535
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Rational design of 1,2,3-triazole hybrid structures as novel anticancer agents: synthesis, biological evaluation and molecular docking studies

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 6857-6865 | Received 23 May 2022, Accepted 08 Aug 2022, Published online: 18 Aug 2022

References

  • Al-Mulla, A. (2017). A review: Biological ımportance of heterocyclic compounds. Der Pharma Chemica, 9(13), 141–147.
  • Adam, R. W., & Zimam, E. H. (2014). Synthesis, characterization and study biological activity of some new 1, 3- oxazepine and 1, 3-diazepine derivatives. Journal of Global Pharma Technology, 9(11), 206–217.
  • Aksu, K., Özgeriş, B., Taslimi, P., Naderi, A., Gülçin, İ., & Göksu, S. (2016). Antioxidant activity, acetylcholinesterase, and carbonic anhydrase Inhibitory properties of novel ureas derived from phenethylamines. Archiv Der Pharmazie, 349(12), 944–954. https://doi.org/10.1002/ardp.201600183
  • Al-Qawasmeh, R. A., Lee, Y., Cao, M. Y., Gu, X., Vassilakos, A., Wright, J. A., & Young, A. (2004). Triaryl methane derivatives as antiproliferative agents. Bioorganic & Medicinal Chemistry Letters, 14(2), 347–350. https://doi.org/10.1016/j.bmcl.2003.11.004
  • Ali, I., Lone, M. N., Alothman, Z. A., & Alwarthan, A. (2017). Insights into the pharmacology of new heterocycles embedded with oxopyrrolidine rings: DNA binding, molecular docking, and anticancer studies. Journal of Molecular Liquids, 234, 391–402. https://doi.org/10.1016/j.molliq.2017.03.112
  • Ashour, H. F., Abou-zeid, L. A., El-Sayed, M. A. A., & Selim, K. B. (2020). 1,2,3-Triazole-Chalcone hybrids: Synthesis, in vitro cytotoxic activity and mechanistic investigation of apoptosis induction in multiple myeloma RPMI-8226. European Journal of Medicinal Chemistry, 189, 112062. https://doi.org/10.1016/j.ejmech.2020.112062
  • Barlak, N., Capik, O., Kilic, A., Sanli, F., Aytatli, A., Yazici, A., Karatas, E. A., Ortucu, S., & Karatas, O. F. (2021). MicroRNA-145 transcriptionally regulates Semaphorin 3A expression in prostate cancer cells. Cell Biology İnternational, 45(5), 1082–1090. https://doi.org/10.1002/cbin.11554
  • Bonandi, E., Christodoulou, M. S., Fumagalli, G., Perdicchia, D., Rastelli, G., & Passarella, D. (2017). The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Discovery Today, 22(10), 1572–1581. https://doi.org/10.1016/j.drudis.2017.05.014
  • Bozorov, K., Zhao, J., & Aisa, H. A. (2019). 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorganic & Medicinal Chemistry, 27(16), 3511–3531. https://doi.org/10.1016/j.bmc.2019.07.005
  • Belakatte, P. N., Aruna Kumar, D. B., Harshal, N. (2005). An efficient microwave-assisted synthesis of thieno[2,3-b]quinolines under solvent-free conditions. Journal of Sulfur Chemistry, 26, 4–5.
  • Carreiro, E. P., Sena, A. M., Puerta, A., Padrón, J. M., & Burke, A. J. (2020). Synthesis of Novel 1,2,3-triazole-dihydropyrimidinone hybrids using multicomponent 1,3-dipolar cycloaddition (click)-biginelli reactions: Anticancer activity. Synlett, 31(06), 615–621. https://doi.org/10.1055/s-0039-1690781
  • Dahm, R. (2008). Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. Human Genetics, 122(6), 565–581. https://doi.org/10.1007/s00439-007-0433-0
  • Dalvie, D. K., Kalgutkar, A. S., Khojasteh-Bakht, S. C., Obach, R. S., & O'Donnell, J. P. (2002). Biotransformation reactions of five-membered aromatic heterocyclic rings. Chemical Research in Toxicology, 15(3), 269–299. https://doi.org/10.1021/tx015574b
  • Deiters, A., & Martin, S. F. (2004). Synthesis of oxygen- and nitrogen-containing heterocycles by ring-closing metathesis. Chemical Reviews, 104(5), 2199–2238.
  • Dhakshinamoorthy, A., & Garcia, H. (2014). Metal-organic frameworks as solid catalysts for the synthesis of nitrogen-containing heterocycles. Chemical Society Reviews, 43(16), 5750–5765. https://doi.org/10.1039/c3cs60442j
  • Dong, H. R., & Wu, J. G. (2018). Design, synthesis and anticancer activity evaluation of aziridine-1,2,3-triazole hybrid derivatives. Heterocyclic Communications, 24(2), 109–112. https://doi.org/10.1515/hc-2017-0144
  • Erdoğan, M., Serdaroğlu, G., (2021). New Hybrid (E)-4-((pyren-1-ylmethylene)amino)-N-(thiazol-2-yl)benzenesulfonamide as a Potential Drug Candidate: Spectroscopy, TD-DFT, NBO, FMO, and MEP Studies. ChemistrySelect, 6(35), 9369-9381. https://doi.org/10.1002/slct.202102602.
  • Esa, R., Steinberg, E., Dror, D., Schwob, O., Khajavi, M., Maoz, M., Kinarty, Y., Inbal, A., Zick, A., & Benny, O. (2020). The role of methionine aminopeptidase 2 in lymphangiogenesis. International Journal of Molecular Sciences, 21(14), 5148–5115. https://doi.org/10.3390/ijms21145148
  • Garrabrant, T., Tuman, R. W., Ludovici, D., Tominovich, R., Simoneaux, R. L., Galemmo, R. A., & Johnson, D. L. (2004). Small molecule inhibitors of methionine aminopeptidase type 2 (MetAP-2) fail to inhibit endothelial cell proliferation or formation of microvessels from rat aortic rings in vitro. Angiogenesis, 7(2), 91–96. https://doi.org/10.1007/s10456-004-6089-7
  • Görmen, M., Veitía, M. S. I., Trigui, F., El Arbi, M., & Ferroud, C. (2015). Ferrocenyl analogues of bisacodyl: Synthesis and antimicrobial activity. Journal of Organometallic Chemistry, 794, 274–281. ( https://doi.org/10.1016/j.jorganchem.2015.07.016
  • Gulcin, I. (2006). Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid)2469. Toxicology, 217(2-3), 213–220. https://doi.org/10.1016/j.tox.2005.09.011
  • Gülçin, I., Mshvildadze, V., Gepdiremen, A., & Elias, R. (2006). Screening of antiradical and antioxidant activity of monodesmosides and crude extract from Leontice smirnowii tuber. Phytomedicine : İnternational Journal of Phytotherapy and Phytopharmacology, 13(5), 343–351. https://doi.org/10.1016/j.phymed.2005.03.009
  • Han, M., Bekçi, H., Uba, A. I., Yıldırım, Y., Karasulu, E., Cumaoğlu, A., Karasulu, H. Y., Yelekçi, K., Yılmaz, Ö., & Küçükgüzel, G. (2019). Synthesis, molecular modeling, in vivo study, and anticancer activity of 1,2,4-triazole containing hydrazide–hydrazones derived from (S)-naproxen. Archiv Der Pharmazie, 352(6), 1800365. https://doi.org/10.1002/ardp.201800365
  • Horne, W. S., Yadav, M. K., Stout, C. D., & Ghadiri, M. R. (2004). Heterocyclic peptide backbone modifications in an α-helical coiled coil. Journal of the American Chemical Society, 126(47), 15366–15367. https://doi.org/10.1021/ja0450408
  • Isika, D., Çeşme, M., Osonga, F. J., & Sadik, O. A. (2020). Novel quercetin and apigenin-acetamide derivatives: Design, synthesis, characterization, biological evaluation and molecular docking studies. RSC Advances, 10(42), 25046–25058. https://doi.org/10.1039/d0ra04559d
  • John, A., & Joule, K. M. (2010). Heterocyclic chemistry (5th ed.). Wiley. https://www.academia.edu/46679324/Heterocyclic_Chemistry_Fifth_Edition
  • Katritzky, A. R., & Rees, C. W. (2009). Comprehensive heterocyclic chemistry. Comprehensive Heterocyclic Chemistry, 1–7(605), 1–7180. https://doi.org/10.1016/C2009-0-15932-9
  • Liu, Y., Qing, L., Meng, C., Shi, J., Yang, Y., Wang, Z., Han, G., Wang, Y., Ding, J., Meng, L. h., & Wang, Q. (2017). 6-OH-phenanthroquinolizidine alkaloid and ıts derivatives exert potent anticancer activity by delaying S phase progression. Journal of Medicinal Chemistry, 60(7), 2764–2779. https://doi.org/10.1021/acs.jmedchem.6b01502
  • Malah, T. E., Nour, H. F., Satti, A. A. E., Hemdan, B. A., & El-Sayed, W. A. (2020). Design, synthesis, and antimicrobial activities of 1,2,3-triazole glycoside clickamers. Molecules, 25(4), 790–717. https://doi.org/10.3390/molecules25040790
  • Marino, J. P., Fisher, P. W., Hofmann, G. A., Kirkpatrick, R. B., Janson, C. A., Johnson, R. K., Ma, C., Mattern, M., Meek, T. D., Ryan, M. D., Schulz, C., Smith, W. W., Tew, D. G., Tomazek, T. A., Veber, D. F., Xiong, W. C., Yamamoto, Y., Yamashita, K., Yang, G., & Thompson, S. K. (2007). Highly potent inhibitors of methionine aminopeptidase-2 based on a 1,2,4-triazole pharmacophore. Journal of Medicinal Chemistry, 50(16), 3777–3785. https://doi.org/10.1021/jm061182w
  • Molnar, M., Pavić, V., Šarkanj, B., Čačić, M., Vuković, D., & Klenkar, J. (2017). Mono- and bis-dipicolinic acid heterocyclic derivatives - Thiosemicarbazides, triazoles, oxadiazoles and thiazolidinones as antifungal and antioxidant agents. Heterocyclic Communications, 23(1), 35–42. https://doi.org/10.1515/hc-2016-0078
  • Naik, H. S., Ramesha, M. S., Shwetha, B. V., & Roopa, T. R. (2006) A facile synthesis of novel 9-methyl[1, 2, 3]thiadiazole[4, 5-b] quinoline and 9-methyl[1,2,3[thiadiazole[4,5,b]quinone as a new class of antimicrobial agents. Phosphorous, Sulfur, and Silicon and the Related Elements, 81, 533–541.
  • Nami, N., Zareyee, D., Ghasemi, M., Asgharzadeh, A., Forouzani, M., Mirzad, S., & Hashemi, S. M. (2017). An efficient method for synthesis of some heterocyclic compounds containing 3-iminoisatin and 1,2,4-triazole using Fe3O4 magnetic nanoparticles. Journal of Sulfur Chemistry, 38(3), 279–290. https://doi.org/10.1080/17415993.2017.1278761
  • Nandeshwarappa, B. P., Aruna Kumar, D. B., Kumaraswamy, M. N., Ravi Kumar, Y. S., Bhojya Naik, H. S., & Mahadevan, K. M. (2006). Microwave assisted synthesis of some novel thiopyrano[2,3-b]quinolines as a new class of antimicrobial agent. Phosphorus, Sulfur and Silicon and the Related Elements, 181(7), 1545–1556. https://doi.org/10.1080/10426500500366285
  • Odlo, K., Hentzen, J., dit Chabert, J. F., Ducki, S., Gani, O. A. B. S. M., Sylte, I., Skrede, M., Flørenes, V. A., & Hansen, T. V. (2008). 1,5-Disubstituted 1,2,3-triazoles as cis-restricted analogues of combretastatin A-4: Synthesis, molecular modeling and evaluation as cytotoxic agents and inhibitors of tubulin. Bioorganic & Medicinal Chemistry, 16(9), 4829–4838. https://doi.org/10.1016/j.bmc.2008.03.049
  • Pokhodylo, N., Shyyka, O., & Matiychuk, V. (2013). Synthesis of 1,2,3-triazole derivatives and evaluation of their anticancer activity. Scientia Pharmaceutica, 81(3), 663–676. https://doi.org/10.3797/scipharm.1302-04
  • Raghavendra, M., Bhojya Naik, H., & Sherigara, B. (2006). Microwave induced synthesis of thieno[2,3- b]quinoline-2-carboxylic acids and alkyl esters and their antibacterial activity. Journal of Sulfur Chemistry, 27(4), 347–351. https://doi.org/10.1080/17415990600825611
  • Aljamali, N. M., & Alfatlawi, I. O. (2015). Synthesis, Identification of Heterocyclic Compounds and Study of Biological Activity. Research Journal of Pharmacy and Technology, 8(9), 1225–1676. https://doi.org/10.5958/0974-360X.2015.00224.3
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26(9-10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  • Reddyrajula, R., & Dalimba, U. (2019). Quinoline–1,2,3-triazole hybrids: Design and synthesis through click reaction, evaluation of anti-tubercular activity, molecular docking and ın silico ADME studies. ChemistrySelect, 4(9), 2685–2693. https://doi.org/10.1002/slct.201803946
  • Rueda, D. C., Schöffmann, A., De Mieri, M., Raith, M., Jähne, E. A., Hering, S., & Hamburger, M. (2014). Identification of dihydrostilbenes in Pholidota chinensis as a new scaffold for GABAA receptor modulators. Bioorganic & Medicinal Chemistry, 22(4), 1276–1284. https://doi.org/10.1016/j.bmc.2014.01.008
  • Sadat-Ebrahimi, S. E., Rahmani, A., Mohammadi-Khanaposhtani, M., Jafari, N., Mojtabavi, S., Ali Faramarzi, M., Emadi, M., Yahya-Meymandi, A., Larijani, B., Biglar, M., & Mahdavi, M. (2020). New phthalimide-benzamide-1,2,3-triazole hybrids; design, synthesis, α-glucosidase inhibition assay, and docking study. Medicinal Chemistry Research, 29(5), 868–876. https://doi.org/10.1007/s00044-020-02522-7
  • Şahin, İ., Çeşme, M., Özgeriş, F. B., Güngör, Ö., & Tümer, F. (2022a) Design and synthesis of 1, 4-disubstituted 1, 2, 3-triazoles: Biological evaluation in silico molecular docking and ADME screening. Journal of Molecular Structure, 1247, 131344.
  • Şahin, İ., Çeşme, M., Yüce, N., & Tümer, F. (2022b). Discovery of new 1,4-disubstituted 1,2,3-triazoles: in silico ADME profiling, molecular docking and biological evaluation studies. Journal of Biomolecular Structure and Dynamics, 1–14. https://doi.org/10.1080/07391102.2022.2025905
  • Şahin, İ., Özgeriş, F. B., Köse, M., Bakan, E., & Tümer, F. (2021). Synthesis, characterization, and antioxidant and anticancer activity of 1,4-disubstituted 1,2,3-triazoles. Journal of Molecular Structure, 1232, 130042. https://doi.org/10.1016/j.molstruc.2021.130042
  • Sauer, A. C., Leal, J. G., Stefanello, S. T., Leite, M. T. B., Souza, M. B., Soares, F. A. A., Rodrigues, O. E. D., & Dornelles, L. (2017). Synthesis and antioxidant properties of organosulfur and organoselenium compounds derived from 5-substituted-1,3,4-oxadiazole/thiadiazole-2-thiols. Tetrahedron Letters, 58(1), 87–91. https://doi.org/10.1016/j.tetlet.2016.11.106
  • Shaikh, A. R., Farooqui, M., Satpute, R. H., & Abed, S. (2018). Overview on Nitrogen containing compounds and their assessment based on International Regulatory Standards. Journal of Drug Delivery and Therapeutics, 8(6-s), 424–428. https://doi.org/10.22270/jddt.v8i6-s.2156
  • Sun, L., Huang, T., Dick, A., Meuser, M. E., Zalloum, W. A., Chen, C. H., Ding, X., Gao, P., Cocklin, S., Lee, K. H., Zhan, P., & Liu, X. (2020). Design, synthesis and structure-activity relationships of 4-phenyl-1H-1,2,3-triazole phenylalanine derivatives as novel HIV-1 capsid inhibitors with promising antiviral activities. European Journal of Medicinal Chemistry, 190, 112085. https://doi.org/10.1016/j.ejmech.2020.112085
  • Tumer, F., Goksu, S., & Secen, H. (2005). First synthesis of (±)-vertilecanin A. Russian Chemical Bulletin, 54(10), 2466–2467. https://doi.org/10.1007/s11172-006-0140-3
  • Weako, J., Uba, A. I., Keskin, Ö., Gürsoy, A., & Yelekçi, K. (2020). Identification of potential inhibitors of human methionine aminopeptidase (type II) for cancer therapy: Structure-based virtual screening, ADMET prediction and molecular dynamics studies. Computational Biology and Chemistry, 86(March), 107244. https://doi.org/10.1016/j.compbiolchem.2020.107244

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.