242
Views
0
CrossRef citations to date
0
Altmetric
Research Article

How do the mutations in PfK13 protein promote anti-malarial drug resistance?

ORCID Icon & ORCID Icon
Pages 7329-7338 | Received 03 Mar 2022, Accepted 27 Aug 2022, Published online: 24 Sep 2022

References

  • Acosta-Tapia, N., Galindo, J. F., & Baldiris, R. (2020). Insights into the effect of lowe syndrome-causing mutation p. Asn591Lys of OCRL-1 through protein–protein interaction networks and molecular dynamics simulations. Journal of Chemical Information and Modeling, 60(2), 1019–1027.
  • Adams, J., Kelso, R., & Cooley, L. (2000). The kelch repeat superfamily of proteins: Propellers of cell function. Trends in Cell Biology, 10(1), 17–24.
  • Amaratunga, C., Witkowski, B., Khim, N., Menard, D., & Fairhurst, R. M. (2014). Artemisinin resistance in Plasmodium falciparum. The Lancet Infectious Diseases, 14(6), 449–450. https://doi.org/10.1016/S1473-3099(14)70777-7
  • Anderson, T. J., Nair, S., McDew-White, M., Cheeseman, I. H., Nkhoma, S., Bilgic, F., McGready, R., Ashley, E., Pyae Phyo, A., White, N. J., & Nosten, F. (2017). Population parameters underlying an ongoing soft sweep in Southeast Asian malaria parasites. Molecular Biology and Evolution, 34, 131–144.
  • Appadurai, R., & Senapati, S. (2016). Dynamical network of HIV-1 protease mutants reveals the mechanism of drug resistance and unhindered activity. Biochemistry, 55(10), 1529–1540.
  • Ariey, F., Witkowski, B., Amaratunga, C., Beghain, J., Langlois, A. C., Khim, N., Kim, S., Duru, V., Bouchier, C., Ma, L., Lim, P., Leang, R., Duong, S., Sreng, S., Suon, S., Chuor, C. M., Bout, D. M., Ménard, S., Rogers, W. O., … Ménard, D. (2014). A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature, 505, 50–55.
  • Ashley, E. A., Dhorda, M., Fairhurst, R. M., Amaratunga, C., Lim, P., Suon, S., Sreng, S., Anderson, J. M., Mao, S., Sam, B., Sopha, C., Chuor, C. M., Nguon, C., Sovannaroth, S., Pukrittayakamee, S., Jittamala, P., Chotivanich, K., Chutasmit, K., Suchatsoonthorn, C., … White, N. J. (2014). Spread of artemisinin resistance in Plasmodium falciparum malaria. The New England Journal of Medicine, 371, 411–423.
  • Bhatt, A., & Ali, M. E. (2021). Understanding the role of R266K mutation in cystathionine β-synthase (CBS) enzyme: an in silico study. Journal of Biomolecular Structure and Dynamics, 1–9. https://doi.org/10.1080/07391102.2021.1975564
  • Bingöl, E. N., Serçinoğlu, O., & Ozbek, P. (2021). Unraveling the allosteric communication mechanisms in T-cell receptor–peptide-loaded major histocompatibility complex dynamics using molecular dynamics simulations: An approach based on dynamic cross correlation maps and residue interaction energy calculations. Journal of Chemical Information and Modeling, 61(5), 2444–2453.
  • Bisht, A., Sharma, M., Sharma, S., Ali, M. E., & Panda, J. J. (2019). Carrier-free self-built aspirin nanorods as anti-aggregation agents towards alpha-crystallin-derived peptide aggregates: potential implications in non-invasive cataract therapy. Journal of Materials Chemistry B, 7(44), 6945–6954.
  • Canning, P., Cooper, C. D. O., Krojer, T., Murray, J. W., Pike, A. C. W., Chaikuad, A., Keates, T., Thangaratnarajah, C., Hojzan, V., Marsden, B. D., Gileadi, O., Knapp, S., von Delft, F., & Bullock, A. N. (2013). Structural basis for Cul3 protein assembly with the BTB-Kelch family of E3 ubiquitin ligases. Journal of Biological Chemistry, 288, 7803–7814.
  • Chen, H.-Y., & Chen, R.-H. (2016). Cullin 3 ubiquitin ligases in cancer biology: Functions and therapeutic implications. Frontiers in Oncology, 6, 113.
  • Coppée, R., Jeffares, D. C., Miteva, M. A., Sabbagh, A., & Clain, J. (2019). Comparative structural and evolutionary analyses predict functional sites in the artemisinin resistance malaria protein K13. Scientific Reports, 9, 1–17.
  • Dafalla, O. M., Alzahrani, M., Sahli, A., Al Helal, M. A., Alhazmi, M. M., Noureldin, E. M., Mohamed, W. S., Hamid, T. B., Abdelhaleem, A. A., Hobani, Y. A., Arif, O. A., Bokar, I. M., Hakami, A. M., & Eisa, Z. M. (2020). Kelch 13-propeller polymorphisms in Plasmodium falciparum from Jazan region, southwest Saudi Arabia. Malaria Journal, 19, 397.
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An Nlog (N) method for Ewald sums in large systems. Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Das, S., Saha, B., Hati, A. K., & Roy, S. (2018). Evidence of artemisinin-resistant Plasmodium falciparum malaria in Eastern India. The New England Journal of Medicine, 379(20), 1962–1964.
  • DeLano, W. L. (2002). Pymol: An open-source molecular graphics tool. CCP4 Newsletter on Protein Crystallography, 40, 82–92.
  • Dhorda, M., Amaratunga, C., & Dondorp, A. M. (2021). Artemisinin and multidrug-resistant Plasmodium falciparum – A threat for malaria control and elimination. Current Opinion in Infectious Diseases, 34(5), 432–439.
  • Dolinsky, T. J., Czodrowski, P., Li, H., Nielsen, J. E., Jensen, J. H., Klebe, G., & Baker, N. A. (2007). PDB2PQR: Expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Research, 35(Web Server issue), W522–W525.
  • Dondorp, A. M., Fairhurst, R. M., Slutsker, L., Macarthur, J. R., Breman, J. G., Guerin, P. J., Wellems, T. E., Ringwald, P., Newman, R. D., & Plowe, C. V. (2011). The threat of artemisinin-resistant malaria. The New England Journal of Medicine, 365(12), 1073–1075.
  • Dondorp, A. M., Nosten, F., Yi, P., Das, D., Phyo, A. P., Tarning, J., Lwin, K. M., Ariey, F., Hanpithakpong, W., Lee, S. J., Ringwald, P., Silamut, K., Imwong, M., Chotivanich, K., Lim, P., Herdman, T., An, S. S., Yeung, S., Singhasivanon, P.,… White, N. J. (2009). Artemisinin resistance in Plasmodium falciparum malaria. The New England Journal of Medicine, 361, 455–467.
  • Fairhurst, R. M. (2015). Understanding artemisinin-resistant malaria: What a difference a year makes. Current Opinion in Infectious Diseases, 28(5), 417–425.
  • Fairhurst, R. M., & Dondorp, A. M. (2016). Artemisinin-resistant Plasmodium falciparum malaria. Microbiology Spectrum, 4, 4–3.
  • Fairhurst, R. M., Nayyar, G. M., Breman, J. G., Hallett, R., Vennerstrom, J. L., Duong, S., Ringwald, P., Wellems, T. E., Plowe, C. V., & Dondorp, A. M. (2012). Artemisinin-resistant malaria: Research challenges, opportunities, and public health implications. The American Journal of Tropical Medicine and Hygiene, 87(2), 231–241.
  • Geyer, R., Wee, S., Anderson, S., Yates, I. I. I., J., & Wolf, D. A. (2003). BTB/POZ domain proteins are putative substrate adaptors for cullin 3 ubiquitin ligases. Molecular Cell, 12(3), 783–790.
  • Ghorbal, M., Gorman, M., Macpherson, C. R., Martins, R. M., Scherf, A., & Lopez-Rubio, J.-J. (2014). Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system. Nature Biotechnology, 32(8), 819–821.
  • Goga, N., Rzepiela, A., De Vries, A., Marrink, S., & Berendsen, H. (2012). Efficient algorithms for Langevin and DPD dynamics. Journal of Chemical Theory and Computation, 8(10), 3637–3649.
  • Grant, B. J., Rodrigues, A. P., ElSawy, K. M., McCammon, J. A., & Caves, L. S. (2006). Bio3d: An R package for the comparative analysis of protein structures. Bioinformatics, 22(21), 2695–2696. https://doi.org/10.1093/bioinformatics/btl461
  • Haldar, K., Bhattacharjee, S., & Safeukui, I. (2018). Drug resistance in Plasmodium. Nature Reviews Microbiology, 16(3), 156–170. https://doi.org/10.1038/nrmicro.2017.161
  • Hien, T. T., Thuy-Nhien, N. T., Phu, N. H., Boni, M. F., Thanh, N. V., Nha-Ca, N. T., Thai le, H., Thai, C. Q., Toi, P. V., Thuan, P. D., Long le, T., Dong le, T., Merson, L., Dolecek, C., Stepniewska, K., Ringwald, P., White, N. J., Farrar, J., & Wolbers, M. (2012). In vivo susceptibility of Plasmodium falciparum to artesunate in Binh Phuoc Province, Vietnam. Malaria Journal, 11, 355.
  • Huang, F., Takala-Harrison, S., Jacob, C. G., Liu, H., Sun, X., Yang, H., Nyunt, M. M., Adams, M., Zhou, S., Xia, Z., Ringwald, P., Bustos, M. D., Tang, L., & Plowe, C. V. (2015). A single mutation in K13 predominates in southern China and is associated with delayed clearance of Plasmodium falciparum following artemisinin treatment. Journal of Infectious Diseases, 212, 1629–1635.
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38.
  • Jiang, D. Q., Tempel, W., Loppnau, P., Gräslund, S., He, H., Ravichandran, M., Seitova, A., Arrowsmith, C. H., Edwards, A. M., Bountra, C., El Bakkouri, M. E., Senisterra, G. A., Osman, K. T., Lovato, D. V., Hui, R., Hutchinson, A., & Lin, Y. H. (2015a). Crystal structure analysis of Kelch protein from Plasmodium falciparum. https://doi.org/10.2210/pdb4YY8/pdb. https://www.rcsb.org/structure/4YY8 (accession no. 4YY8)
  • Jiang, D. Q., Tempel, W., Loppnau, P., Gräslund, S., He, H., Ravichandran, M., Seitova, A., Arrowsmith, C. H., Edwards, A. M., Bountra, C., El Bakkouri, M. E., Senisterra, G. A., Osman, K. T., Lovato, D. V., Hui, R., Hutchinson, A., & Lin, Y. H. (2015b). Crystal structure analysis of Kelch protein (with disulfide bond) from Plasmodium falciparum. https://doi.org/10.2210/pdb4ZGC/pdb. https://www.rcsb.org/structure/4ZGC (accession no. 4ZGC)
  • Kasahara, K., Fukuda, I., & Nakamura, H. (2014). A novel approach of dynamic cross correlation analysis on molecular dynamics simulations and its application to Ets1 dimer–DNA complex. PLoS One, 9(11), e112419. https://doi.org/10.1371/journal.pone.0112419
  • Keskin, O., Gursoy, A., Ma, B., & Nussinov, R. (2008). Principles of protein–protein interactions: What are the preferred ways for proteins to interact? Chemical Reviews, 108(4), 1225–1244.
  • Kour, A., Sharma, S., Dube, T., Bisht, A., Sharma, M., Mishra, J., Ali, M. E., & Panda, J. J. (2020). l-3, 4-Dihydroxyphenylalanine templated anisotropic gold nano/micro-roses as potential disrupters/inhibitors of α-crystallin protein and its gleaned model peptide aggregates. International Journal of Biological Macromolecules, 163, 2374–2391.
  • Kyaw, M. P., Nyunt, M. H., Chit, K., Aye, M. M., Aye, K. H., Aye, M. M., Lindegardh, N., Tarning, J., Imwong, M., Jacob, C. G., Rasmussen, C., Perin, J., Ringwald, P., & Nyunt, M. M. (2013). Reduced susceptibility of Plasmodium falciparum to artesunate in southern Myanmar. PLoS One, 8, e57689.
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). Simmerling, C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • MalariaGEN Plasmodium falciparum Community Project. (2016). Genomic epidemiology of artemisinin resistant malaria. eLife, 5, e08714.
  • Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. The Journal of Physical Chemistry A, 105(43), 9954–9960. https://doi.org/10.1021/jp003020w
  • Mbengue, A., Bhattacharjee, S., Pandharkar, T., Liu, H., Estiu, G., Stahelin, R. V., Rizk, S. S., Njimoh, D. L., Ryan, Y., Chotivanich, K., Nguon, C., Ghorbal, M., Lopez-Rubio, J. J., Pfrender, M., Emrich, S., Mohandas, N., Dondorp, A. M., Wiest, O., & Haldar, K. (2015). A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature, 520, 683–687.
  • Ménard, D., Khim, N., Beghain, J., Adegnika, A. A., Shafiul-Alam, M., Amodu, O., Rahim-Awab, G., Barnadas, C., Berry, A., Boum, Y., Bustos, M. D., Cao, J., Chen, J. H., Collet, L., Cui, L., Thakur, G. D., Dieye, A., Djallé, D., Dorkenoo, M. A.,… Mercereau-Puijalon, O.; KARMA Consortium. (2016). A worldwide map of Plasmodium falciparum K13-propeller polymorphisms. The New England Journal of Medicine, 374, 2453–2464.
  • Mishra, N., Prajapati, S. K., Kaitholia, K., Bharti, R. S., Srivastava, B., Phookan, S., Anvikar, A. R., Dev, V., Sonal, G. S., Dhariwal, A. C., White, N. J., & Valecha, N. (2015). Surveillance of artemisinin resistance in Plasmodium falciparum in India using the kelch13 molecular marker. Antimicrobial Agents and Chemotherapy, 59, 2548–2553.
  • Nelson, M. T., Humphrey, W., Gursoy, A., Dalke, A., Kalé, L. V., Skeel, R. D., & Schulten, K. (1996). NAMD: A parallel, object-oriented molecular dynamics program. International Journal of High Performance Computing Applications, 10, 251–268.
  • Paloque, L., Coppée, R., Stokes, B. H., Gnädig, N. F., Niaré, K., Augereau, J.-M., Fidock, D. A., & Clain, J. (2022). Benoit-Vical, F. mutation in Plasmodium falciparum BTB/POZ domain of K13 protein confers artemisinin resistance. Antimicrobial Agents and Chemotherapy, 66(1), 01320–01321.
  • Papaleo, E., Saladino, G., Lambrughi, M., Lindorff-Larsen, K., Gervasio, F. L., & Nussinov, R. (2016). The role of protein loops and linkers in conformational dynamics and allostery. Chemical Reviews, 116(11), 6391–6423.
  • Peters, W. B., Edmondson, S. P., & Shriver, J. W. (2005). Effect of mutation of the Sac7d intercalating residues on the temperature dependence of DNA distortion and binding thermodynamics. Biochemistry, 44(12), 4794–4804.
  • Phyo, A. P., Nkhoma, S., Stepniewska, K., Ashley, E. A., Nair, S., McGready, R., ler Moo, C., Al-Saai, S., Dondorp, A. M., Lwin, K. M., Singhasivanon, P., Day, N. P., White, N. J., Anderson, T. J., & Nosten, F. (2012). Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet, 379, 1960–1966.
  • Pinkas, D. M., Sanvitale, C. E., Bufton, J. C., Sorrell, F. J., Solcan, N., Chalk, R., Doutch, J., & Bullock, A. N. (2017). Structural complexity in the KCTD family of Cullin3-dependent E3 ubiquitin ligases. The Biochemical Journal, 474(22), 3747–3761.
  • Prag, S., & Adams, J. C. (2003). Molecular phylogeny of the kelch-repeat superfamily reveals an expansion of BTB/kelch proteins in animals. BMC Bioinform, 4, 1–20.
  • Rathee, J., Kanwar, R., Kumari, L., Pawar, S. V., Sharma, S., Ali, M. E., Salunke, D. B., & Mehta, S. K. (2022). Development of nanostructured lipid carriers as a promising tool for methotrexate delivery: Physicochemical and in vitro evaluation. Journal of Biomolecular Structure and Dynamics, 1–12. https://doi.org/10.1080/07391102.2022.2037465
  • Roper, C., Alifrangis, M., Ariey, F., Talisuna, A., Menard, D., Mercereau-Puijalon, O., & Ringwald, P. (2014). Molecular surveillance for artemisinin resistance in Africa. The Lancet. Infectious Diseases, 14(8), 668–670.
  • Rosenthal, P. J. (2018). Artemisinin resistance outside of Southeast Asia. The American Journal of Tropical Medicine and Hygiene, 99(6), 1357–1359. https://doi.org/10.4269/ajtmh.18-0845
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Singh, G. P., Goel, P., & Sharma, A. (2016). Structural mapping of Kelch13 mutations associated with artemisinin resistance in malaria. Journal of Structural and Functional Genomics, 17(2–3), 51–56.
  • Straimer, J., Gnädig, N. F., Witkowski, B., Amaratunga, C., Duru, V., Ramadani, A. P., Dacheux, M., Khim, N., Zhang, L., Lam, S., Gregory, P. D., Urnov, F. D., Mercereau-Puijalon, O., Benoit-Vical, F., Fairhurst, R. M., Ménard, D., & Fidock, D. A. (2015). K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science, 347, 428–431.
  • Suresh, N., & Haldar, K. (2018). Mechanisms of artemisinin resistance in Plasmodium falciparum malaria. Current Opinion in Pharmacology, 42, 46–54.
  • Talisuna, A. O., Karema, C., Ogutu, B., Juma, E., Logedi, J., Nyandigisi, A., Mulenga, M., Mbacham, W. F., Roper, C., Guerin, P. J., D'Alessandro, U., & Snow, R. W. (2012). Mitigating the threat of artemisinin resistance in Africa: improvement of drug-resistance surveillance and response systems. Lancet Infectious Diseases, 12, 888–896.
  • Taylor, S. M., Parobek, C. M., DeConti, D. K., Kayentao, K., Coulibaly, S. O., Greenwood, B. M., Tagbor, H., Williams, J., Bojang, K., Njie, F., Desai, M., Kariuki, S., Gutman, J., Mathanga, D. P., Mårtensson, A., Ngasala, B., Conrad, M. D., Rosenthal, P. J., Tshefu, A. K., … Juliano, J. J. (2015). Absence of putative artemisinin resistance mutations among Plasmodium falciparum in sub-Saharan Africa: A molecular epidemiologic study. Journal of Infectious Diseases, 211, 680–688.
  • Thriemer, K., Hong, N. V., Rosanas-Urgell, A., Phuc, B. Q., Ha do, M., Pockele, E., Guetens, P., Van, N. V., Duong, T. T., Amambua-Ngwa, A., D'Alessandro, U., & Erhart, A. (2014). Delayed parasite clearance after treatment with dihydroartemisinin-piperaquine in Plasmodium falciparum malaria patients in central Vietnam. Antimicrobial Agents and Chemotherapy, 58, 7049–7055.
  • Turschner, S., & Efferth, T. (2009). Drug resistance in Plasmodium: Natural products in the fight against malaria. Mini Reviews in Medicinal Chemistry, 9(2), 206–2124.
  • Wang, L., Jiang, C., Cai, R., Chen, X.-Z., & Peng, J.-B. (2019). Unveiling the distinct mechanisms by which disease-causing mutations in the Kelch domain of KLHL3 disrupt the interaction with the acidic motif of WNK4 through molecular dynamics simulation. Biochemistry, 58(16), 2105–2115.
  • Zhang, D. D., Lo, S.-C., Cross, J. V., Templeton, D. J., & Hannink, M. (2004). Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Molecular and Cellular Biology, 24(24), 10941–10953. https://doi.org/10.1128/MCB.24.24.10941-10953.2004
  • Zhang, H., Song, T., Yang, Y., Fu, C., & Li, J. (2018). Exploring the interaction mechanism between cyclopeptide dc3 and androgen receptor using molecular dynamics simulations and free energy calculations. Frontiers in Chemistry, 6, 119.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.