257
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Identifying Isoononin and Candidissiol as Rho-associated protein kinase 1 (ROCK1) inhibitors: a combined virtual screening and MD simulation approach

, , , ORCID Icon, , ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 6749-6758 | Received 04 Jul 2022, Accepted 04 Aug 2022, Published online: 13 Aug 2022

References

  • Ali, S., Khan, F. I., Mohammad, T., Lan, D., Hassan, M., & Wang, Y. (2019). Identification and evaluation of inhibitors of lipase from Malassezia restricta using virtual high-throughput screening and molecular dynamics studies. International Journal of Molecular Sciences, 20(4), 884. https://doi.org/10.3390/ijms20040884
  • Altis, A., Otten, M., Nguyen, P. H., Hegger, R., & Stock, G. (2008). Construction of the free energy landscape of biomolecules via dihedral angle principal component analysis. The Journal of Chemical Physics, 128(24), 245102. https://doi.org/10.1063/1.2945165
  • Amir, M., Mohammad, T., Prasad, K., Hasan, G. M., Kumar, V., Dohare, R., Islam, A., Ahmad, F., & Imtaiyaz Hassan, M. (2020). Virtual high-throughput screening of natural compounds in-search of potential inhibitors for protection of telomeres 1 (POT1). Journal of Biomolecular Structure & Dynamics, 38(15), 4625–4634. https://doi.org/10.1080/07391102.2019.1682052
  • Anjum, F., Ali, F., Mohammad, T., Shafie, A., Akhtar, O., Abdullaev, B., & Hassan, I. (2021a). Discovery of natural compounds as potential inhibitors of human carbonic anhydrase ii: an integrated virtual screening, docking, and molecular dynamics simulation study. Omics, 25(8), 513–524.
  • Anjum, F., Mohammad, T., Almalki, A. A., Akhtar, O., Abdullaev, B., & Hassan, M. I. (2021b). Phytoconstituents and medicinal plants for anticancer drug discovery: computational identification of potent inhibitors of PIM1 kinase. Omics, 25(9), 580–590. https://doi.org/10.1089/omi.2021.0107
  • Anjum, F., Sulaimani, M. N., Shafie, A., Mohammad, T., Ashraf, G. M., Bilgrami, A. L., Alhumaydhi, F. A., Alsagaby, S. A., Yadav, D. K., & Hassan, M. I. (2022). Bioactive phytoconstituents as potent inhibitors of casein kinase-2: Dual implications in cancer and COVID-19 therapeutics. RSC Advances, 12(13), 7872–7882. https://doi.org/10.1039/d1ra09339h
  • Baell, J. B. (2016). Feeling nature’s PAINS: natural products, natural product drugs, and pan assay interference compounds (PAINS). Journal of Natural Products, 79(3), 616–628.
  • Dahiya, R., Mohammad, T., Roy, S., Anwar, S., Gupta, P., Haque, A., Khan, P., Kazim, S. N., Islam, A., Ahmad, F., & Hassan, M. I. (2019). Investigation of inhibitory potential of quercetin to the pyruvate dehydrogenase kinase 3: Towards implications in anticancer therapy. International Journal of Biological Macromolecules, 136, 1076–1085. https://doi.org/10.1016/j.ijbiomac.2019.06.158
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/srep42717
  • DeLano, W. L. (2002). Pymol: An open-source molecular graphics tool. CCP4 Newsletter on Protein Crystallography, 40, 82–92.
  • Fatima, S., Mohammad, T., Jairajpuri, D. S., Rehman, M. T., Hussain, A., Samim, M., Ahmad, F. J., Alajmi, M. F., & Hassan, M. I. (2020). Identification and evaluation of glutathione conjugate gamma-l-glutamyl-l-cysteine for improved drug delivery to the brain. Journal of Biomolecular Structure & Dynamics, 38(12), 3610–3620. https://doi.org/10.1080/07391102.2019.1664937
  • Guterres, H., & Im, W. (2020). Improving protein-ligand docking results with high-throughput molecular dynamics simulations. Journal of Chemical Information and Modeling, 60(4), 2189–2198. https://doi.org/10.1021/acs.jcim.0c00057
  • Hubbard, R. E., & Haider, M. K. (2010). Hydrogen bonds in proteins: role and strength. eLS. https://doi.org/10.1002/9780470015902.a0003011.pub2
  • Jairajpuri, D. S., Mohammad, T., Adhikari, K., Gupta, P., Hasan, G. M., Alajmi, M. F., Rehman, M. T., Hussain, A., & Hassan, M. I. (2020). Identification of sphingosine kinase-1 inhibitors from bioactive natural products targeting cancer therapy. ACS Omega, 5(24), 14720–14729. https://doi.org/10.1021/acsomega.0c01511
  • Julian, L., & Olson, M. F. (2014). Rho-associated coiled-coil containing kinases (ROCK) structure, regulation, and functions. Small GTPases, 5, e29846.
  • Kaneko, K., Satoh, K., Masamune, A., Satoh, A., & Shimosegawa, T. (2002). Expression of ROCK-1 in human pancreatic cancer: its down-regulation by morpholino oligo antisense can reduce the migration of pancreatic cancer cells in vitro. Pancreas, 24(3), 251–257.
  • Khan, A., Mohammad, T., Shamsi, A., Hussain, A., Alajmi, M. F., Husain, S. A., Iqbal, M. A., & Hassan, M. I. (2021). Identification of plant-based hexokinase 2 inhibitors: combined molecular docking and dynamics simulation studies. Journal of Biomolecular Structure and Dynamics, 1–13. https://doi.org/10.1080/07391102.2021.1942217
  • Lagunin, A., Stepanchikova, A., Filimonov, D., & Poroikov, V. (2000). PASS: prediction of activity spectra for biologically active substances. Bioinformatics (Oxford, England), 16(8), 747–748. https://doi.org/10.1093/bioinformatics/16.8.747
  • Lever, J., Krzywinski, M., & Altman, N. (2017). Points of significance: Principal component analysis. Nature Methods, 14(7), 641–643. https://doi.org/10.1038/nmeth.4346
  • Lipinski, C. A. (2004). Lead-and drug-like compounds: the rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Lobanov, M. Y., Bogatyreva, N., & Galzitskaya, O. (2008). Radius of gyration as an indicator of protein structure compactness. Molecular Biology, 42(4), 623–628. https://doi.org/10.1134/S0026893308040195
  • Maisuradze, G. G., Liwo, A., & Scheraga, H. A. (2009). Principal component analysis for protein folding dynamics. Journal of Molecular Biology, 385(1), 312–329. https://doi.org/10.1016/j.jmb.2008.10.018
  • Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. The Journal of Physical Chemistry A, 105(43), 9954–9960. https://doi.org/10.1021/jp003020w
  • Mohammad, T., Mathur, Y., & Hassan, M. I. (2021). InstaDock: A single-click graphical user interface for molecular docking-based virtual high-throughput screening. Briefings in Bioinformatics, 22(4), bbaa279. https://doi.org/10.1093/bib/bbaa279
  • Mohammad, T., Siddiqui, S., Shamsi, A., Alajmi, M. F., Hussain, A., Islam, A., Ahmad, F., & Hassan, M. (2020). Virtual screening approach to identify high-affinity inhibitors of serum and glucocorticoid-regulated kinase 1 among bioactive natural products: combined molecular docking and simulation studies. Molecules, 25(4), 823. https://doi.org/10.3390/molecules25040823
  • Mohanraj, K., Karthikeyan, B. S., Vivek-Ananth, R., Chand, R. B., Aparna, S., Mangalapandi, P., & Samal, A. (2018). IMPPAT: A curated database of I ndian M edicinal P lants, P hytochemistry A nd T herapeutics. Scientific Reports, 8(1), 1–17. https://doi.org/10.1038/s41598-018-22631-z
  • Naqvi, A. A., Mohammad, T., Hasan, G. M., & Hassan, M. (2018). Advancements in docking and molecular dynamics simulations towards ligand-receptor interactions and structure-function relationships. Current Topics in Medicinal Chemistry, 18(20), 1755–1768. https://doi.org/10.2174/1568026618666181025114157
  • Naz, F., Khan, F. I., Mohammad, T., Khan, P., Manzoor, S., Hasan, G. M., Lobb, K. A., Luqman, S., Islam, A., Ahmad, F., & Hassan, M. I. (2018). Investigation of molecular mechanism of recognition between citral and MARK4: A newer therapeutic approach to attenuate cancer cell progression. International Journal of Biological Macromolecules, 107(Pt B), 2580–2589. https://doi.org/10.1016/j.ijbiomac.2017.10.143
  • Oostenbrink, C., Villa, A., Mark, A. E., & Van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force‐field parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 25(13), 1656–1676. https://doi.org/10.1002/jcc.20090
  • Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Provenzano, P. P., Inman, D. R., Eliceiri, K. W., Trier, S. M., & Keely, P. J. (2008). Contact guidance mediated three-dimensional cell migration is regulated by Rho/ROCK-dependent matrix reorganization. Biophysical Journal, 95(11), 5374–5384. https://doi.org/10.1529/biophysj.108.133116
  • Rath, N., & Olson, M. F. (2012). Rho‐associated kinases in tumorigenesis: re‐considering ROCK inhibition for cancer therapy. EMBO Reports, 13(10), 900–908. https://doi.org/10.1038/embor.2012.127
  • Richmond, T. J. (1984). Solvent accessible surface area and excluded volume in proteins: Analytical equations for overlapping spheres and implications for the hydrophobic effect. Journal of Molecular Biology, 178(1), 63–89. https://doi.org/10.1016/0022-2836(84)90231-6
  • Riento, K., & Ridley, A. J. (2003). Rocks: multifunctional kinases in cell behaviour. Nature Reviews. Molecular Cell Biology, 4(6), 446–456. https://doi.org/10.1038/nrm1128
  • Schofield, A. V., & Bernard, O. (2013). Rho-associated coiled-coil kinase (ROCK) signaling and disease. Critical Reviews in Biochemistry and Molecular Biology, 48(4), 301–316. https://doi.org/10.3109/10409238.2013.786671
  • Schüttelkopf, A. W., & Van Aalten, D. M. (2004). PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica. Section D, Biological Crystallography, 60(Pt 8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Shamsi, A., Shahwan, M., Khan, M. S., Husain, F. M., Alhumaydhi, F. A., Aljohani, A. S., Rehman, M. T., Hassan, M. I., & Islam, A. (2021). Elucidating the interaction of human ferritin with quercetin and naringenin: Implication of natural products in neurodegenerative diseases: Molecular docking and dynamics simulation insight. ACS Omega, 6(11), 7922–7930. https://doi.org/10.1021/acsomega.1c00527
  • Studio, D. (2008). Discovery studio. Accelrys [2.1].
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718.
  • Whatcott, C. J., Ng, S., Barrett, M. T., Hostetter, G., Von Hoff, D. D., & Han, H. (2017). Inhibition of ROCK1 kinase modulates both tumor cells and stromal fibroblasts in pancreatic cancer. Plos One, 12(8), e0183871. https://doi.org/10.1371/journal.pone.0183871
  • Whatcott, C., Watanabe, A., Demirjian, J., Barrett, M., Hostetter, G., Von Hoff, D., & Han, H. (2011). ROCK1 as a potential therapeutic target in pancreatic cancer., AACR.
  • Xiong, S., Lorenzen, K., Couzens, A. L., Templeton, C. M., Rajendran, D., Mao, D. Y. L., Juang, Y.-C., Chiovitti, D., Kurinov, I., Guettler, S., Gingras, A.-C., & Sicheri, F. (2018). Structural basis for auto-inhibition of the NDR1 kinase domain by an atypically long activation segment. Structure (London, England: 1993), 26(8), 1101–1115. e1106. https://doi.org/10.1016/j.str.2018.05.014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.