177
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Identification of a promising inhibitor from Illicium verum (star anise) against the main protease of SARS-CoV-2: insights from the computational study

, , , , , & ORCID Icon show all
Pages 6866-6882 | Received 30 Nov 2021, Accepted 08 Aug 2022, Published online: 18 Aug 2022

References

  • Alhajj, M. S., Qasem, M. A., & Al-Mufarrej, S. I. (2020). Inhibitory activity of Illicium verum extracts against avian viruses. Advances in Virology, 2020, 4594635. https://doi.org/10.1155/2020/4594635
  • Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C., & Garry, R. F. (2020). The proximal origin of SARS-CoV-2. Nature Medicine, 26(4), 450–452. https://doi.org/10.1038/s41591-020-0820-9
  • Aniya, Y. N., Fuerdeng., Kwame S. A., & Yoshiharu F. (2020). Evaluation of Allelopathic Activity of Chinese Medicinal Plants and Identification of Shikimic Acid as an Allelochemical from Illicium verum Hook. f. Plants, 9(6), 684. https://doi.org/10.3390/plants9060684
  • Bhardwaj, V. K., Singh, R., Das, P., & Purohit, R. (2021a). Evaluation of acridinedione analogs as potential SARS-CoV-2 main protease inhibitors and their comparison with repurposed anti-viral drugs. Computers in Biology and Medicine, 128, 104117. https://doi.org/10.1016/j.compbiomed.2020.104117
  • Bhardwaj, V. K., Singh, R., Sharma, J., Rajendran, V., Purohit, R., & Kumar, S. (2021b). Bioactive molecules of tea as potential inhibitors for RNA-dependent RNA polymerase of SARS-CoV-2. Frontiers in Medicine, 8, 684020. https://doi.org/10.3389/fmed.2021.684020
  • Bochevarov, A. D., Harder, E., Hughes, T. F., Greenwood, J. R., Braden, D. A., Philipp, D. M., Rinaldo, D., Halls, M. D., Zhang, J., & Friesner, R. A. (2013). Jaguar: A high-performance quantum chemistry software program with strengths in life and materials sciences. International Journal of Quantum Chemistry, 113(18), 2110–2142. https://doi.org/10.1002/qua.24481
  • Bowers, K. J., Chow, D. E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D., Salmon, J. K., Shan, Y., & Shaw, D. E. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters [Paper presentation]. SC ’06 Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (p. 43). https://doi.org/10.1109/SC.2006.54
  • Cheng, A., & Merz, K. M. (1996). Application of the Nosé−Hoover chain algorithm to the study of protein dynamics. The Journal of Physical Chemistry, 100(5), 1927–1937. https://doi.org/10.1021/jp951968y
  • De Almeida Pinheiro, M., Magalhães, R. M., Torres, D. M., Cavalcante, R. C., Mota, F. S. X., Coelho, E. M. A. O., Moreira, H. P., Lima, G. C., Da Costa Araújo, P. C., Cardoso, J. H. L., De Souza, A. N. C., & Diniz, L. R. L. (2015). Gastroprotective effect of alpha-pinene and its correlation with antiulcerogenic activity of essential oils obtained from Hyptis species. Pharmacognosy Magazine, 11(41), 123–130. https://doi.org/10.4103/0973-1296.149725
  • Dilika, F., Bremner, P. D., & Meyer, J. J. M. (2000). Antibacterial activity of linoleic and oleic acids isolated from Helichrysum pedunculatum: A plant used during circumcision rites. Fitoterapia, 71(4), 450–452. https://doi.org/10.1016/S0367-326X(00)00150-7
  • Essien, E. E., Newby, J. M., Walker, T. M., Ogunwande, I. A., Setzer, W. N., & Ekundayo, O. (2016). Essential oil constituents, anticancer and antimicrobial activity of Ficus mucoso and Casuarina equisetifolia leaves. American Journal of Essential Oils and Natural Products, 4(1), 01–06.
  • Fidyt, K., Fiedorowicz, A., Strządała, L., & Szumny, A. (2016). β‐caryophyllene and β‐caryophyllene oxide—Natural compounds of anticancer and analgesic properties. Cancer Medicine, 5(10), 3007–3017. β https://doi.org/10.1002/cam4.816
  • Ghosh, S., Chisti, Y., & Banerjee, U. C. (2012). Production of shikimic acid. Biotechnology Advances, 30(6), 1425–1431. https://doi.org/10.1016/j.biotechadv.2012.03.001
  • Guo, Y.-R., Cao, Q.-D., Hong, Z.-S., Tan, Y.-Y., Chen, S.-D., Jin, H.-J., Tan, K.-S., Wang, D.-Y., & Yan, Y. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Military Medical Research, 7(1), 11. https://doi.org/10.1186/s40779-020-00240-0 [PMC][32169119
  • Hall, D. C., Jr., & Ji, H.-F. (2020). A search for medications to treat COVID-19 via in silico molecular docking models of the SARS-CoV-2 spike glycoprotein and 3CL protease. Travel Medicine and Infectious Disease, 35, 101646. https://doi.org/10.1016/j.tmaid.2020.101646
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51(1), 69–82. https://doi.org/10.1021/ci100275a
  • Huang, J., Lu, X. Q., Zhang, C., Lu, J., Li, G. Y., Lin, R. C., & Wang, J. H. (2013). Anti-inflammatory ligustilides from Ligusticum chuanxiong Hort. Fitoterapia, 91, 21–27. https://doi.org/10.1016/j.fitote.2013.08.013
  • Ibrahim, M. A. A., Abdeljawaad, K. A. A., Abdelrahman, A. H. M., & Hegazy, M.-E. F. (2021a). Natural-like products as potential SARS-CoV-2 Mpro inhibitors: In-silico drug discovery. Journal of Biomolecular Structure & Dynamics, 39(15), 5722–5734. https://doi.org/10.1080/07391102.2020.1790037
  • Ibrahim, M. A. A., Abdelrahman, A. H. M., & Hegazy, M.-E. F. (2021b). In-silico drug repurposing and molecular dynamics puzzled out potential SARS-CoV-2 main protease inhibitors. Journal of Biomolecular Structure & Dynamics, 39(15), 5756–5767. https://doi.org/10.1080/07391102.2020.1791958
  • Ibrahim, M. A. A., Abdelrahman, A. H. M., Hussien, T. A., Badr, E. A. A., Mohamed, T. A., El-Seedi, H. R., Pare, P. W., Efferth, T., & Hegazy, M.-E. F. (2020). In silico drug discovery of major metabolites from spices as SARS-CoV-2 main protease inhibitors. Computers in Biology and Medicine, 126, 104046. https://doi.org/10.1016/j.compbiomed.2020.104046
  • Ibrahim, M. A. A., Mohamed, E. A. R., Abdelrahman, A. H. M., Allemailem, K. S., Moustafa, M. F., Shawky, A. M., Mahzari, A., Hakami, A. R., Abdeljawaad, K. A. A., & Atia, M. A. M. (2021c). Rutin and flavone analogs as prospective SARS-CoV-2 main protease inhibitors: In silico drug discovery study. Journal of Molecular Graphics & Modelling, 105, 107904. https://doi.org/10.1016/j.jmgm.2021.107904
  • Jacobson, M. P., Pincus, D. L., Rapp, C. S., Day, T. J. F., Honig, B., Shaw, D. E., & Friesner, R. A. (2004). A hierarchical approach to all-atom protein loop prediction. Proteins, 55(2), 351–367. https://doi.org/10.1002/prot.10613
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y
  • Jin, Z., Zhao, Y., Sun, Y., Zhang, B., Wang, H., Wu, Y., Zhu, Y., Zhu, C., Hu, T., Du, X., Duan, Y., Yu, J., Yang, X., Yang, X., Yang, K., Liu, X., Guddat, L. W., Xiao, G., Zhang, L., Yang, H., & Rao, Z. (2020). Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nature Structural & Molecular Biology, 27(6), 529–532. https://doi.org/10.1038/s41594-020-0440-6
  • Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118(45), 11225–11236. https://doi.org/10.1021/ja9621760
  • Kaczor, A. A., Targowska-Duda, K. M., Patel, J. Z., Laitinen, T., Parkkari, T., Adams, Y., Nevalainen, T. J., & Poso, A. (2015). Comparative molecular field analysis and molecular dynamics studies of α/β hydrolase domain containing 6 (ABHD6) inhibitors. Journal of Molecular Modeling, 21(10), 250. https://doi.org/10.1007/s00894-015-2789-8 [PMC][26350245
  • Kamatou, G. P. P., & Viljoen, A. M. (2008). Linalool - A review of a biologically active compound of commercial importance. In Natural Product Communications, 3(7), 1934578X0800300. https://doi.org/10.1177/1934578X0800300727
  • Kar, P., Sharma, N. R., Singh, B., Sen, A., & Roy, A. (2021). Natural compounds from Clerodendrum spp. as possible therapeutic candidates against SARS-CoV-2: An in silico investigation. Journal of Biomolecular Structure and Dynamics, 39(13), 4774–4712. https://doi.org/10.1080/07391102.2020.1780947
  • Khaleel, C., Tabanca, N., & Buchbauer, G. (2018). α-Terpineol, a natural monoterpene: A review of its biological properties. Open Chemistry, 16(1), 349–361. https://doi.org/10.1515/chem-2018-0040
  • Kumar, P., Kumaravel, S., & Lalitha, C. (2010). Screening of antioxidant activity, total phenolics and GC-MS study of Vitex negundo. African Journal of Biochemistry Research, 4(7), 191–195.
  • Lee, S. W., Li, G., Lee, K. S., Jung, J. S., Xu, M. L., Seo, C. S., Chang, H. W., Kim, S. K., Song, D. K., & Son, J. K. (2003). Preventive agents against sepsis and new phenylpropanoid glucosides from the fruits of Illicium verum. Planta Medica, 69(9), 861-864. https://doi.org/10.1055/s-2003-43210
  • Lee, S. W., Li, G., Lee, K. S., Song, D. K., & Son, J. K. (2003). A new phenylpropanoid glucoside from the fruits of Illicium verum. Archives of Pharmacal Research, 26(8), 591–593. https://doi.org/10.1007/BF02976705
  • Lim, T. K. (2013). Illicium verum BT - Edible medicinal and non-medicinal plants: Volume 6, fruits (T. K. Lim (ed.); pp. 151–160). Springer. https://doi.org/10.1007/978-94-007-5628-1_27
  • Lima, D. F., Brandã, M. S., Moura, J. B., Leitão, J. M. R. S., Carvalho, F. A. A., Miúra, L. M. C. V., Leite, J. R. S. A., Sousa, D. P., & Almeida, F. R. C. (2012). Antinociceptive activity of the monoterpene α-phellandrene in rodents: Possible mechanisms of action. Journal of Pharmacy and Pharmacology, 64(2), 283–292. https://doi.org/10.1111/j.2042-7158.2011.01401.x
  • Liu, M., Yu, Q., Xiao, H., Li, M., Huang, Y., Zhang, Q., & Li, P. (2020). The inhibitory activities and antiviral mechanism of medicinal plant ingredient quercetin against grouper iridovirus infection. Frontiers in Microbiology, 11, 586331. https://doi.org/10.3389/fmicb.2020.586331
  • Liu, M., Yu, Q., Xiao, H., Yi, Y., Cheng, H., Putra, D. F., Huang, Y., Zhang, Q., & Li, P. (2020). Antiviral activity of Illicium verum Hook. f. extracts against grouper iridovirus infection. Journal of Fish Diseases, 43(5), 531–540. https://doi.org/10.1111/jfd.13146
  • Liu, C., Zhou, Q., Li, Y., Garner, L. V., Watkins, S. P., Carter, L. J., Smoot, J., Gregg, A. C., Daniels, A. D., Jervey, S., & Albaiu, D. (2020). Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Central Science, 6(3), 315–331. https://doi.org/10.1021/acscentsci.0c00272
  • Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., … Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. The Lancet, 395(10224), 565–574. https://doi.org/10.1016/S0140-6736(20)30251-8
  • Luís, Â., Duarte, A., Pereira, L., & Domingues, F. (2017). Chemical profiling and evaluation of antioxidant and anti-microbial properties of selected commercial essential oils: A comparative study. Medicines, 4(2), 36. https://doi.org/10.3390/medicines4020036
  • Manuja, R., Sachdeva, S., Jain, A., & Chaudhary, J. (2013). A comprehensive review on biological activities of P-hydroxy benzoic acid and its derivatives. International Journal of Pharmaceutical Sciences Review and Research, 22(2), 109–115.
  • Marchese, A., Arciola, C. R., Barbieri, R., Silva, A. S., Nabavi, S. F., Sokeng, A. J. T., Izadi, M., Jafari, N. J., Suntar, I., Daglia, M., & Nabavi, S. M. (2017). Update on monoterpenes as antimicrobial agents: A particular focus on p-cymene. In Materials, 10(8), 947. https://doi.org/10.3390/ma10080947
  • Marinov, V., & Valcheva-Kuzmanova, S. (2015). Review on the pharmacological activities of anethole. Scripta Scientifica Pharmaceutica, 2(2), 14. https://doi.org/10.14748/ssp.v2i2.1141
  • Martins, C. D. M., Nascimento, E. A. D., De Morais, S. A. L., De Oliveira, A., Chang, R., Cunha, L. C. S., Martins, M. M., Martins, C. H. G., Moraes, T. D. S., Rodrigues, P. V., Silva, C. V. D., & De Aquino, F. J. T. (2015). Chemical constituents and evaluation of antimicrobial and cytotoxic activities of Kielmeyera coriacea Mart. and Zucc. essential oils. Evidence-Based Complementary and Alternative Medicine : eCAM, 2015, 842047. https://doi.org/10.1155/2015/842047
  • Martyna, G. J., Klein, M. L., & Tuckerman, M. (1992). Nosé–Hoover chains: The canonical ensemble via continuous dynamics. Journal of Chemical Physics. 97(4), 2635–2643. https://doi.org/10.1063/1.463940
  • Martyna, G. J., Tobias, D. J., & Klein, M. L. (1994). Constant pressure molecular dynamics algorithms. Journal of Chemical Physics. 101(5), 4177–4189. https://doi.org/10.1063/1.467468
  • Mondello, F., De Bernardis, F., Girolamo, A., Cassone, A., & Salvatore, G. (2006). In vivo activity of terpinen-4-ol, the main bioactive component of Melaleuca alternifolia Cheel (tea tree) oil against azole-susceptible and-resistant human pathogenic Candida species. BMC Infectious Diseases, 6(1), 1–8. https://doi.org/10.1186/1471-2334-6-158
  • Mukai, A., Takahashi, K., & Ashitani, T. (2017). Natural autoxidation of longifolene and anti-termite activities of the products. Journal of Wood Science, 63(4), 360–368. https://doi.org/10.1007/s10086-017-1637-0
  • Nakamura, T., Okuyama, E., & Yamazaki, M. (1996). Neurotropic components from star anise (Illicium verum HOOK. fil.). Chemical & Pharmaceutical Bulletin, 44(10), 1908–1914. https://doi.org/10.1248/cpb.44.1908
  • Pal, M., Berhanu, G., Desalegn, C., & Kandi, V. (2020). Severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2): An update. Cureus, 12(3), e7423. https://doi.org/10.7759/cureus.7423
  • Patra, J. K., Das, G., Bose, S., Banerjee, S., Vishnuprasad, C. N., del Pilar Rodriguez-Torres, M., & Shin, H.-S. (2020). Star anise (Illicium verum): Chemical compounds, antiviral properties, and clinical relevance. Phytotherapy Research : PTR, 34(6), 1248–1267. https://doi.org/10.1002/ptr.6614
  • Peng, X., Xu, X., Li, Y., Cheng, L., Zhou, X., & Ren, B. (2020). Transmission routes of 2019-nCoV and controls in dental practice. International Journal of Oral Science, 12(1), 9. https://doi.org/10.1038/s41368-020-0075-9[PMC][32127517
  • Prajapat, M., Sarma, P., Shekhar, N., Avti, P., Sinha, S., Kaur, H., Kumar, S., Bhattacharyya, A., Kumar, H., Bansal, S., & Medhi, B. (2020). Drug targets for corona virus: A systematic review. Indian Journal of Pharmacology, 52(1), 56–65. https://doi.org/10.4103/ijp.IJP_115_20
  • Prasanth, D. S. N. B. K., Murahari, M., Chandramohan, V., Panda, S. P., Atmakuri, L. R., & Guntupalli, C. (2021). In silico identification of potential inhibitors from Cinnamon against main protease and spike glycoprotein of SARS CoV-2. Journal of Biomolecular Structure and Dynamics, 39(13), 4618–4615. https://doi.org/10.1080/07391102.2020.1779129
  • Qiu, H., Wu, J., Hong, L., Luo, Y., Song, Q., & Chen, D. (2020). Clinical and epidemiological features of 36 children with coronavirus disease 2019 (COVID-19) in Zhejiang, China: An observational cohort study. The Lancet Infectious Diseases, 20(6), 689–696. https://doi.org/10.1016/S1473-3099(20)30198-5
  • Schrödinger. (2018). Release 2018-2: LigPrep, Schrödinger, LLC.
  • Shapira, S., Pleban, S., Kazanov, D., Tirosh, P., & Arber, N. (2016). Terpinen-4-ol: A novel and promising therapeutic agent for human gastrointestinal cancers. Plos One, 11(6), e0156540. https://doi.org/10.1371/journal.pone.0156540
  • Sharma, J., Kumar Bhardwaj, V., Singh, R., Rajendran, V., Purohit, R., & Kumar, S. (2021). An in-silico evaluation of different bioactive molecules of tea for their inhibition potency against non structural protein-15 of SARS-CoV-2. Food Chemistry, 346, 128933. https://doi.org/10.1016/j.foodchem.2020.128933
  • Singh, R., Bhardwaj, V. K., & Purohit, R. (2021a). Potential of turmeric-derived compounds against RNA‐dependent RNA polymerase of SARS‐CoV‐2: An in-silico approach. Computers in Biology and Medicine, 139, 104965. https://doi.org/10.1016/j.compbiomed.2021.104965
  • Singh, R., Bhardwaj, V. K., Sharma, J., Kumar, D., & Purohit, R. (2021b). Identification of potential plant bioactive as SARS-CoV-2 Spike protein and human ACE2 fusion inhibitors. Computers in Biology and Medicine, 136, 104631. https://doi.org/10.1016/j.compbiomed.2021.104631
  • Singh, R., Bhardwaj, V. K., Sharma, J., Purohit, R., & Kumar, S. (2022). In-silico evaluation of bioactive compounds from tea as potential SARS-CoV-2 nonstructural protein 16 inhibitors. Journal of Traditional and Complementary Medicine, 12(1), 35–43. https://doi.org/10.1016/j.jtcme.2021.05.005
  • Singh, P., Gupta, E., Mishra, N., & Mishra, P. (2020). Shikimic acid as intermediary model for the production of drugs effective against influenza virus. In C. Egbuna, S. Kumar, J. C. Ifemeje, S. M. Ezzat, & S. Kaliyaperumal (Eds.), Phytochemicals as lead compounds for new drug discovery (pp. 245–256). Elsevier. https://doi.org/10.1016/B978-0-12-817890-4.00016-0
  • Singh, G., Maurya, S., DeLampasona, M. P., & Catalan, C. (2006). Chemical constituents, antimicrobial investigations and antioxidative potential of volatile oil and acetone extract of star anise fruits. Journal of the Science of Food and Agriculture, 86(1), 111–121. https://doi.org/10.1002/jsfa.2277
  • Singh, P., Tripathi, K. M., & Shrivastava, R. (2021). In silico identification of linear B-cell epitope in Coronavirus 2019 (SARS-CoV-2) surface glycoprotein: A prospective towards peptide vaccine. Minerva Biotechnology and Biomolecular Research, 33(1), 29–65. https://doi.org/10.23736/S2724-542X.20.02659-2
  • Singh, P., Tripathi, M. K., Yasir, M., Khare, R., & Shrivastava, R. (2021). In silico identification of promising inhibitor against RNA-dependent RNA polymerase target of SARS-CoV-2. Molecular Biology Research Communications, 10(3), 131–140. https://doi.org/10.22099/mbrc.2021.40367.1621 [PMC][34476266
  • Singh, P., Tripathi, M. K., Yasir, M., Khare, R., Tripathi, M. K., & Shrivastava, R. (2020). Potential inhibitors for SARS-CoV-2 and functional food components as nutritional supplement for COVID-19: A review. Plant Foods for Human Nutrition (Dordrecht, Netherlands), 75(4), 458–466. https://doi.org/10.1007/s11130-020-00861-9
  • Song, W. Y., Ma, Y. B., Bai, X., Zhang, X. M., Gu, Q., Zheng, Y. T., Zhou, J., & Chen, J. J. (2007). Two new compounds and anti-HIV active constituents from Illicium verum. Planta Medica, 73(4), 372–375. https://doi.org/10.1055/s-2007-967162
  • Sy, L. K., & Brown, G. D. (1998). Novel phenylpropanoids and lignans from Illicium verum. Journal of Natural Products, 61(8), 987–992. https://doi.org/10.1021/np9800553
  • Tahir ul Qamar, M., Alqahtani, S. M., Alamri, M. A., & Chen, L.-L. (2020). Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. Journal of Pharmaceutical Analysis, 10(4), 313–319. https://doi.org/10.1016/j.jpha.2020.03.009
  • Tripathi, M., Sharma, S., Singh, T., Abdul S, E., & Kaur, P. (2021). Computational intelligence methods in COVID-19: Surveillance, prevention, prediction and diagnosis (pp. 273–294). https://doi.org/10.1007/978-981-15-8534-0_14
  • Tripathi, M. K., Singh, P., Sharma, S., Singh, T. P., Ethayathulla, A. S., & Kaur, P. (2021). Identification of bioactive molecule from Withania somnifera (Ashwagandha) as SARS-CoV-2 main protease inhibitor. Journal of Biomolecular Structure and Dynamics, 39(15), 5668–5614. https://doi.org/10.1080/07391102.2020.1790425
  • Turkez, H., Togar, B., Tatar, A., Geyıkoglu, F., & Hacımuftuoglu, A. (2014). Cytotoxic and cytogenetic effects of α-copaene on rat neuron and N2a neuroblastoma cell lines. Biologia, 69(7), 936–942. https://doi.org/10.2478/s11756-014-0393-5
  • Wang, G.-W., Hu, W.-T., Huang, B.-K., & Qin, L.-P. (2011). Illicium verum: A review on its botany, traditional use, chemistry and pharmacology. Journal of Ethnopharmacology, 136(1), 10–20. https://doi.org/10.1016/j.jep.2011.04.051
  • Wang, Z., Wang, L., Li, T., Zhou, X., Ding, L., Yu, Y., Yu, A., & Zhang, H. (2006). Rapid analysis of the essential oils from dried Illicium verum Hook. f. and Zingiber officinale Rosc. by improved solvent-free microwave extraction with three types of microwave-absorption medium. Analytical and Bioanalytical Chemistry, 386(6), 1863–1868. https://doi.org/10.1007/s00216-006-0778-6
  • Wei, L., Hua, R., Li, M., Huang, Y., Li, S., He, Y., & Shen, Z. (2014). Chemical composition and biological activity of star anise Illicium verum extracts against maize weevil, Sitophilus zeamais adults. Journal of Insect Science (Online), 14, 80. https://doi.org/10.1673/031.014.80
  • WHO. (2022). COVID-19 weekly epidemiological update: Edition 101 published 20 July 2022. https://www.Who.Int/Emergencies/Diseases/Novel-Coronavirus-2019/Situation-Reports.
  • Wiirzler, L. A. M., Saulo Euclides Silva-Filho, R., Pazinatto Aguiar, H. A. O. C., & Cuman, R. K. N. (2016). Evaluation of anti-inflammatory activity of estragole by modulation of eicosanoids production. Anantapur: IJPACR.
  • Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., Wang, Q., Xu, Y., Li, M., Li, X., Zheng, M., Chen, L., & Li, H. (2020). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica. B, 10(5), 766–788. https://doi.org/10.1016/j.apsb.2020.02.008
  • Wu, A., Peng, Y., Huang, B., Ding, X., Wang, X., Niu, P., Meng, J., Zhu, Z., Zhang, Z., Wang, J., Sheng, J., Quan, L., Xia, Z., Tan, W., Cheng, G., & Jiang, T. (2020). Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host & Microbe, 27(3), 325–328. https://doi.org/10.1016/j.chom.2020.02.001
  • Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, eabb3405, 368(6489), 409–412. https://doi.org/10.1126/science.abb3405
  • Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., Chen, H.-D., Chen, J., Luo, Y., Guo, H., Jiang, R.-D., Liu, M.-Q., Chen, Y., Shen, X.-R., Wang, X., … Shi, Z.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.