204
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Genomic assortment and interactive insights of the chromosomal encoded control of cell death (ccd) toxin-antitoxin (TA) module in Xenorhabdus nematophila

, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 7032-7044 | Received 12 Apr 2022, Accepted 14 Aug 2022, Published online: 24 Aug 2022

References

  • Aakre, C. D., Phung, T. N., Huang, D., & Laub, M. T. (2013). A bacterial toxin inhibits DNA replication elongation through a direct interaction with the β sliding clamp. Molecular Cell, 52(5), 617–628. https://doi.org/10.1016/j.molcel.2013.10.014
  • Agarwal, S., Sharma, A., Bouzeyen, R., Deep, A., & Sharma, H. (2020). VapBC22 toxin-antitoxin system from mycobacterium tuberculosis is required for pathogenesis and modulation of host immune response. Science Advances, 6(23), eaba6944. https://doi.org/10.1126/sciadv.aba6944
  • Akarsu, H., Bordes, P., Mansour, M., Bigot, D.-J., Genevaux, P., & Falquet, L. (2019). TASmania: A bacterial toxin-antitoxin systems database. PLoS Computational Biology, 15(4), e1006946. https://doi.org/10.1371/journal.pcbi.1006946
  • Bahassi, E. M., O'Dea, M. H., Allali, N., Messens, J., Gellert, M., & Couturier, M. (1999). Interactions of CcdB with DNA: Gyrase in activation of GyrA, poisoning of the gyrase-DNA complex, and the antidote action of CdcA. The Journal of Biological Chemistry, 274(16), 10936–10944. https://doi.org/10.1074/jbc.274.16.10936
  • Boss, L., Górniak, M., Lewańczyk, A., Morcinek-Orłowska, J., Barańska, S., & Szalewska-Pałasz, A. (2021). Identification of three type II toxin-antitoxin systems in model bacterial plant pathogen Dickeya dadantii 3937. International Journal of Molecular Sciences, 22(11), 5932. https://doi.org/10.3390/ijms22115932
  • Buts, L., Lah, J., Dao-Thi, M.-H., Wyns, L., & Loris, R. (2005). Toxin–antitoxin modules as bacterial metabolic stress managers. Trends in Biochemical Sciences, 30(12), 672–679. https://doi.org/10.1016/j.tibs.2005.10.004
  • Butt, A., Müller, C., Harmer, N., & Titball, R. W. (2013). Identification of type II toxin-antitoxin modules in Burkholderia pseudomallei. FEMS Microbiology Letters, 338(1), 86–94. https://doi.org/10.1111/1574-6968.12032
  • Chaston, J. M., Suen, G., Tucker, S. L., Andersen, A. W., Bhasin, A., Bode, E., Bode, H. B., Brachmann, A. O., Cowles, C. E., Cowles, K. N., Darby, C., de Léon, L., Drace, K., Du, Z., Givaudan, A., Herbert Tran, E. E., Jewell, K. A., Knack, J. J., Krasomil-Osterfeld, K. C., … Goodrich-Blair, H. (2011). The entomopathogenic bacterial endosymbionts Xenorhabdus and Photorhabdus: Convergent lifestyles from divergent genomes. PLoS One, 6(11), e27909. https://doi.org/10.1371/journal.pone.0027909
  • Choi, J. S., Kim, W., Suk, S., Park, H., Bak, G., Yoon, J., & Lee, Y. (2018). The small RNA. SdsR, acts as a novel type of toxin in Escherichia coli. RNA Biology, 15(10), 1319–1335. https://doi.org/10.1080/15476286.2018.1532252
  • Dao-Thi, M. H., Van Melderen, L., De Genst, E., Afif, H., Buts, L., Wyns, L., & Loris, R. (2005). Molecular basis of gyrase poisoning by the addiction toxin CcdB. Journal of Molecular Biology, 348(5), 1091–1102. https://doi.org/10.1016/J.JMB.2005.03.049
  • David, C. C., & Jacobs, D. J. (2014). Principal component analysis: A method for determining the essential dynamics of proteins. Methods in Molecular Biology (Clifton, NJ), 1084, 193. https://doi.org/10.1007/978-1-62703-658-0_11
  • Di Cesare, A., Losasso, C., Barco, L., Eckert, E. M., Conficoni, D., Sarasini, G., Corno, G., & Ricci, A. (2016). (2016). Diverse distribution of toxin-antitoxin II systems in Salmonella enterica serovars. Scientific Reports, 6(1), 28759–28759. 6:1 https://doi.org/10.1038/srep28759
  • Fineran, P. C., Blower, T. R., Foulds, I. J., Humphreys, D. P., Lilley, K. S., & Salmond, G. P. C. (2009). The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. Proceedings of the National Academy of Sciences of the United States of America, 106(3), 894–899. https://doi.org/10.1073/pnas.0808832106
  • Fraikin, N., Goormaghtigh, F., Melderen., & L., Van. (2020). Type II toxin-antitoxin systems: Evolution and revolutions. Journal of Bacteriology, 202(7), e00763-19. https://doi.org/10.1128/JB
  • Gao, N., Lu, G., Lercher, M. J., & Chen, W. (2017). Selection for energy efficiency drives strand-biased gene distribution in prokaryotes. Scientific Reports, 7(1), 10. https://doi.org/10.1038/s41598-017-11159-3
  • Gautam, L. K., Yadav, M., & Rathore, J. S. (2017). Functional annotation of a novel toxin–antitoxin system Xn-RelT of Xenorhabdus nematophila; a combined in silico and in vitro approach. Journal of Molecular Modeling, 23(6), 189. https://doi.org/10.1007/s00894-017-3361-5
  • Gerdes, K., Bech, F. W., Jørgensen, S. T., Løbner-Olesen, A., Rasmussen, P. B., Atlung, T., Boe, L., Karlstrom, O., Molin, S., & von Meyenburg, K. (1986a). Mechanism of postsegregational killing by the hok gene product of the parB system of plasmid R1 and its homology with the relF gene product of the E. coli relB operon. The EMBO Journal, 5(8), 2023–2029. https://doi.org/10.1002/j.1460-2075.1986.tb04459.x
  • Gerdes, K., Rasmussen, P. B., & Molin, S. (1986b). Unique type of plasmid maintenance function: Postsegregational killing of plasmid-free cells. Proceedings of the National Academy of Sciences of the United States of America, 83(10), 3116–3120. https://doi.org/10.1073/pnas.83.10.3116
  • Gerdes, K., Christensen, S. K., & Løbner-Olesen, A. (2005). Prokaryotic toxin–antitoxin stress response loci. Nature Reviews. Microbiology, 3(5), 371–382. https://doi.org/10.1038/nrmicro1147
  • Gupta, K., Tripathi, A., Sahu, A., & Varadarajan, R. (2017). Contribution of the chromosomal ccdAB operon to bacterial drug tolerance. Journal of Bacteriology, 199(19), e00397-17. https://doi.org/10.1128/JB.00397-17
  • Harms, A., Brodersen, D. E., Mitarai, N., & Gerdes, K. (2018). Toxins, targets, and triggers: An overview of toxin-antitoxin biology. Molecular Cell, 70(5), 768–784. https://doi.org/10.1016/j.molcel.2018.01.003
  • Hayes, F., Melderen., & L., Van. (2011). Toxins-antitoxins : Diversity, evolution and function. Critical Reviews in Biochemistry and Molecular Biology, 46(5), 386–408. https://doi.org/10.3109/10409238.2011.600437
  • Herbert, E. E., & Goodrich-Blair, H. (2007). Friend and foe: the two faces of Xenorhabdus nematophila. Nature Reviews. Microbiology, 5(8), 634–646. https://doi.org/10.1038/nrmicro1706
  • Izadi, S., & Onufriev, A. V. (2016). Accuracy limit of rigid 3-point water models. The Journal of Chemical Physics, 145(7), 074501. https://doi.org/10.1063/1.4960175
  • Jaffé, A., Ogura, T., & Hiraga, S. (1985). Effects of the ccd function of the F plasmid on bacterial growth. Journal of Bacteriology, 163(3), 841–849. http://www.ncbi.nlm.nih.gov/pubmed/3897195
  • Jimmy, S., Kumar Saha, C., Kurata, T., Stavropoulos, C., Raquel Alves Oliveira, S., Koh, A., Cepauskas, A., Takada, H., Rejman, D., Tenson, T., Strahl, H., Garcia-Pino, A., Hauryliuk, V., & Atkinson, G. C. (2020). A widespread toxin − Antitoxin system exploiting growth control via alarmone signaling. Proceedings of the National Academy of Sciences, 117 (19), 10500-10510. https://doi.org/10.1073/pnas.1916617117
  • Kamruzzaman, M., Wu, A. Y., & Iredell, J. R. (2021). Biological functions of type II toxin-antitoxin systems in bacteria. Microorganisms, 9(6), 1276. https://doi.org/10.3390/microorganisms9061276
  • Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772–780. https://doi.org/10.1093/molbev/mst010
  • Kaul, T., Eswaran, M., Ahmad, S., Thangaraj, A., Jain, R., Kaul, R., Raman, N. M., & Bharti, J. (2020). Probing the effect of a plus 1bp frameshift mutation in protein-DNA interface of domestication gene, NAMB1, in wheat. Journal of Biomolecular Structure and Dynamics, 38(12), 3633–3647. 10.1080/07391102.2019.1680435
  • Kim, D. H., Kang, S. M., Park, S. J., Jin, C., Yoon, H. J., & Lee, B. J. (2018). Functional insights into the Streptococcus pneumoniae HicBA toxin-antitoxin system based on a structural study. Nucleic Acids Research, 46(12), 6371–6386. https://doi.org/10.1093/nar/gky469
  • Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The ClusPro web server for protein–protein docking. Nature Protocols, 2017 1212(2), 255–278. 2 https://doi.org/10.1038/nprot.2016.169
  • Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S. J., & Marra, M. A. (2009). Circos: An information aesthetic for comparative genomics. Genome Research, 19(9), 1639–1645. https://doi.org/10.1101/gr.092759.109
  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547-1549. https://doi.org/10.1093/molbev/msy096
  • Lefoulon, E., McMullen, J. G., & Stock, S. P. (2022). Transcriptomic analysis of Steinernema nematodes highlights metabolic costs associated to xenorhabdus endosymbiont association and rearing conditions. Frontiers in Physiology, 13(February), 821845. https://doi.org/10.3389/fphys.2022.821845
  • Loris, R., Dao-Thi, M. H., Bahassi, E. M., Van Melderen, L., Poortmans, F., Liddington, R., Couturier, M., & Wyns, L. (1999). Crystal structure of CcdB, a topoisomerase poison from E. coli. Journal of Molecular Biology, 285(4), 1667–1677. https://doi.org/10.1006/jmbi.1998.2395
  • Lovell, S. C., Davis, I. W., Arendall, W. B., de Bakker, P. I. W., Word, J. M., Prisant, M. G., Richardson, J. S., & Richardson, D. C. (2003). Structure validation by Cα geometry: ϕ,ψ and Cβ deviation. Proteins: Structure, Function, and Bioinformatics, 50(3), 437–450. https://doi.org/10.1002/prot.10286
  • Marimon, O., Teixeira, J. M. C., Cordeiro, T. N., Soo, V. W. C., Wood, T. L., Mayzel, M., Amata, I., García, J., Morera, A., Gay, M., Vilaseca, M., Orekhov, V. Y., Wood, T. K., & Pons, M. (2016). An oxygen-sensitive toxin-antitoxin system. Nature Communications, 7, 13634. https://doi.org/10.1038/ncomms13634
  • Martens, E. C., Heungens, K., & Goodrich-Blair, H. (2003). Early colonization events in the mutualistic association between Steinernema carpocapsae nematodes and Xenorhabdus nematophila bacteria. Journal of Bacteriology, 185(10), 3147–3154. https://doi.org/10.1128/JB.185.10.3147-3154.2003[PMC][12730175
  • Masuda, H., Tan, Q., Awano, N., Wu, K. P., & Inouye, M. (2012). YeeU enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA (YeeV) toxicity in Escherichia coli. Molecular Microbiology, 84(5), 979–989. https://doi.org/10.1111/j.1365-2958.2012.08068.x
  • Miclea, P. S., Péter, M., Végh, G., Cinege, G., Kiss, E., Váró, G., Horváth, I., & Dusha, I. (2010). Atypical transcriptional regulation and role of a new toxin-antitoxin-like module and its effect on the lipid composition of Bradyrhizobium japonicum. Molecular Plant-Microbe Interactions, 23(5), 638–650. https://doi.org/10.1094/MPMI[PMC][20367472
  • Molodtsov, V., Fleming, P. R., Eyermann, C. J., Ferguson, A. D., Foulk, M. A., McKinney, D. C., Masse, C. E., Buurman, E. T., & Murakami, K. S. (2015). X-ray crystal structures of Escherichia coli RNA polymerase with switch region binding inhibitors enable rational design of squaramides with an improved fraction unbound to human plasma protein. Journal of Medicinal Chemistry, 58(7), 3156–3171. https://doi.org/10.1021/acs.jmedchem.5b00050
  • Ogura, T., & Hiraga, S. (1983). Mini-F plasmid genes that couple host cell division to plasmid proliferation. Proceedings of the National Academy of Sciences of the United States of America, 80(15), 4784–4788. http://www.ncbi.nlm.nih.gov/pubmed/6308648
  • Pandey, D. P., & Gerdes, K. (2005). Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Research, 33(3), 966–976. https://doi.org/10.1093/nar/gki201
  • Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., Van Der Spoel, D., Hess, B., & Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics (Oxford, England), 29(7), 845–854. https://doi.org/10.1093/BIOINFORMATICS/BTT055
  • Ramisetty, B. C. M. (2020). Regulation of type II toxin-antitoxin systems: The translation-responsive model. Frontiers in Microbiology, 11, 895. https://doi.org/10.3389/fmicb.2020.00895
  • Robert, X., & Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research, 42(Web Server issue), W320–W324. https://doi.org/10.1093/nar/gku316
  • Saha, C. K., Pires, R. S., Brolin, H., Delannoy, M., & Atkinson, G. C. (2021). FlaGs and webFlaGs: discovering novel biology through the analysis of gene neighbourhood conservation. Bioinformatics (Oxford, England), 37(9), 1312–1314. https://doi.org/10.1093/BIOINFORMATICS/BTAA788
  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425. http://www.ncbi.nlm.nih.gov/pubmed/3447015[PMC][3447015
  • Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F., & Schroeder, M. (2015). PLIP: Fully automated protein–ligand interaction profiler. Nucleic Acids Research, 43(W1), W443–W447. https://doi.org/10.1093/nar/gkv315
  • Sargsyan, K., Grauffel, C., & Lim, C. (2017). How molecular size impacts RMSD applications in molecular dynamics simulations. Journal of Chemical Theory and Computation, 13(4), 1518–1524. https://doi.org/10.1021/ACS.JCTC.7B00028/SUPPL_FILE/CT7B00028_SI_001.PDF[PMC][28267328
  • Seo, S., Lee, S., Hong, Y., & Kim, Y. (2012). Phospholipase A2 inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Applied and Environmental Microbiology, 78(11), 3816–3823. https://doi.org/10.1128/AEM.00301-12
  • Sevin, E. W., & Barloy-Hubler, F. (2007). RASTA-Bacteria: A web-based tool for identifying toxin-antitoxin loci in prokaryotes. Genome Biology, 8(8), R155. https://doi.org/10.1186/gb-2007-8-8-r155[PMC][17678530
  • Shao, Y., Harrison, E. M., Bi, D., Tai, C., He, X., Ou, H.-Y., Rajakumar, K., & Deng, Z. (2011). TADB: A web-based resource for type 2 toxin–antitoxin loci in bacteria and archaea. Nucleic Acids Research, 39(Database issue), D606-11. https://doi.org/10.1093/nar/gkq908
  • Singh, G., Yadav, M., Ghosh, C., & Rathore, J. S. (2021). Bacterial toxin-antitoxin modules: classification, functions, and association with persistence. Current Research in Microbial Sciences, 2, 100047. https://doi.org/10.1016/J.CRMICR.2021.100047
  • Song, S., & Wood, T. K. (2020). Toxin/antitoxin system paradigms: toxins bound to antitoxins are not likely activated by preferential antitoxin degradation. In Advanced biosystems (Vol. 4, Issue 3, pp. 1900290). Wiley-VCH Verlag. https://doi.org/10.1002/adbi.201900290
  • Stilwell, M. D., Cao, M., Goodrich-Blair, H., & Weibel, D. B. (2018). Studying the symbiotic bacterium Xenorhabdus nematophila in individual living Steinernema carpocapsae nematodes using microfluidic systems. mSphere, 3(1), e00530-17. https://doi.org/10.1128/mSphere.00530-17
  • Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & Mering, C. v (2019). STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607–613. https://doi.org/10.1093/nar/gky1131
  • The PyMOL Molecular Graphics System. (2002). Version 1.8, Schrödinger, LLC.
  • Tripathi, M. K., Ahmad, S., Tyagi, R., Dahiya, V., & Yadav, M. K. (2022). Fundamentals of molecular modeling in drug design. In Computer Aided Drug Design (CADD): From Ligand-Based Methods to Structure-Based Approaches (pp. 125-155). Elsevier. https://doi.org/10.1016/B978-0-323-90608-1.00001-0.
  • Bryson, V., & Vogel, H. J. (1965). Evolving genes and proteins. Science (New York, NY), 147(3653), 68–71. https://doi.org/10.1126/science.147.3653.68
  • Van Melderen, L., Bernard, P., & Couturier, M. (1994). Lon‐dependent proteolysis of CcdA is the key control for activation of CcdB in plasmid‐free segregant bacteria. Molecular Microbiology, 11(6), 1151–1157. https://doi.org/10.1111/j.1365-2958.1994.tb00391.x
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, A. D. (2010). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690. https://doi.org/10.1002/JCC.21367
  • Wang, X., Lord, D. M., Cheng, H.-Y., Osbourne, D. O., Hoon Hong, S., Sanchez-Torres, V., Quiroga, C., Zheng, K., Herrmann, T., Peti, W., Benedik, M. J., Page, R., & Wood, T. K. & Chem Biol Author, N. (2012). A novel type V TA system where mRNA for toxin GhoT is cleaved by antitoxin GhoS HHS public access. Nature Chemical Biology, 8(10), 855–861. https://doi.org/10.1038/nchembio.1062
  • Wen, Y., Behiels, E., & Devreese, B. (2014). Toxin-antitoxin systems: Their role in persistence, biofilm formation, and pathogenicity. Pathogens and Disease, 70(3), 240–249. https://doi.org/10.1111/2049-632X.12145
  • Wu, X., Kumar, V., Ross, Q. J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G. J., Ng, A., Liu, B., Yu, P. S., Zhou, Z. H., Steinbach, M., Hand, D. J., & Steinberg, D. (2008). Top 10 algorithms in data mining. Knowledge and Information Systems, 2007 1414(1), 1–37. 1 https://doi.org/10.1007/s10115-007-0114-2
  • Xu, J., Xia, K., Li, P., Qian, C., Li, Y., & Liang, X. (2020). Functional investigation of the chromosomal ccdAB and hipAB operon in Escherichia coli Nissle 1917. Applied Microbiology and Biotechnology, 104(15), 6731–6747. https://doi.org/10.1007/S00253-020-10733-6
  • Yadav, M., & Rathore, J. S. (2018). TAome analysis of type-II toxin-antitoxin system from Xenorhabdus nematophila. Computational Biology and Chemistry, 76, 293–301. https://doi.org/10.1016/j.compbiolchem.2018.07.010
  • Yadav, M., & Rathore, J. S. (2020). The hipBAXn operon from Xenorhabdus nematophila functions as a bonafide toxin-antitoxin module. Applied Microbiology and Biotechnology, 104(7), 3081–3095. https://doi.org/10.1007/s00253-020-10441-1
  • Yadav, M., & Rathore, J. S. (2022a). Functional and transcriptional analysis of chromosomal encoded hipBAXn2 type II toxin-antitoxin (TA) module from Xenorhabdus nematophila. Microbial Pathogenesis, 162, 105309. https://doi.org/10.1016/J.MICPATH.2021.105309
  • Yadav, M., & Rathore, J. S. (2022b). In-silico analysis of genomic distribution and functional association of hipBA toxin-antitoxin (TA) homologs in entomopathogen Xenorhabdus nematophila. Journal of Asia-Pacific Entomology, 25(3), 101949. https://doi.org/10.1016/j.aspen.2022.101949
  • Yang, J., Roy, A., & Zhang, Y. (2013). Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics, 29(20), 2588–2595. https://doi.org/10.1093/bioinformatics/btt447
  • Yang, J., & Zhang, Y. (2015). I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Research, 43(W1), W174-81. https://doi.org/10.1093/nar/gkv342
  • Zheng, W., Zhang, C., Wuyun, Q., Pearce, R., Li, Y., & Zhang, Y. (2019). LOMETS2: Improved meta-threading server for fold-recognition and structure-based function annotation for distant-homology proteins. Nucleic Acids Research, 47(W1), W429–W436. https://doi.org/10.1093/nar/gkz384

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.