396
Views
2
CrossRef citations to date
0
Altmetric
Research Article

In silico identification of potential drug-like molecules against G glycoprotein of Nipah virus by molecular docking, DFT studies, and molecular dynamic simulation

, , , , , , , & show all
Pages 7104-7118 | Received 20 May 2022, Accepted 16 Aug 2022, Published online: 27 Aug 2022

References

  • Shariff, M. (2019). Nipah virus infection: A review. Epidemiology and Infection, 147, e95. https://doi.org/10.1017/S0950268819000086.
  • Ali, M. H., Anwar, S., Roy, P. K., & Ashrafuzzaman, M. (2018). Virtual screening for identification of small lead compound inhibitors of Nipah virus attachment glycoprotein. Journal of Pharmacogenomics Pharmacoproteomics, 9, 2153–0645. https://doi.org/10.4172/2153-0645.1000180
  • Benet, L. Z., Hosey, C. M., Ursu, O., & Oprea, T. I. (2016). BDDCS, the rule of 5 and drugability. Advanced Drug Delivery Reviews, 101, 89–98. https://doi.org/10.1016/j.addr.2016.05.007.BDDCS.
  • Bitew, M., Desalegn, T., Demissie, T. B., Belayneh, A., Endale, M., & Eswaramoorthy, R. (2021). Pharmacokinetics and drug-likeness of antidiabetic flavonoids: Molecular docking and DFT study. PloS One, 16(12), e0260853. https://doi.org/10.1371/journal.pone.0260853.
  • Bossart, K. N., Tachedjian, M., McEachern, J. A., Crameri, G., Zhu, Z., Dimitrov, D. S., Broder, C. C., & Wang, L.-F. (2008). Functional studies of host-specific ephrin-B ligands as Henipavirus receptors. Virology, 372(2), 357–371. https://doi.org/10.1016/j.virol.2007.11.011
  • Bowie, J. U., Lüthy, R., & Eisenberg, D. (1991). A method to identify protein sequences that fold into a known three-dimensional structure. Science (New York, N.Y.), 253(5016), 164–170. https://doi.org/10.1126/science.1853201.
  • Bredas, J.-L. (2014). Mind the gap. Mater. Horizons, 1(1), 17–19. https://doi.org/10.1039/C3MH00098B
  • Brooks, B. R., Brooks, C. L., Mackerell, A. D., Nilsson, L., Petrella, R. J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A. R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., … Karplus, M. (2009). CHARMM: The biomolecular simulation program. Journal of Computational Chemistry, 30(10), 1545–1614. https://doi.org/10.1002/jcc.21287.
  • Bruhn, J. F., Barnett, K. C., Bibby, J., Thomas, J. M. H., Keegan, R. M., Rigden, D. J., Bornholdt, Z. A., & Saphire, E. O. (2014). Crystal structure of the Nipah virus phosphoprotein tetramerization domain. Journal of Virology, 88(1), 758–762. https://doi.org/10.1128/JVI.02294-13.
  • Chua, K. B., Bellini, W. J., Rota, P. A., Harcourt, B. H., Tamin, A., Lam, S. K., Ksiazek, T. G., Rollin, P. E., Zaki, S. R., Shieh, W., Goldsmith, C. S., Gubler, D. J., Roehrig, J. T., Eaton, B., Gould, A. R., Olson, J., Field, H., Daniels, P., Ling, A. E., … Mahy, B. W. (2000). Nipah virus: A recently emergent deadly paramyxovirus. Science (New York, N.Y.), 288(5470), 1432–1435. https://doi.org/10.1126/science.288.5470.1432.
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science: A Publication of the Protein Society, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916.
  • Dassault Systèmes BIOVIA. (2021). Biovia Discovery Studio Visualizer, v21.1.0.20298. Dassault Systèmes.
  • Devnath, P., & Masud, H. M. A. A. (2021). Nipah virus: A potential pandemic agent in the context of the current severe acute respiratory syndrome coronavirus 2 pandemic. New Microbes and New Infections, 41, 100873. https://doi.org/10.1016/j.nmni.2021.100873.
  • Erbar, S., & Maisner, A. (2010). Nipah virus infection and glycoprotein targeting in endothelial cells. Virology Journal, 7, 1–10. https://doi.org/10.1186/1743-422X-7-305.
  • Bruhn, J. F., Hotard, A. L., Spiropoulou, C. F., Lo, M. K., & Ollmann Saphire, E. (2019). A conserved basic patch and central kink in the Nipah virus phosphoprotein multimerization domain are essential for polymerase function. Structure (London, England: 1993), 27(4), 660–668. https://doi.org/10.1016/j.str.2019.01.012.
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., & Cheeseman, J. R. (2009). Gaussian 09, Revision A.02. Gaussian, Inc.
  • Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M., & Appel, R. D. (2005). Protein identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook (pp. 571–607). Humana Press. https://doi.org/10.1385/1-59259-890-0:571
  • Georges-Courbot, M. C., Contamin, H., Faure, C., Loth, P., Baize, S., Leyssen, P., Neyts, J., & Deubel, V. (2006). Poly (I)-poly (C12U) but not ribavirin prevents death in a hamster model of Nipah virus infection. Antimicrobial Agents and Chemotherapy, 50(5), 1768–1772. https://doi.org/10.1128/AAC.50.5.1768-1772.2006.
  • Guruprasad, K., Reddy, B. V. B., & Pandit, M. W. (1990). Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Engineering, 4(2), 155–161. https://doi.org/10.1093/protein/4.2.155.
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Jensen, M. R., Yabukarski, F., Communie, G., Condamine, E., Mas, C., Volchkova, V., Tarbouriech, N., Bourhis, J.-M., Volchkov, V., Blackledge, M., & Jamin, M. (2020). Structural description of the Nipah virus phosphoprotein and its interaction with STAT1. Biophysical Journal, 118(10), 2470–2488. https://doi.org/10.1016/j.bpj.2020.04.010.
  • Jo, S., Cheng, X., Islam, S. M., Huang, L., Rui, H., Zhu, A., Lee, H. S., Qi, Y., Han, W., Vanommeslaeghe, K., MacKerell, A. D., Roux, B., & Im, W. (2014). CHARMM-GUI PDB manipulator for advanced modeling and simulations of proteins containing nonstandard residues. Advances in Protein Chemistry and Structural Biology, 96, 235–265. https://doi.org/10.1016/bs.apcsb.2014.06.002.
  • Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM‐GUI: A web‐based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859–1865. https://doi.org/10.1002/jcc.20945.
  • Kim, S., Lee, J., Jo, S., Brooks, C. L., Lee, H. S., & Im, W. (2017). CHARMM‐GUI ligand reader and modeler for CHARMM force field generation of small molecules. Journal of Computational Chemistry, 38(21), 1879–1886. https://doi.org/10.1002/jcc.24829.
  • Kulkarni, D. D., Tosh, C., V, G., & Kumar, D. S. (2013). Nipah virus infection: Current scenario. Indian Journal of Virology : An Official Organ of Indian Virological Society, 24(3), 398–408. https://doi.org/10.1007/s13337-013-0171-y.
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Lee, J., Cheng, X., Swails, J. M., Yeom, M. S., Eastman, P. K., Lemkul, J. A., Wei, S., Buckner, J., Jeong, J. C., Qi, Y., Jo, S., Pande, V. S., Case, D. A., Brooks, C. L., MacKerell, A. D., Klauda, J. B., & Im, W. (2016). CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. Journal of Chemical Theory and Computation, 12(1), 405–413. https://doi.org/10.1021/acs.jctc.5b00935.
  • Lüthy, R., Bowie, J. U., & Eisenberg, D. (1992). Assessment of protein models with three-dimensional profiles. Nature, 356(6364), 83–85. https://doi.org/10.1038/356083a0.
  • Nielsen, A. B., & Holder, A. J. (2009). Gauss View 5.0, User’s Reference. GAUSSIAN Inc.
  • Osman, A. M., & EL-Din, H. M. A. (2021). In-silico screening of potential anti-glycoprotein of Nipah virus [Paper presentation]. 2021 Tenth International Conference on Intelligent and Computer Information. Systems, 473–479. https://doi.org/10.1109/ICICIS52592.2021.9694143
  • Pathania, S., Randhawa, V., & Kumar, M. (2020). Identifying potential entry inhibitors for emerging Nipah virus by molecular docking and chemical-protein interaction network. Journal of Biomolecular Structure & Dynamics, 38(17), 5108–5125. https://doi.org/10.1080/07391102.2019.1696705.
  • Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L., & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781–1802. https://doi.org/10.1002/jcc.20289.
  • Pollastri, M. P. (2010). Overview on the rule of five. Current Protocols Pharmacology, 49, 9–12. https://doi.org/10.1002/0471141755.ph0912s49
  • Predicted results were generated using ADMET Predictor® vX.3 (Simulations Plus, Inc., USA). (2021).
  • Raja, T., Ravikumar, P., Srinivasan, M. R., Vijayarani, K., & Kumanan, K. (2020). Identification of potential novel inhibitors for Nipah virus—An in silico approach. International Journal of Current Microbiology and Applied Sciences, 9(9), 3377–3390. https://doi.org/10.20546/ijcmas.2020.909.420
  • Ranadheera, C., Proulx, R., Chaiyakul, M., Jones, S., Grolla, A., & Leung, A. (2018). The interaction between the Nipah virus nucleocapsid protein and phosphoprotein regulates virus replication. Science Reports, 8, 1–4. https://doi.org/10.1038/s41598-018-34484-7
  • Randhawa, V., Pathania, S., & Kumar, M. (2022). Computational identification of potential multitarget inhibitors of Nipah virus by molecular docking and molecular dynamics. Microorganisms, 10(6), 1181. https://doi.org/10.3390/microorganisms10061181
  • Rauhut, G., & Pulay, P. (1995). Transferable scaling factors for density functional derived vibrational force fields. The Journal of Physical Chemistry, 99(10), 3093–3100. https://doi.org/10.1021/j100010a019
  • Ropón-Palacios, G., Chenet-Zuta, M. E., Olivos-Ramirez, G. E., Otazu, K., Acurio-Saavedra, J., & Camps, I. (2020). Potential novel inhibitors against emerging zoonotic pathogen Nipah virus: A virtual screening and molecular dynamics approach. Journal of Biomolecular Structure & Dynamics, 38(11), 3225–3234. https://doi.org/10.1080/07391102.2019.1655480.
  • Sen, N., Kanitkar, T. R., Roy, A. A., Soni, N., Amritkar, K., Supekar, S., Nair, S., Singh, G., & Madhusudhan, M. S. (2019). Predicting and designing therapeutics against the Nipah virus. PLoS Neglected Tropical Diseases, 13(12), e0007419. https://doi.org/10.1371/journal.pntd.0007419.
  • Sharma, V., Kaushik, S., Kumar, R., Yadav, J. P., & Kaushik, S. (2019). Emerging trends of Nipah virus: A review. Reviews in Medical Virology, 29(1), e2010. 2019, https://doi.org/10.1002/rmv.2010
  • Singh, R. K., Dhama, K., Chakraborty, S., Tiwari, R., Natesan, S., Khandia, R., Munjal, A., Vora, K. S., Latheef, S. K., Karthik, K., Singh Malik, Y., Singh, R., Chaicumpa, W., & Mourya, D. T. (2019). Nipah virus: Epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies–a comprehensive review. The Veterinary Quarterly, 39(1), 26–55. https://doi.org/10.1080/01652176.2019.1580827.
  • Snell, N. J. C. (2004). Ribavirin therapy for Nipah virus infection. Journal of Virology, 78(18), 10211–10211. https://doi.org/10.1128/JVI.78.18.10211.2004.
  • Stone, J. A., Vemulapati, B. M., Bradel-Tretheway, B., & Aguilar, H. C. (2016). Multiple strategies reveal a bidentate interaction between the Nipah virus attachment and fusion glycoproteins. Journal of Virology, 90(23), 10762–10773. https://doi.org/10.1128/JVI.01469-16.
  • The PyMOL Molecular Graphics System. (2021). Version 2.5.0 Schrödinger, LLC.
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334.
  • Watkinson, R. E., & Lee, B. (2016). Nipah virus matrix protein: Expert hacker of cellular machines. FEBS Letters, 590(15), 2494–2511. https://doi.org/10.1002/1873-3468.12272.
  • WHO. (2018). Nipah virus. World Health Organ.
  • WHO. (2021). Nipah virus disease - India. World Health Organ.
  • Wong, K. T., Grosjean, I., Brisson, C., Blanquier, B., Fevre-Montange, M., Bernard, A., Loth, P., Georges-Courbot, M.-C., Chevallier, M., Akaoka, H., Marianneau, P., Lam, S. K., Wild, T. F., & Deubel, V. (2003). A golden hamster model for human acute Nipah virus infection. The American Journal of Pathology, 163(5), 2127–2137. https://doi.org/10.1016/S0002-9440(10)63569-9
  • Xu, K., Rajashankar, K. R., Chan, Y.-P., Himanen, J. P., Broder, C. C., & Nikolov, D. B. (2008). Host cell recognition by the henipaviruses: Crystal structures of the Nipah G attachment glycoprotein and its complex with ephrin-B3. Proceedings of the National Academy of Sciences of the United States of America, 105(29), 9953–9958. https://doi.org/10.1073/pnas.0804797105.
  • Yabukarski, F., Lawrence, P., Tarbouriech, N., Bourhis, J.-M., Delaforge, E., Jensen, M. R., Ruigrok, R. W. H., Blackledge, M., Volchkov, V., & Jamin, M. (2014). Structure of Nipah virus unassembled nucleoprotein in complex with its viral chaperone. Nature Structural & Molecular Biology, 21(9), 754–759. https://doi.org/10.1038/nsmb.2868.
  • Yoneda, M., Guillaume, V., Sato, H., Fujita, K., Georges-Courbot, M.-C., Ikeda, F., Omi, M., Muto-Terao, Y., Wild, T. F., & Kai, C. (2010). The nonstructural proteins of Nipah virus play a key role in pathogenicity in experimentally infected animals. PloS One, 5(9), e12709. https://doi.org/10.1371/journal.pone.0012709.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.