284
Views
1
CrossRef citations to date
0
Altmetric
Research Article

In silico studies disclose the underlying link between binding affinity and redox potential in laccase isoforms

, ORCID Icon, , , , , & ORCID Icon show all
Pages 7265-7276 | Received 05 Jul 2022, Accepted 24 Aug 2022, Published online: 14 Sep 2022

References

  • Acosta, A. L. (2010). First evidence of laccase activity in the Pacific oyster Crassostrea gigas. First evidence of lac Fish and ShellfishImmunology, Elsevier, 28(4), 719-726.  https://doi.org/10.1016/j.fsi.2010.01.008ï
  • Adebayo, E. A., Azeez, M. A., Alao, M. B., Oke, A. M., & Aina, D. A. (2021). Fungi as veritable tool in current advances in nanobiotechnology. Heliyon, 7(11), e08480. https://doi.org/10.1016/j.heliyon.2021.e08480
  • Alcalde, M. (2007). Laccases: Biological functions, molecular structure and industrial applications. In J. Polaina & A.P. MacCabe (Eds.), Industrial Enzymes, 461–476. Springer.
  • Bagewadi, Z. K., Mulla, S. I., & Ninnekar, H. Z. (2017). Optimization of laccase production and its application in delignification of biomass. International Journal of Recycling of Organic Waste in Agriculture, 6(4), 351–365. https://doi.org/10.1007/s40093-017-0184-4
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bertrand, T., Jolivalt, C., Briozzo, P., Caminade, E., Joly, N., Madzak, C., & Mougin, C. (2002). Crystal structure of a four-copper laccase complexed with an arylamine: Insights into substrate recognition and correlation with kinetics. Biochemistry, 41(23), 7325–7333. https://doi.org/10.1021/bi0201318
  • Boyle, N. M. O. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(33), 1–14.
  • Cañas, A. I., & Camarero, S. (2010). Laccases and their natural mediators: Biotechnological tools for sustainable eco-friendly processes. Biotechnology Advances, 28(6), 694–705. https://doi.org/10.1016/j.biotechadv.2010.05.002
  • Chen, J. E., Huang, C. C., & Ferrin, T. E. (2015). RRDistMaps: A UCSF Chimera tool for viewing and comparing protein distance maps. Bioinformatics (Oxford, England), 31(9), 1484–1486. https://doi.org/10.1093/bioinformatics/btu841
  • Christopher, L. P., Yao, B., & Ji, Y. (2014). Lignin biodegradation with laccase-mediator systems. Frontiers in Energy Research, 2, 1–13. https://doi.org/10.3389/fenrg.2014.00012
  • Coordinators, N. R. (2015). Database resources of the National center for biotechnology information. Nucleic Acids Research, 44, D7–D19. https://doi.org/10.1093/nar/gkv1290
  • Design, C. M., & J-camd, E. (1996). PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. Journal of Computer-Aided Molecular Design, l0, 255–262. https://doi.org/10.1007/BF00355047
  • Dolinsky, T. J., Nielsen, J. E., McCammon, J. A., & Baker, N. A. (2004). PDB2PQR: An automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Research, 32, W665–W667. https://doi.org/10.1093/nar/gkh381
  • Eggert, C., Temp, U., Eriksson, K. L., & Icrobiol, A. P. P. L. E. N. M. (1996). The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: Purification and characterization of the laccase. Applied and Environmental Microbiology, 62(4), 1151–1158. https://doi.org/10.1128/aem.62.4.1151-1158.1996
  • Frasconi, M., Favero, G., Boer, H., Koivula, A., & Mazzei, F. (2010). Kinetic and biochemical properties of high and low redox potential laccases from fungal and plant origin. Biochimica et Biophysica Acta, 1804(4), 899–908. https://doi.org/10.1016/j.bbapap.2009.12.018
  • Heinzkill, M., Bech, L., Halkier, T., Schneider, P., & Anke, T. (1998). Characterization of laccases and peroxidases from wood-rotting fungi (Family Coprinaceae). Applied and Environmental Microbiology, 64(5), 1601–1606. https://doi.org/10.1128/AEM.64.5.1601-1606.1998
  • Hunter, A. D. (1997). ACD/ChemSketch 1.0 (freeware); ACD/ChemSketch 2.0 and its tautomers, dictionary, and 3D plug-ins; ACD/HNMR 2.0; ACD/CNMR 2.0. Journal of Chemical Education, 74(8), 905. https://doi.org/10.1021/ed074p905
  • Ihssen, J., Reiss, R., Luchsinger, R., Thöny-Meyer, L., & Richter, M. (2015). Biochemical properties and yields of diverse bacterial laccase-like multicopper oxidases expressed in Escherichia coli. Scientific Reports, 5, 10465. https://doi.org/10.1038/srep10465
  • Ingersoll, D. W., Bronstein, P. M., & Bonventre, J. (1976). Chemical modulation of agonistic display in Betta splendens. Journal of Comparative and Physiological Psychology, 90(2), 198–202. https://doi.org/10.1037/h0077195
  • James, M. (2015). ScienceDirect GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers (pp. 1–7). https://doi.org/10.1016/j.softx.2015.06.001
  • Jędrzejczak, P., Collins, M. N., Jesionowski, T., & Klapiszewski, Ł. (2021). The role of lignin and lignin-based materials in sustainable construction – A comprehensive review. International Journal of Biological Macromolecules, 187, 624–650. https://doi.org/10.1016/j.ijbiomac.2021.07.125
  • Kallio, J. P., Auer, S., Jänis, J., Andberg, M., Kruus, K., Rouvinen, J., Koivula, A., & Hakulinen, N. (2009). Structure-function studies of a Melanocarpus albomyces laccase suggest a pathway for oxidation of phenolic compounds. Journal of Molecular Biology, 392(4), 895–909. https://doi.org/10.1016/j.jmb.2009.06.053
  • Kudanga, T., & le Roes-Hill, M. (2014). Laccase applications in biofuels production: Current status and future prospects. Applied Microbiology and Biotechnology, 98(15), 6525–6542. https://doi.org/10.1007/s00253-014-5810-8
  • Li, K., Xu, F., & Eriksson, K. L. (1999). Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound. Applied and Environmental Microbiology, 65(6), 2654–2660. https://doi.org/10.1128/AEM.65.6.2654-2660.1999
  • Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., & Shaw, D. E. (2010). Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins: Structure, Function, and Bioinformatics, 78(8), 1950–1958. https://doi.org/10.1002/prot.22711
  • Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. The Journal of Physical Chemistry A, 105(43), 9954–9960. https://doi.org/10.1021/jp003020w
  • Mate, D. M., & Alcalde, M. (2017). Laccase: a multi-purpose biocatalyst at the forefront of biotechnology. Microbial Biotechnology, 10(6), 1457–1467. https://doi.org/10.1111/1751-7915.12422
  • Mayer, A. M., & Staples, R. C. (2002). Laccase: New functions for an old enzyme. www.elsevier.com/locate/phytochem.
  • Mayolo-Deloisa, K., González-González, M., & Rito-Palomares, M. (2020). Laccases in food industry: Bioprocessing, potential industrial and biotechnological applications. Frontiers in Bioengineering and Biotechnology, 8, 222. https://doi.org/10.3389/fbioe.2020.00222
  • Miessner, M. (1991). 14. Biphenyltetrols and dibenzofuranones from oxidative coupling of resorcinols with 4-alkylpyrocatechols: New clues to the mechanism of insect cuticle sclerotization (Vol. 74).
  • Morozova, O. v., Shumakovich, G. P., Shleev, S. v., & Yaropolov, Y. I. (2007). Laccase-mediator systems and their applications: A review. Applied Biochemistry and Microbiology, 43(5), 523–535. https://doi.org/10.1134/S0003683807050055
  • Morris, G. M. (2009). Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. https://doi.org/10.1002/jcc
  • Mot, A. C., & Silaghi-Dumitrescu, R. (2012). Laccases: Complex architectures for one-electron oxidations. Biochemistry. Biokhimiia, 77(12), 1395–1407. https://doi.org/10.1134/S0006297912120085
  • Munk, L., Sitarz, A. K., Kalyani, D. C., Mikkelsen, J. D., & Meyer, A. S. (2015). Can laccases catalyze bond cleavage in lignin? Biotechnology Advances, 33(1), 13–24. https://doi.org/10.1016/j.biotechadv.2014.12.008
  • Ohlmaier-Delgadillo, F., Carvajal-Millan, E., López-Franco, Y. L., Islas-Osuna, M. A., Lara-Espinoza, C., Marquez-Escalante, J. A., Sanchez-Villegas, J. A., & Rascon-Chu, A. (2021). Ferulated pectins from sugar beet bioethanol solids: Extraction, macromolecular characteristics, and enzymatic gelling properties. Sustainability (Switzerland), 13(19), 10723. https://doi.org/10.3390/su131910723
  • Piontek, K., Antorini, M., & Choinowski, T. (2002). Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-Å resolution containing a full complement of coppers. The Journal of Biological Chemistry, 277(40), 37663–37669. https://doi.org/10.1074/jbc.M204571200
  • Polaina, J., & MacCabe, A. P. (2007). Industrial enzymes: Structure, function and applications. Springer.
  • Reiss, R., Ihssen, J., Richter, M., Eichhorn, E., Schilling, B., & Thöny-Meyer, L. (2013). Laccase versus laccase-like multi-copper oxidase: A comparative study of similar enzymes with diverse substrate spectra. PLoS One, 8(6), e65633. https://doi.org/10.1371/journal.pone.0065633
  • Robert, X., & Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research, 42(W1), W320–W324. https://doi.org/10.1093/nar/gku316
  • Rodríguez Couto, S., & Toca Herrera, J. L. (2006). Industrial and biotechnological applications of laccases: A review. Biotechnology Advances, 24(5), 500–513. https://doi.org/10.1016/j.biotechadv.2006.04.003
  • Sadhasivam, S., Savitha, S., & Swaminathan, K. (2010). Deployment of Trichoderma harzianum WL1 laccase in pulp bleaching and paper industry effluent treatment. Journal of Cleaner Production, 18(8), 799–806. https://doi.org/10.1016/j.jclepro.2009.11.014
  • Santhanam, N., Vivanco, J. M., Decker, S. R., & Reardon, K. F. (2011). Expression of industrially relevant laccases: Prokaryotic style. Trends in Biotechnology, 29(10), 480–489. https://doi.org/10.1016/j.tibtech.2011.04.005
  • Schneider, K. P., Gewessler, U., Flock, T., Heinzle, A., Schenk, V., Kaufmann, F., Sigl, E., & Guebitz, G. M. (2012). Signal enhancement in polysaccharide based sensors for infections by incorporation of chemically modified laccase. New Biotechnology, 29(4), 502–509. https://doi.org/10.1016/j.nbt.2012.03.005
  • Sharma, A., Jain, K. K., Jain, A., Kidwai, M., & Kuhad, R. C. (2018). Bifunctional in vivo role of laccase exploited in multiple biotechnological applications. Applied Microbiology and Biotechnology, 102(24), 10327–10343. https://doi.org/10.1007/s00253-018-9404-8
  • Singh, G., Bhalla, A., Kaur, P., Capalash, N., & Sharma, P. (2011). Laccase from prokaryotes: A new source for an old enzyme. Reviews in Environmental Science and Bio/Technology, 10(4), 309–326. https://doi.org/10.1007/s11157-011-9257-4
  • Soares, J. C., Moreira, P. R., Queiroga, A. C., Morgado, J., Malcata, F. X., & Pintado, M. E. (2011). Application of immobilized enzyme technologies for the textile industry: A review. Biocatalysis and Biotransformation, 29(6), 223–237. https://doi.org/10.3109/10242422.2011.635301
  • Spoel, D. V. A. N. D. E. R., Lindahl, E., Hess, B., & Groenhof, G. (2005). GROMACS: Fast, flexible, and free. https://doi.org/10.1002/jcc.20291.
  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680. https://doi.org/10.1093/nar/22.22.4673
  • Uzan, E., Nousiainen, P., Balland, V., Sipila, J., Piumi, F., Navarro, D., Asther, M., Record, E., & Lomascolo, A. (2010). High redox potential laccases from the ligninolytic fungi Pycnoporus coccineus and Pycnoporus sanguineus suitable for white biotechnology: From gene cloning to enzyme characterization and applications. Journal of Applied Microbiology, 108(6), 2199–2213. https://doi.org/10.1111/j.1365-2672.2009.04623.x
  • Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M., & Barton, G. J. (2009). Jalview Version 2 — a multiple sequence alignment editor and analysis workbench. Bioinformatics (Oxford, England), 25(9), 1189–1191. https://doi.org/10.1093/bioinformatics/btp033
  • Xu, F. (1997). Effects of redox potential and hydroxide inhibition on the pH activity profile of fungal laccases. Journal of Biological Chemistry, 272(2), 924–928. https://doi.org/10.1074/jbc.272.2.924
  • Xu, F., Shin, W., Brown, S. H., Wahleithner, J. A., Sundaram, U. M., & Solomon, E. I. (1996). A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability. Biochimica et Biophysica Acta, 1292, 303–311. https://doi.org/10.1016/0167-4838(95)00210-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.