 2922–2932. https://doi.org/10.1016/j.poly.2011.08.038
  • Okesli, A., Khosla, C., & Bassik, M. C. (2017). Human pyrimidine nucleotide biosynthesis as a target for antiviral chemotherapy. Current Opinion in Biotechnology, 48, 127–134. https://doi.org/10.1016/j.copbio.2017.03.010
  • Önal, Z., & Yıldırım, İ. (2007). Reactions of 4-(4-Methylbenzoyl)-5-(4-Methylphenyl)-2,3-Furandione with semi-/thiosemi-Carbazones. Heterocyclic Communications, 13(2-3), 113–120. https://doi.org/10.1515/HC.2007.13.2-3.113
  • Önem, E., Sarısu, H. C., Özaydın, A. G., Muhammed, M. T., & Ak, A. (2021). Ak, Phytochemical profile, antimicrobial, and anti-quorum sensing properties of fruit stalks of Prunus avium L. Letters in Applied Microbiology, 73(4), 426–437. https://doi.org/10.1111/lam.13528
  • Otero, L. H., Rojas-Altuve, A., Llarrull, L. I., Carrasco-López, C., Kumarasiri, M., Lastochkin, E., Fishovitz, J., Dawley, M., Hesek, D., Lee, M., Johnson, J. W., Fisher, J. F., Chang, M., Mobashery, S., & Hermoso, J. A. (2013). How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin resistance and physiological function. Proceedings of the National Academy of Sciences of the United States of America, 110(42), 16808–16813. https://doi.org/10.1073/pnas.1300118110
  • Parr, R. G., Donnelly, R. A., Levy, M., & Palke, W. E. (1978). Electronegativity: The density functional viewpoint. The Journal of Chemical Physics, 68(8), 3801–3807. https://doi.org/10.1063/1.436185
  • Perdew, J. P., Kurth, S., Zupan, A., & Blaha, P. (1999). Accurate density functional with correct formal properties: A step beyond the generalized gradient approximation. Physical Review Letters, 82(12), 2544–2547. https://doi.org/10.1103/PhysRevLett.82.2544
  • Pertusati, F., Serafini, S., Albadry, N., Snoeck, R., & Andrei, G. (2017). Phosphonoamidate prodrugs of C5-substituted pyrimidine acyclic nucleosides for antiviral therapy. Antiviral Research, 143, 262–268. https://doi.org/10.1016/j.antiviral.2017.04.013
  • Quiroga, J., Romo, P. E., Ortiz, A., Isaza, J. H., Insuasty, B., Abonia, R., Nogueras, M., & Cobo, J. (2016). Synthesis, structures, electrochemical studies and antioxidant activity of 5-aryl-4-oxo-3,4,5,8-tetrahydropyrido[2,3-d]pyrimidine-7-carboxylic acids. Journal of Molecular Structure, 1120, 294–301. https://doi.org/10.1016/j.molstruc.2016.05.045
  • Ruiz-Morales, Y. (2002). HOMO − LUMO gap as an ındex of molecular size and structure for polycyclic aromatic hydrocarbons (PAHs) and Asphaltenes: A theoretical study. I. The Journal of Physical Chemistry A, 106(46), 11283–11308. https://doi.org/10.1021/jp021152e
  • Saracoglu, M., Kokbudak, Z., Cimen, Z., & Kandemirli, F. (2019). Synthesis and DFT quantum chemical calculations of novel pyrazolo[1,5-c]pyrimidin-7(1H)-one derivatives. Journal of the Chemical Society of Pakistan, 41, ‏479–488.
  • Saracoglu, M., Kokbudak, Z., Yalcin, E., & Kandemirli, F. (2019). Synthesis and DFT quantum chemical calculations of 2-oxopyrimidin-1(2H)-yl-urea and thiorea derivatives. Journal of the Chemical Society of Pakistan, 41, 858–841.
  • Schüttelkopf, A. W., & van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica. Section D, Biological Crystallography, 60(Pt 8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Shah, M. S., Rahman, M. M., Islam, M. D., Al-Macktuf, A., Ahmed, J. U., Nishino, H., & Haque, M. A. (2022). Synthesis, antimicrobial and antioxidant evaluation with in silico studies of new thiazole Schiff base derivatives. Journal of Molecular Structure, 1248, 131465. https://doi.org/10.1016/j.molstruc.2021.131465
  • Sheikh, J., Parvez, A., Juneja, H., Ingle, V., Chohan, Z., Youssoufi, M., & Hadda, T. B. (2011). Synthesis, biopharmaceutical characterization, antimicrobial and antioxidant activities of 1-(4′-O-β-D-glucopyranosyloxy-2′-hydroxyphenyl)-3-aryl-propane-1,3-diones. European Journal of Medicinal Chemistry, 46(4), 1390–1399. https://doi.org/10.1016/j.ejmech.2011.01.068
  • Thiriveedhi, A., Nadh, R. V., Srinivasu, N., Bobde, Y., Ghosh, B., & Sekhar, K. (2019). Design, synthesis and anti-tumour activity of new pyrimidine-pyrrole appended triazoles. Toxicology in Vitro, 60, 87–96. https://doi.org/10.1016/j.tiv.2019.05.009
  • Tipper, D. J. (1979). Mode of action of β-lactam antibiotics. Reviews of İnfectious Diseases, 1(1), 39–53. https://doi.org/10.1093/clinids/1.1.39
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Wang, P. H., Keck, J. G., Lien, E. J., & Lai, M. M. (1990). Design, synthesis, testing, and quantitative structure-activity relationship analysis of substituted salicylaldehyde Schiff bases of 1-amino-3-hydroxyguanidine tosylate as new antiviral agents against coronavirus. Journal of Medicinal Chemistry, 33(2), 608–614. https://doi.org/10.1021/jm00164a023
  • Wellington, K., & Goa, K. L. (2001). Oral tegafur/uracil. Drugs & Aging, 18(12), 935–948. https://doi.org/10.2165/00002512-200118120-00005
  • Yamada, M., Watanabe, T., Baba, N., Takeuchi, Y., Ohsawa, F., & Gomi, S. (2008). Crystal structures of biapenem and tebipenem complexed with penicillin-binding proteins 2X and 1A from Streptococcus pneumoniae. Antimicrobial Agents and Chemotherapy, 52(6), 2053–2060. https://doi.org/10.1128/AAC.01456-07
  • Yoshida, H., Kawai, F., Obayashi, E., Akashi, S., Roper, D. I., Tame, J. R. H., & Park, S.-Y. (2012). Crystal structures of penicillin-binding protein 3 (PBP3) from methicillin-resistant Staphylococcus aureus in the Apo and cefotaxime‐bound forms. Journal of Molecular Biology, 423(3), 351–364. https://doi.org/10.1016/j.jmb.2012.07.012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.