154
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Significant destabilization of human telomeric G-quadruplex upon peptide binding: dramatic effect of flanking bases

, , , , , & show all
Pages 7119-7127 | Received 03 Jul 2022, Accepted 16 Aug 2022, Published online: 29 Aug 2022

References

  • Aggarwal, M., Sommers, J. A., Shoemaker, R. H., & Brosh, R. M. (2011). Inhibition of helicase activity by a small molecule impairs Werner syndrome helicase (WRN) function in the cellular response to DNA damage or replication stress. Proceedings of the National Academy of Sciences of the United States of America, 108(4), 1525–1530. https://doi.org/10.1073/pnas.1006423108
  • Bai, L. P., Hagihara, M., Jiang, Z. H., & Nakatani, K. (2008). Ligand binding to tandem G quadruplexes from human telomeric DNA. Chembiochem: A European Journal of Chemical Biology, 9(16), 2583–2587. https://doi.org/10.1002/cbic.200800256
  • Bai, Y., & Murnane, J. P. (2003). Telomere instability in a human tumor cell line expressing a dominant-negative WRN protein. Human Genetics, 113(4), 337–347. https://doi.org/10.1007/s00439-003-0972-y
  • Bao, H. L., Liu, H. S., & Xu, Y. (2019). Hybrid-type and two-tetrad antiparallel telomere DNA G-quadruplex structures in living human cells. Nucleic Acids Research, 47(10), 4940–4947. https://doi.org/10.1093/nar/gkz276
  • Barefield, C., & Karlseder, J. (2012). The BLM helicase contributes to telomere maintenance through processing of late-replicating intermediate structures. Nucleic Acids Research, 40(15), 7358–7367. https://doi.org/10.1093/nar/gks407
  • Brázda, V., Červeň, J., Bartas, M., Mikysková, N., Coufal, J., & Pečinka, P. (2018). The amino acid composition of quadruplex binding proteins reveals a shared motif and predicts new potential quadruplex interactors. Molecules, 23(9), 2341–2356. https://doi.org/10.3390/molecules23092341
  • Brazda, V., Haronikova, L., Liao, J. C., & Fojta, M. (2014). DNA and RNA quadruplex-binding proteins. International Journal of Molecular Sciences, 15(10), 17493–17517. https://doi.org/10.3390/ijms151017493
  • Bryan, T. M. (2019). Mechanisms of DNA replication and repair: Insights from the study of G-quadruplexes. Molecules, 24(19), 3439. https://doi.org/10.3390/molecules24193439
  • Bryan, T. M. (2020). G-quadruplexes at telomeres: Friend or foe? Molecules, 25(16), 3686. https://doi.org/10.3390/molecules25163686
  • Chaires, J. B., Trent, J. O., Gray, R. D., Dean, W. L., Buscaglia, R., Thomas, S. D., & Miller, D. M. (2014). An Improved model for the hTERT promoter quadruplex. PLoS One, 9(12), e115580. https://doi.org/10.1371/journal.pone.0115580
  • Chen, M. C., Tippana, R., Demeshkina, N. A., Murat, P., Balasubramanian, S., Myong, S., & Ferré-D’Amaré, A. R. (2018). Structural basis of G-quadruplex unfolding by the DEAH/RHA helicase DHX36. Nature, 558(7710), 465–469. https://doi.org/10.1038/s41586-018-0209-9
  • Croteau, D. L., Popuri, V., Opresko, P. L., & Bohr, V. A. (2014). Human RecQ helicases in DNA repair, recombination, and replication. Annual Review of Biochemistry, 83, 519–552. https://doi.org/10.1146/annurev-biochem-060713-035428
  • del Villar‐Guerra, R., Trent, J. O., & Chaires, J. B. (2018). G‐quadruplex secondary structure obtained from circular dichroism spectroscopy. Angewandte Chemie, 130(24), 7289–7293. https://doi.org/10.1002/ange.201709184
  • Desta, I. T., Porter, K. A., Xia, B., Kozakov, D., & Vajda, S. (2020). Performance and its limits in rigid body protein-protein docking. Structure (London, England: 1993), 28(9), 1071–1081. https://doi.org/10.1016/j.str.2020.06.006.
  • Do, N. Q., Lim, K. W., Teo, M. H., Heddi, B., & Phan, A. T. (2011). Stacking of G-quadruplexes: NMR structure of a G-rich oligonucleotide with potential anti-HIV and anticancer activity. Nucleic Acids Research, 39(21), 9448–9457. https://doi.org/10.1093/nar/gkr539
  • Funke, A., Karg, B., Dickerhoff, J., Balke, D., Müller, S., & Weisz, K. (2018). Ligand- induced dimerization of a truncated parallel MYC G-Quadruplex. Chembiochem: A European Journal of Chemical Biology, 19(5), 505–512. https://doi.org/10.1002/cbic.201700593
  • Green, J. J., Ladame, S., Ying, L., Klenerman, D., & Balasubramanian, S. (2006). Investigating a quadruplex-ligand interaction by unfolding kinetics. Journal of the American Chemical Society, 128(30), 9809–9812. https://doi.org/10.1021/ja0615425
  • Haider, S. M., Neidle, S., & Parkinson, G. N. (2011). A structural analysis of G-quadruplex/ligand interactions. Biochimie, 93(8), 1239–1251. https://doi.org/10.1016/j.biochi.2011.05.012
  • Harrison, R. J., Gowan, S. M., Kelland, L. R., & Neidle, S. (1999). Human telomerase inhibition by substituted acridine derivatives. Bioorganic & Medicinal Chemistry Letters, 9(17), 2463–2468. https://doi.org/10.1016/S0960-894X(99)00394-7
  • Hu, M. H., Chen, S. B., Wang, B., Ou, T. M., Gu, L. Q., Tan, J. H., & Huang, Z. S. (2017). Specific targeting of telomeric multimeric G-quadruplexes by a new triaryl-substituted imidazole. Nucleic Acids Research, 45(4), 1606–1618. https://doi.org/10.1093/nar/gkw1195
  • Ilaria, F., Valentina, P., Sara, N. R., & Filippo, D. (2022). Multimeric G-quadruplexes: A review on their biological roles and targeting. International Journal of Biological Macromolecules, 204, 89–102. https://doi.org/10.1016/j.ijbiomac.2022.01.197
  • Kato, Y., Ohyama, T., Mita, H., & Yamamoto, Y. (2005). Dynamics and thermodynamics of dimerization of parallel G-quadruplexed DNA formed from d(TTAGn) (n = 3 − 5). Journal of the American Chemical Society, 127(28), 9980–9981. https://doi.org/10.1021/ja050191b
  • Kaushik, M., Bansal, A., Saxena, S., & Kukreti, S. (2007). Possibility of an antiparallel (tetramer) quadruplex exhibited by the double repeat of the human telomere. Biochemistry, 46(24), 7119–7131. https://doi.org/10.1021/bi0621009
  • Kosiol, N., Juranek, S., Brossart, P., Heine, A., & Paeschke, K. (2021). G-quadruplexes: A promising target for cancer therapy. Molecular Cancer, 20(1), 1–18. https://doi.org/10.1186/s12943-021-01328-4
  • Kotar, A., Kocman, V., & Plavec, J. (2020). Intercalation of a heterocyclic ligand between quartets in a G-rich tetrahelical structure. Chemistry, 26(4), 814–817. https://doi.org/10.1002/chem.201904923.
  • Kundu, N., Sharma, T., Kaur, S., Singh, M., Kumar, V., Sharma, U., Jain, A., Shankaraswamy, J., Miyoshi, D., & Saxena, S. (2022). Significant structural change in human c-Myc promoter G-quadruplex upon peptide binding in potassium. RSC Advances, 12(13), 7594–7604. https://doi.org/10.1039/D2RA00535B
  • Ladame, S., Harrison, R. J., Neidle, S., & Balasubramanian, S. (2002). Solid-phase synthesis of symmetrical 3,6-bispeptideacridone conjugates. Organic Letters, 4(15), 2509–2512. https://doi.org/10.1021/ol026130p
  • Lerner, L. K., & Sale, J. E. (2019). Replication of G quadruplex DNA. Genes, 10(2), 95. https://doi.org/10.3390/genes10020095
  • Małgowska, M., Gudanis, D., Teubert, A., Dominiak, G., & Gdaniec, Z. (2012). How to study G-quadruplex structures. Journal of Biotechnology. BioTechnologia, 4, 381–390. https://doi.org/10.5114/bta.2012.46592
  • Mendez-Bermudez, A., Hidalgo-Bravo, A., Cotton, V. E., Gravani, A., Jeyapalan, J. N., & Royle, N. J. (2012). The roles of WRN and BLM RecQ helicases in the alternative lengthening of telomeres. Nucleic Acids Research, 40(21), 10809–10820. https://doi.org/10.1093/nar/gks862
  • Mirkin, S. M. (2006). DNA structures, repeat expansions and human hereditary disorders. Current Opinion in Structural Biology, 16(3), 351–358. https://doi.org/10.1016/j.sbi.2006.05.004
  • Miyoshi, D., Karimata, H., & Sugimoto, N. (2006). Hydration regulates thermodynamics of G-quadruplex formation under molecular crowding conditions. Journal of the American Chemical Society, 128(24), 7957–7963. https://doi.org/10.1021/ja061267m
  • Monchaud, D., & Teulade-Fichou, M. P. (2008). A hitchhiker’s guide to G-quadruplex ligands. Organic & Biomolecular Chemistry, 6(4), 627–636. https://doi.org/10.1039/B714772B
  • Porter, K. A., Xia, B., Beglov, D., Bohnuud, T., Alam, N., Schueler-Furman, O., & Kozakov, D. (2017). ClusPro PeptiDock: Efficient global docking of peptide recognition motifs using FFT. Bioinformatics (Oxford, England), 33(20), 3299–3301. https://doi.org/10.1002/prot.25219
  • Read, M., Harrison, R. J., Romagnoli, B., Tanious, F. A., Gowan, S. H., Reszka, A. P., Wilson, W. D., Kelland, L. R., & Neidle, S. (2001). Structure-based design of selective and potent G quadruplex-mediated telomerase inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 98(9), 4844–4849. https://doi.org/10.1073/pnas.081560598
  • Saxena, S., Joshi, S., Shankaraswamy, J., Tyagi, S., & Kukreti, S. (2017). Magnesium and molecular crowding of the co-solutes stabilize the i‐motif structure at physiological pH. Biopolymers, 107(7), e23018. https://doi.org/10.1002/bip.23018
  • Schouten, J. A., Ladame, S., Mason, S. J., Cooper, M. A., & Balasubramanian, S. (2003). G-quadruplex-specific peptide-hemicyanine ligands by partial combinatorial selection. Journal of the American Chemical Society, 125(19), 5594–5595. https://doi.org/10.1021/ja029356w
  • Smith, J. S., Chen, Q., Yatsunyk, L. A., Nicoludis, J. M., Garcia, M. S., Kranaster, R., Balasubramanian, S., Monchaud, D., Teulade-Fichou, M.-P., Abramowitz, L., Schultz, D. C., & Johnson, F. B. (2011). Rudimentary G-quadruplex–based telomere capping in Saccharomyces cerevisiae. Nature Structural & Molecular Biology, 18(4), 478–485. https://doi.org/10.1038/nsmb.2033
  • Sugimoto, N., Nakano, S. I., Katoh, M., Matsumura, A., Nakamuta, H., Ohmichi, T., Yoneyama, M., & Sasaki, M. (1995). Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes. Biochemistry, 34(35), 11211–11216. https://doi.org/10.1021/bi00035a029
  • Sun, D., Thompson, B., Cathers, B. E., Salazar, M., Kerwin, S. M., Trent, J. O., Jenkins, T. C., Neidle, S., & Hurley, L. H. (1997). Inhibition of human telomerase by a G-quadruplex-interactive compound. Journal of Medicinal Chemistry, 40(14), 2113–2116. https://doi.org/10.1021/jm970199z
  • Tyagi, S., Saxena, S., Kundu, N., Sharma, T., Chakraborty, A., Kaur, S., Miyoshi, D., & Shankaraswamy, J. (2019). Selective recognition of human telomeric G-quadruplex with designed peptide via hydrogen bonding followed by base stacking interactions. RSC Advances, 9(69), 40255–40262. https://doi.org/10.1039/C9RA08761C
  • Vajda, S., Yueh, C., Beglov, D., Bohnuud, T., Mottarell, a S., Xia, B., Hall, D. R., & Kozakov, D. (2017). New additions to the ClusPro server motivated by CAPRI. Proteins, 85(3), 435–444. https://doi.org/10.1002/prot.25219
  • Vaughn, J. P., Creacy, S. D., Routh, E. D., Joyner-Butt, C., Jenkins, G. S., Pauli, S., Nagamine, Y., & Akman, S. A. (2005). The DEXH protein product of the DHX36 gene is the major source of tetramolecular quadruplex G4-DNA resolving activity in HeLa cell lysates. The Journal of Biological Chemistry, 280(46), 38117–38120. https://doi.org/10.1074/jbc.C500348200
  • Whitney, A. M., Ladame, S., & Balasubramanian, S. (2004). Templated ligand assembly by using G-quadruplex DNA and dynamic covalent chemistry. Angewandte Chemie, 43(9), 1143–1114. https://doi.org/10.1002/anie.200353069
  • Williams, P., Li, L., Dong, X., & Wang, Y. (2017). Identification of SLIRP as a G quadruplex-binding protein. Journal of the American Chemical Society, 139(36), 12426–12429. https://doi.org/10.1021/jacs.7b07563
  • Zhang, S., Wu, Y., & Zhang, W. (2014). G-quadruplex structures and their interaction diversity with ligands. ChemMedChem, 9(5), 899–911. https://doi.org/10.1002/cmdc.201300566

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.