378
Views
1
CrossRef citations to date
0
Altmetric
Research Article

In silico and in vitro evaluation of extract derived from Dunaliella salina, a halotolerant microalga for its antifungal and antibacterial activity

, , , , , , ORCID Icon & show all
Pages 7069-7083 | Received 14 Feb 2022, Accepted 14 Aug 2022, Published online: 26 Aug 2022

References

  • Alwathnani, H. A., & Kahkashan, P. (2013). Evaluation of antifungal potential of Dunaliella salina and Phormidium autumnale against plant pathogenic fungi. Journal of Pure and Applied Microbiology, 7(2), 1071–1077.
  • Arunkumar, M., Mahalakshmi, M., Ashokkumar, V., Aravind, M. K., Gunaseelan, S., Mohankumar, V., Ashokkumar, B., & Varalakshmi, P. (2022). Evaluation of seaweed sulfated polysaccharides as natural antagonists targeting Salmonella typhi OmpF: molecular docking and pharmacokinetic profiling. Beni-Suef University Journal of Basic and Applied Sciences, 11(1), 1–11. https://doi.org/10.1186/s43088-021-00192-x
  • Basiratnia, E., Einali, A., Azizian-Shermeh, O., Mollashahi, E., & Ghasemi, A. (2021). Biological synthesis of gold nanoparticles from suspensions of green microalga Dunaliella salina and their antibacterial potential. BioNanoScience, 11(4), 977–988. https://doi.org/10.1007/s12668-021-00897-4
  • Belghith, T., Athmouni, K., Bellassoued, K., El Feki, A., & Ayadi, H. (2016). Physiological and biochemical response of Dunaliella salina to cadmium pollution. Journal of Applied Phycology, 28(2), 991–999. https://doi.org/10.1007/s10811-015-0630-5
  • Bhagavathy, S., Sumathi, P., & Bell, I. J. S. (2011). Green algae Chlorococcum humicola–a new source of bioactive compounds with antimicrobial activity. Asian Pacific Journal of Tropical Biomedicine, 1(1), S1–S7. https://doi.org/10.1016/S2221-1691(11)60111-1
  • Cakmak, Y. S., Kaya, M., & Asan-Ozusaglam, M. (2014). Biochemical composition and bioactivity screening of various extracts from Dunaliella salina, a green microalga. EXCLI Journal, 13, 679.
  • Can, N. Ö., Acar Çevik, U., Sağlık, B. N., Levent, S., Korkut, B., Özkay, Y., Kaplancıklı, Z. A., & Koparal, A. S. (2017). Synthesis, molecular docking studies, and antifungal activity evaluation of new benzimidazole-triazoles as potential lanosterol 14α-demethylase inhibitors. Journal of Chemistry, 2017, 1–15. https://doi.org/10.1155/2017/9387102
  • Cardozo, K. H., Guaratini, T., Barros, M. P., Falcão, V. R., Tonon, A. P., Lopes, N. P., Campos, S., Torres, M. A., Souza, A. O., Colepicolo, P., & Pinto, E. (2007). Metabolites from algae with economical impact. Comparative Biochemistry and Physiology. Toxicology & Pharmacology : CBP, 146(1/2), 60–78. https://doi.org/10.1016/j.cbpc.2006.05.007
  • Ceccarelli, M., Danelon, C., Laio, A., & Parrinello, M. (2004). Microscopic mechanism of antibiotics translocation through a Porin. Biophysical Journal, 87(1), 58–64. https://doi.org/10.1529/biophysj.103.037283
  • Chen, X., Chen, J., Feng, J., Wang, Y., Li, S., Xiao, Y., Diao, Y., Zhang, L. and Chen, W. (2021). Tandem UGT71B5s catalyze lignan glycosylation in Isatis indigotica with substrates promiscuity. Frontiers in plant science, 12, 637695.
  • Corvec, S., Caroff, N., Espaze, E., Giraudeau, C., Drugeon, H., & Reynaud, A. (2003). AmpC cephalosporinase hyperproduction in Acinetobacter baumannii clinical strains. Journal of Antimicrobial Chemotherapy, 52(4), 629–635. https://doi.org/10.1093/jac/dkg407
  • Cragg, G. M., & Newman, D. J. (2013). Natural products: a continuing source of novel drug leads. Biochimica et Biophysica Acta, 1830(6), 3670–3695. https://doi.org/10.1016/j.bbagen.2013.02.008
  • Danelon, C., Nestorovich, E. M., Winterhalter, M., Ceccarelli, M., & Bezrukov, S. M. (2006). Interaction of zwitterionic penicillins with the OmpF channel facilitates their translocation. Biophysical Journal, 90(5), 1617–1627. https://doi.org/10.1529/biophysj.105.075192
  • Darvish, M., Jalili, H., Ranaei-Siadat, S. O., & Sedighi, M. (2018). Potential cytotoxic effects of peptide fractions from Dunaliella salina protein hydrolyzed by gastric proteases. Journal of Aquatic Food Product Technology, 27(2), 165–175. https://doi.org/10.1080/10498850.2017.1414095
  • de Oliveira Rangel-Yagui, C., Danesi, E. D. G., de Carvalho, J. C. M., & Sato, S. (2004). Chlorophyll production from Spirulina platensis: cultivation with urea addition by fed-batch process. Bioresource Technology, 92(2), 133–141. https://doi.org/10.1016/j.biortech.2003.09.002
  • Doan, N. T., Rickards, R. W., Rothschild, J. M., & Smith, G. D. (2000). Allelopathic actions of the alkaloid 12-epi-hapalindole E isonitrile and calothrixin A from cyanobacteria of the genera Fischerella and Calothrix. Journal of Applied Phycology, 12(3/5), 409–416. https://doi.org/10.1023/A:1008170007044
  • Ghasemi, Y., Moradian, A., Mohagheghzadeh, A., Shokravi, S., & Morowvat, M. H. (2007). Antifungal and antibacterial activity of the microalgae collected from paddy fields of Iran: characterization of antimicrobial activity of Chroococcus dispersus. Journal of Biological sciences, 7(6), 904–910.
  • Gill, E. E., Franco, O. L., & Hancock, R. E. (2015). Antibiotic adjuvants: diverse strategies for controlling drug‐resistant pathogens. Chemical Biology & Drug Design, 85(1), 56–78. https://doi.org/10.1111/cbdd.12478
  • Herrero, M., Ibáñez, E., Cifuentes, A., Reglero, G., & Santoyo, S. (2006). Dunaliella salina microalga pressurized liquid extracts as potential antimicrobials. Journal of Food Protection, 69(10), 2471–2477. https://doi.org/10.4315/0362-028x-69.10.2471
  • Hospital, A., Goñi, J. R., Orozco, M., & Gelpí, J. L. (2015). Molecular dynamics simulations: advances and applications. Advances and Applications in Bioinformatics and Chemistry : AABC, 8, 37–47. https://doi.org/10.2147/AABC.S70333
  • Iglesias, M. J., Soengas, R., Probert, I., Guilloud, E., Gourvil, P., Mehiri, M., López, Y., Cepas, V., Gutiérrez-Del-Río, I., Redondo-Blanco, S., Villar, C. J., Lombó, F., Soto, S., & Ortiz, F. L. (2019). NMR characterization and evaluation of antibacterial and antiobiofilm activity of organic extracts from stationary phase batch cultures of five marine microalgae (Dunaliella sp., D. salina, Chaetoceroscalcitrans, C. gracilis and Tisochrysis lutea). Phytochemistry, 164, 192–205. https://doi.org/10.1016/j.phytochem.2019.05.001
  • Jafari, S., Mobasher, M. A., Najafipour, S., Ghasemi, Y., Mohkam, M., Ebrahimi, M. A., & Mobasher, N. (2018). Antibacterial potential of Chlorella vulgaris and Dunaliella salina extracts against Streptococcus mutans. Jundishapur Journal of Natural Pharmaceutical Products, 13(2), 1-7. https://doi.org/10.5812/jjnpp.13226
  • Johnson, M. K., Johnson, E. J., MacElroy, R. D., Speer, H. L., & Bruff, B. S. (1968). Effects of salts on the halophilic alga Dunaliella viridis. Journal of Bacteriology, 95(4), 1461–1468. https://doi.org/10.1128/jb.95.4.1461-1468.1968
  • Justo, G. Z., Silva, M. R., & Queiroz, M. L. (2001). Effects of the green algae Chlorella vulgaris on the response of the host hematopoietic system to intraperitoneal Ehrlich ascites tumor transplantation in mice. Immunopharmacology and Immunotoxicology, 23(1), 119–132. https://doi.org/10.1081/iph-100102573
  • Kilic, N. K., Erdem, K., & Donmez, G. (2019). Bioactive compounds produced by Dunaliella species, antimicrobial effects and optimization of the efficiency. Turkish Journal of Fisheries and Aquatic Sciences, 19(9), 923–933. https://doi.org/10.4194/1303-2712-v19_9_02
  • Kim, K., Harvell, C. D., Kim, P. D., Smith, G. W., & Merkel, S. M. (2000). Fungal disease resistance of Caribbean sea fan corals (Gorgonia spp.). Marine Biology, 136(2), 259–267. https://doi.org/10.1007/s002270050684
  • Kokou, F., Makridis, P., Kentouri, M., & Divanach, P. (2012). Antibacterial activity in microalgae cultures. Aquaculture Research, 43(10), 1520–1527. https://doi.org/10.1111/j.1365-2109.2011.02955.x
  • Krishnakumar, S., Premkumar, J., Alexis, R. R., & Ravikumar, S. (2011). Optimization of potential antibiotic production by salt-tolerant Actinomycetes Streptomyces sp.-MSU29 isolated from marine sponge. International Journal on Applied Bioengineering, 5(2), 12–18.
  • Lewis, N. G., & Davin, L. B. (1999). Lignans: biosynthesis and function. Comprehensive Natural Products Chemistry, 1, 639–712.
  • McCarthy, M. W., Kontoyiannis, D. P., Cornely, O. A., Perfect, J. R. and Walsh, T. J. (2017). Novel agents and drug targets to meet the challenges of resistant fungi. The Journal of infectious diseases, 216(suppl_3), S474-S483.
  • Mendiola, J. A., Santoyo, S., Cifuentes, A., Reglero, G., Ibanez, E., & Señoráns, F. J. (2008). Antimicrobial activity of sub-and supercritical CO2 extracts of the green alga Dunaliella salina. Journal of Food Protection, 71(10), 2138–2143. https://doi.org/10.4315/0362-028x-71.10.2138
  • Najdenski, H. M., Gigova, L. G., Iliev, I. I., Pilarski, P. S., Lukavský, J., Tsvetkova, I. V., Ninova, M. S., & Kussovski, V. K. (2013). Antibacterial and antifungal activities of selected microalgae and cyanobacteria. International Journal of Food Science & Technology, 48(7), 1533–1540. https://doi.org/10.1111/ijfs.12122
  • Nawaz, H., Shad, M. A., Rehman, N., Andaleeb, H., & Ullah, N. (2020). Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Brazilian Journal of Pharmaceutical Sciences, 56, 1-9. https://doi.org/10.1590/s2175-97902019000417129
  • Nestorovich, E. M., Danelon, C., Winterhalter, M., & Bezrukov, S. M. (2002). Designed to penetrate: Time-resolved interaction of single antibiotic molecules with bacterial pores. Proceedings of the National Academy of Sciences of the United States of America, 99(15), 9789–9794. https://doi.org/10.1073/pnas.152206799
  • Newman, D. J., & Cragg, G. M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770–803. https://doi.org/10.1021/acs.jnatprod.9b01285
  • Pakyz, A., Powell, J. P., Harpe, S. E., Johnson, C., Edmond, M. and Polk, R. E. (2008). Diversity of antimicrobial use and resistance in 42 hospitals in the United States. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 28(7),906–912.
  • Ravikumar, S., Krishnakumar, S., Inbaneson, S. J., & Gnanadesigan, M. (2010). Antagonistic activity of marine actinomycetes from Arabian Sea coast. Archives of Applied Science Research, 2(6), 273–280.
  • Reygaert, W. C. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiology, 4(3), 482–501.
  • Roemer, T., & Krysan, D. J. (2014). Antifungal drug development: challenges, unmet clinical needs, and new approaches. Cold Spring Harbor Perspectives in Medicine, 4(5), a019703–a019703. https://doi.org/10.1101/cshperspect.a019703
  • Santoyo, S., Rodríguez-Meizoso, I., Cifuentes, A., Jaime, L., Reina, G. G. B., Señorans, F. J., & Ibáñez, E. (2009). Green processes based on the extraction with pressurized fluids to obtain potent antimicrobials from Haematococcus pluvialis microalgae. LWT - Food Science and Technology, 42(7), 1213–1218. https://doi.org/10.1016/j.lwt.2009.01.012
  • Sathasivam, R., Kermanee, P., Roytrakul, S., & Juntawong, N. (2012). Isolation and molecular identification of β-carotene producing strains of Dunaliella salina and Dunaliella bardawil from salt soil samples by using species-specific primers and internal transcribed spacer (ITS) primers. African Journal of Biotechnology, 11(102), 16677–16687.
  • Segal, H., Nelson, E. C., & Elisha, B. G. (2004). Genetic environment and transcription of ampC in an Acinetobacter baumannii clinical isolate. Antimicrobial Agents and Chemotherapy, 48(2), 612–614. https://doi.org/10.1128/AAC.48.2.612-614.2004
  • Sheng, C., Miao, Z., Ji, H., Yao, J., Wang, W., Che, X., Dong, G., Lü, J., Guo, W., & Zhang, W. (2009). Three-dimensional model of lanosterol 14α-demethylase from Cryptococcus neoformans: Active-site characterization and insights into azole binding. Antimicrobial Agents and Chemotherapy, 53(8), 3487–3495. https://doi.org/10.1128/AAC.01630-08
  • Shivanika, C., Kumar, D., Ragunathan, V., Tiwari, P., & Sumitha, A. (2020). Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. Journal of Biomolecular Structure & Dynamics, 40(2), 585-611. https://doi.org/10.1080/07391102.2020.1815584.
  • Singh, A. K., Tiwari, R., Kumar, V., Singh, P., Khadim, S. R., Tiwari, A., Srivastava, V., Hasan, S. H., & Asthana, R. K. (2017). Photo-induced biosynthesis of silver nanoparticles from aqueous extract of Dunaliella salina and their anticancer potential. Journal of Photochemistry and Photobiology. B, Biology, 166, 202–211. https://doi.org/10.1016/j.jphotobiol.2016.11.020
  • Singh, A. K., Tiwari, R., Singh, V. K., Singh, P., Khadim, S. R., Singh, U., Srivastava, V., Hasan, S. H., & Asthana, R. K. (2019). Green synthesis of gold nanoparticles from Dunaliella salina, its characterization and in vitro anticancer activity on breast cancer cell line. Journal of Drug Delivery Science and Technology, 51, 164–176. https://doi.org/10.1016/j.jddst.2019.02.023
  • Singh, P., Khadim, R., Singh, A. K., Singh, U., Maurya, P., Tiwari, A., & Asthana, R. K. (2019). Biochemical and physiological characterization of a halotolerant Dunaliella salina isolated from hypersaline Sambhar Lake, India. Journal of Phycology, 55(1), 60–73. https://doi.org/10.1111/jpy.12777
  • Singh, U., Singh, P., Singh, A. K., Kumar, D., Tilak, R., Shrivastava, S. K., & Asthana, R. K. (2021). Identification of antifungal and antibacterial biomolecules from a cyanobacterium, Arthrospira platensis. Algal Research, 54, 102215. https://doi.org/10.1016/j.algal.2021.102215
  • Soletto, D., Binaghi, L., Lodi, A., Carvalho, J. C. M., & Converti, A. (2005). Batch and fed-batch cultivations of Spirulina platensis using ammonium sulphate and urea as nitrogen sources. Aquaculture, 243(1–4), 217–224. https://doi.org/10.1016/j.aquaculture.2004.10.005
  • Sousa, C. F., Coimbra, J. T. S., Gomes, I., Franco, R., Fernandes, P. A., & Gameiro, P. (2017). The binding of free and copper-complexed fluoroquinolones to OmpF porins: An experimental and molecular docking study. RSC Advances, 7(17), 10009–10019. https://doi.org/10.1039/C6RA26466B
  • Truong, D. H., Nguyen, D. H., Ta, N. T. A., Bui, A. V., Do, T. H., & Nguyen, H. C. (2019). Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia. Journal of Food Quality, 2019, 1–9. https://doi.org/10.1155/2019/8178294
  • Van Alstyne, K. L., Wolfe, G. V., Freidenburg, T. L., Neill, A., & Hicken, C. (2001). Activated defense systems in marine macroalgae: Evidence for an ecological role for DMSP cleavage. Marine Ecology Progress Series, 213, 53–65. https://doi.org/10.3354/meps213053
  • Walker, S. S., & Black, T. A. (2021). Are outer-membrane targets the solution for MDR Gram-negative bacteria? Drug Discovery Today, 26(9), 2152–2158. https://doi.org/10.1016/j.drudis.2021.03.027
  • Wan Afifudeen, C. L., Teh, K. Y., & Cha, T. S. (2021). Bioprospecting of microalgae metabolites against cytokine storm syndrome during COVID-19. Molecular Biology Reports, 49(2), 1475–1416. https://doi.org/10.1007/s11033-021-06903-y
  • Wang, Y., Wang, J., Wang, R., & Cai, Y. (2020). Resistance to ceftazidime–avibactam and underlying mechanisms. Journal of Global Antimicrobial Resistance, 22, 18–27. https://doi.org/10.1016/j.jgar.2019.12.009
  • Watson, S. B., & Cruz-Rivera, E. (2003). Algal chemical ecology: an introduction to the special issue. Phycologia, 42(4), 319–323. https://doi.org/10.2216/i0031-8884-42-4-319.1
  • Weirich, J., Bräutigam, C., Mühlenkamp, M., Franz-Wachtel, M., Macek, B., Meuskens, I., Skurnik, M., Leskinen, K., Bohn, E., Autenrieth, I., & Schütz, M. (2017). Identifying components required for OMP biogenesis as novel targets for anti-infective drugs. Virulence, 8(7), 1170–1188. https://doi.org/10.1080/21505594.2016.1278333
  • WHO news release| GENEVA (2017). WHO publishes list of bacteria for which new antibiotics are urgently needed.
  • Yoon, B. K., Jackman, J. A., Valle-González, E. R., & Cho, N. J. (2018). Antibacterial free fatty acids and monoglycerides: Biological activities, experimental testing, and therapeutic applications. International Journal of Molecular Sciences, 19(4), 1114. https://doi.org/10.3390/ijms19041114
  • Zhang, Q., Li, D., Wei, P., Zhang, J., Wan, J., Ren, Y., Chen, Z., Liu, D., Yu, Z., & Feng, L. (2010). Structure-based rational screening of novel hit compounds with structural diversity for cytochrome P450 sterol 14α-demethylase from Penicillium digitatum. Journal of Chemical Information and Modeling, 50(2), 317–325. https://doi.org/10.1021/ci900425t
  • Zoete, V., Grosdidier, A., & Michielin, O. (2009). Docking, virtual high throughput screening and in silico fragment‐based drug design. Journal of Cellular and Molecular Medicine, 13(2), 238–248. https://doi.org/10.1111/j.1582-4934.2008.00665.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.