201
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Bioinformatics analysis of Muscovy duck parvovirus REP and VP1 proteins

ORCID Icon, ORCID Icon & ORCID Icon
Pages 7174-7189 | Received 09 May 2022, Accepted 20 Aug 2022, Published online: 06 Sep 2022

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2(C), 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Blom, N., Gammeltoft, S., & Brunak, S. (1999). Sequence- and structure-based prediction of eukaryotic protein phosphorylation sites. Journal of Molecular Biology, 294(5), 1351–1362. https://doi.org/10.1006/jmbi.1999.3310
  • Bonetta, R., Ebejer, J.-P., Seychell, B., Vella, M., Hunter, T., & Hunter, G. J. (2016). Role of protein structure in drug discovery. Xjenza Online, 4, 126–130.
  • Brooks, B. R., Brooks, C. L., Mackerell, A. D., Nilsson, L., Petrella, R. J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A. R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., … Karplus, M. (2009). CHARMM: The biomolecular simulation program[J]. Journal of Computational Chemistry, 30(10), 1545–1614. https://doi.org/10.1002/jcc.21287
  • Bui, H. H., Sidney, J., Li, W., Fusseder, N., & Sette, A. (2007). Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines. BMC Bioinformatics, 8(1), 361. PMID: 17897458. https://doi.org/10.1186/1471-2105-8-361
  • Burton, D. R. (2002). Antibodies, viruses and vaccines[J]. Nature Reviews. Immunology, 2(9), 706–713. https://doi.org/10.1038/nri891
  • Chen, J., Liu, H., Yang, J., & Chou, K. (2007). Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino Acids, 33(3), 423–428. https://doi.org/10.1007/s00726-006-0485-9
  • Chen, Y., Afumba, R., Pang, F., Yuan, R., & Dong, H. (2021). Advances in research on genetic relationships of waterfowl parvoviruses. Journal of Veterinary Research, 65(4), 391–399. https://doi.org/10.2478/jvetres-2021-0063
  • Dimitrov, I., Bangov, I., Flower, D. R., & Doytchinova, I. (2014). AllerTOP v.2–A server for in silico prediction of allergens. Journal of Molecular Modeling, 20(6), 2278. https://doi.org/10.1007/s00894-014-2278-5. Epub 2014 May 31. PMID: 24878803.
  • Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(1), 4. PMID: 17207271; PMCID: PMC1780059. https://doi.org/10.1186/1471-2105-8-4
  • Du, Z., Su, H., Wang, W., Ye, L., Wei, H., Peng, Z., Anishchenko, I., Baker, D., & Yang, J. (2021). The trRosetta server for fast and accurate protein structure prediction. Nature Protocols, 16(12), 5634–5651. https://doi.org/10.1038/s41596-021-00628-9. Epub 2021 Nov 10. PMID: 34759384.
  • Eisenberg, D., Lüthy, R., & Bowie, J. U. (1997). VERIFY3D: assessment of protein models with three-dimensional profiles. Methods in Enzymology, 277, 396–404. https://doi.org/10.1016/s0076-6879(97)77022-8. PMID: 9379925.
  • El-Manzalawy, Y., Dobbs, D., & Honavar, V. (2008a). Predicting flexible length linear B-cell epitopes. . Computational Systems Bioinformatics Conference, 7, 121-132. PMID: 19642274.
  • El-Manzalawy, Y., Dobbs, D., & Honavar, V. (2008b). Predicting linear B-cell epitopes using string kernels. Journal of Molecular Recognition, 21(4), 243–255. https://doi.org/10.1002/jmr.893
  • Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In J. M. Walker, editor. The proteomics protocols handbook (pp. 571–607). Humana Press.
  • Geourjon, C., & Deléage, G. (1995). SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences, 11(6), 681–684. https://doi.org/10.1093/bioinformatics/11.6.681. PMID: 8808585.
  • Gupta, R., & Brunak, S. (2002). Prediction of glycosylation across the human proteome and the correlation to protein function. Pacific Symposium on Biocomputing, 7, 310–322. PMID: 11928486
  • Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., & Raghava, G. P. S, Open Source Drug Discovery Consortium,. (2013). In silico approach for predicting toxicity of peptides and proteins. PLoS One, 8(9), e73957. https://doi.org/10.1371/journal.pone.0073957.
  • Jespersen, M. C., Peters, B., Nielsen, M., & Marcatili, P. (2017). BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Research, 45(W1), W24-W29. https://doi.org/10.1093/nar/gkx352
  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2.
  • Karosiene, E., Lundegaard, C., Lund, O., & Nielsen, M. (2012). NetMHCcons: a consensus method for the major histocompatibility complex class I predictions. Immunogenetics, 64(3), 177–186. Marhttps://doi.org/10.1007/s00251-011-0579-8. Epub 2011 Oct 20. PMID: 22009319.
  • Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The ClusPro web server for protein-protein docking. Nature Protocols, 12(2), 255–278. Feb Epub 2017 Jan 12. PMID: 28079879; PMCID: PMC5540229. https://doi.org/10.1038/nprot.2016.169
  • Krogh, A., Larsson, B., von Heijne, G., & Sonnhammer, E. L. L. January (2001). Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journal of Molecular Biology, 305(3), 567–580. https://doi.org/10.1006/jmbi.2000.4315
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Le Gall-Reculé, G., & Jestin, V. (1994). Biochemical and genomic characterization of Muscovy duck parvovirus [J]. Archives of Virology, 139(1-2), 121–131. https://doi.org/10.1007/BF01309459
  • Li, K. P., Hsu, Y. C., Lin, C. A., Chang, P. C., Shien, J. H., Liu, H. Y., Yen, H., & Ou, S. C. (2021). Molecular characterization and pathogenicity of the novel recombinant muscovy duck parvovirus isolated from geese. Animals (Basel), 11(11), 3211. https://doi.org/10.3390/ani11113211
  • Mahdevar, E., Kefayat, A., Safavi, A., Behnia, A., Hejazi, S. H., Javid, A., & Ghahremani, F. (2021a). Immunoprotective effect of an in silico designed multiepitope cancer vaccine with BORIS cancer-testis antigen target in a murine mammary carcinoma model. Scientific Reports, 11(1), 23121. Nov 30https://doi.org/10.1038/s41598-021-01770-w. PMID: 34848739; PMCID: PMC8632969.
  • Mahdevar, E., Safavi, A., Abiri, A., Kefayat, A., Hejazi, S. H., & Miresmaeili, S. M. (2021b). Iranpur Mobarakeh V. Exploring the cancer-testis antigen BORIS to design a novel multi-epitope vaccine against breast cancer based on immunoinformatics approaches. Journal of Biomolecular Structure and Dynamics, 18, 1–18. https://doi.org/10.1080/07391102.2021.1883111.Epub ahead of print. PMID: 33599191.
  • Ponomarenko, J., Bui, H.-H., Li, W., Fusseder, N., Bourne, P. E., Sette, A., & Peters, B. (2008). ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics, 9, 514. https://doi.org/10.1186/1471-2105-9-514.
  • Reynisson, B., Barra, C., Kaabinejadian, S., Hildebrand, W. H., Peters, B., & Nielsen, M. (2020). Improved prediction of MHC II antigen presentation through integration and motif deconvolution of mass spectrometry MHC eluted ligand data. Journal of Proteome Research, 19(6), 2304–2315. https://doi.org/10.1021/acs.jproteome.9b00874. Epub 2020 Apr 30. PMID: 32308001.
  • Safavi, A., Kefayat, A., Abiri, A., Mahdevar, E., Behnia, A. H., & Ghahremani, F. (2019a). In silico analysis of transmembrane protein 31 (TMEM31) antigen to design novel multiepitope peptide and DNA cancer vaccines against melanoma. Molecular Immunology, 112, 93–102. https://doi.org/10.1016/j.molimm.2019.04.030. Epub 2019 May 9. PMID: 31079006.
  • Safavi, A., Kefayat, A., Mahdevar, E., Abiri, A., & Ghahremani, F. (2020). Exploring the out of sight antigens of SARS-CoV-2 to design a candidate multi-epitope vaccine by utilizing immunoinformatics approaches. Vaccine, 38(48), 7612–7628. https://doi.org/10.1016/j.vaccine.2020.10.016. Epub 2020 Oct 9. PMID: 33082015; PMCID: PMC7546226.
  • Safavi, A., Kefayat, A., Mahdevar, E., Ghahremani, F., Nezafat, N., & Modarressi, M. H. (2021). Efficacy of co-immunization with the DNA and peptide vaccines containing SYCP1 and ACRBP epitopes in a murine triple-negative breast cancer model. Human Vaccines & Immunotherapy, 17(1), 22–34. Epub 2020 Jun 4. PMID: 32497486; PMCID: PMC7872038. 10.1080/21645515.2020.1763693
  • Safavi, A., Kefayat, A., Sotoodehnejadnematalahi, F., Salehi, M., & Modarressi, M. H. (2019b). Nov Production, purification, and in vivo evaluation of a novel multiepitope peptide vaccine consisted of immunodominant epitopes of SYCP1 and ACRBP antigens as a prophylactic melanoma vaccine. International Immunopharmacology, 76, 105872. 10.1016/j.intimp.2019.105872. Epub 2019 Sep 6. PMID: 31499268.
  • Saha, S., & Raghava, G. P. S. (2006). Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins, 65(1), 40–48. PMID: 16894596. https://doi.org/10.1002/prot.21078
  • Shen, H., Huang, J., Yan, Z., Yin, L., Li, Q., Zhou, Q., & Chen, F. (2020). Isolation and characterization of a recombinant Muscovy duck parvovirus circulating in Muscovy ducks in South China. Archives of Virology, 165(12), 2931–2936. 10.1007/s00705-020-04829-7
  • Steentoft, C., Vakhrushev, S. Y., Joshi, H. J., Kong, Y., Vester-Christensen, M. B., Schjoldager, K. T., Lavrsen, K., Dabelsteen, S., Pedersen, N. B., Marcos-Silva, L., Gupta, R., Bennett, E. P., Mandel, U., Brunak, S., Wandall, H. H., Levery, S. B., & Clausen, H. (2013). May 15 Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. The EMBO Journal, 32(10), 1478–1488. 10.1038/emboj.2013.79. Epub 2013 Apr 12. PMID: 23584533; PMCID: PMC3655468.
  • Stranzl, T., Larsen, M. V., Lundegaard, C., & Nielsen, M. (2010). NetCTLpan: pan-specific MHC class I pathway epitope predictions. Immunogenetics, 62(6), 357–368. Junhttps://doi.org/10.1007/s00251-010-0441-4. Epub 2010 Apr 9. PMID: 20379710; PMCID: PMC2875469.
  • Valdivia-Olarte, H., Requena, D., Ramirez, M., Saravia, L. E., Izquierdo, R., Falconi-Agapito, F., Zavaleta, M., Best, I., Fernández-Díaz, M., & Zimic, M. (2015). Design of a predicted MHC restricted short peptide immunodiagnostic and vaccine candidate for Fowl adenovirus C in chicken infection. Bioinformation, 11(10), 460–465.
  • Wang, J., Ling, J., Wang, Z., Huang, Y., Zhu, J., & Zhu, G. (2017). Molecular characterization of a novel Muscovy duck parvovirus isolate: evidence of recombination between classical MDPV and goose parvovirus strains. BMC Veterinary Research, 13(1), 327. https://doi.org/10.1186/s12917-017-1238-6
  • Wang, J., Mi, Q., Wang, Z., Jia, J., Li, Y., & Zhu, G. (2020). Sole recombinant Muscovy duck parvovirus infection in Muscovy ducklings can form characteristic intestinal embolism. Veterinary Microbiology, 242, 108590. https://doi.org/10.1016/j.vetmic.2020.108590
  • Wang, J., Wang, Z., Jia, J., Ling, J., Mi, Q., & Zhu, G. (2019). Retrospective investigation and molecular characteristics of the recombinant Muscovy duck parvovirus circulating in Muscovy duck flocks in China. Avian Pathology, 48(4), 343–351. https://doi.org/10.1080/03079457.2019.1605145
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • Xu, D., & Zhang, Y. (2011). Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophysical Journal, 101(10), 2525–2534. https://doi.org/10.1016/j.bpj.2011.10.024
  • Yang, J., & Zhang, Y. (2015). I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Research, 43(W1), W174–W181. https://doi.org/10.1093/nar/gkv342
  • Yu, T. F., & Li, M. (2016). Identification of recombination among VP1 gene of Muscovy duck parvovirus from the Mainland of China. Veterinary Microbiology, 195, 78–80. https://doi.org/10.1016/j.vetmic.2016.09.010
  • Yu, T. F., Li, M., Yan, B., Shao, S. L., Fan, X. D., Wang, J., & Wang, D. N. (2016). Identification of antigenic domains in the non-structural protein of Muscovy duck parvovirus. Archives of Virology, 161(8), 2269–2272. https://doi.org/10.1007/s00705-016-2879-7. Epub 2016 May 6. PMID: 27154558.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.