397
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Anti-angiogenic potential of bioactive phytochemicals from Helicteres isora targeting VEGFR-2 to fight cancer through molecular docking and molecular dynamics simulation

ORCID Icon & ORCID Icon
Pages 7447-7462 | Received 24 Aug 2022, Accepted 02 Sep 2022, Published online: 13 Sep 2022

References

  • AbdelHafez, E. M. N., Diamanduros, A., Negureanu, L., Luy, Y., Bean, J. H., Zielke, K., Crowe, B., Vasilyeva, A., Clodfelter, J. E., Aly, O. M., Abuo-Rahma, G. E. A. A., Scarpinato, K. D., Salsbury, F. R., Jr., & King, S. B. (2013). Computational and synthetic studies towards improving rescinnamine as an inducer of MSH2-dependent apoptosis in cancer treatment. Molecular Cancer Biology, 1(1), 44.
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Abuzenadah, A. M., Al-Sayes, F., Mahafujul Alam, S. S., Hoque, M., Karim, S., Hussain, I. M., & Tabrez, S. (2022). Elucidating antiangiogenic potential of Rauwolfia serpentina: VEGFR-2 targeting-based molecular docking study. Evidence-Based Complementary and Alternative Medicine : ecam, 2022, 6224666. https://doi.org/10.1155/2022/6224666
  • Adelusi, T. I., Oyedele, A. Q. K., Boyenle, I. D., Ogunlana, A. T., Adeyemi, R. O., Ukachi, C. D., Idris, M. O., Olaoba, O. T., Adedotun, I. O., Kolawole, O. E., Xiaoxing, Y., & Abdul-Hammed, M. (2022). Molecular modeling in drug discovery. Informatics in Medicine Unlocked, 29(, 100880–100818. https://doi.org/10.1016/j.imu.2022.100880
  • Ahmed, S. R., Banik, A., Anni, S. M., & Chowdhury, M. M. H. (2021). Inhibitory potential of plant-derived metabolites against Zika virus: A computational-aided approach. Phytomedicine Plus, 1(4), 100129. https://doi.org/10.1016/j.phyplu.2021.100129
  • Aleykutty, N. A., & Akhila, S. (2012). Docking studies on identified constituents of Helicteres isora as antidiabetic agents. International Journal of Computer Applications, 45(20), 8–13.
  • Al‐Husein, B., Abdalla, M., Trepte, M., DeRemer, D. L., & Somanath, P. R. (2012). Antiangiogenic therapy for cancer: An update. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 32(12), 1095–1111. https://doi.org/10.1002/phar.1147
  • Ali, M. C., Nur, A. J., Khatun, M. S., Dash, R., Rahman, M. M., & Karim, M. M. (2020). Identification of potential SARS-CoV-2 main protease inhibitors from Ficus carica Latex: An in-silico approach. Journal of Advanced Biotechnology and Experimental Therapeutics, 3(4), 57–67. https://doi.org/10.5455/jabet.2020.d157
  • Babu, P. B. R., Krishnamoorthy, P., Deepthi, N., & Nissi, M. (2013). Evaluation of antioxidants and molecular docking studies of Helicteres isora fruit extracts. Journal of Drug Delivery and Therapeutics, 3(1), 33–35. https://doi.org/10.22270/jddt.v3i1.381
  • Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263. https://doi.org/10.1093/nar/gky318
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Broggini, T., Stange, L., Lucia, K. E., Vajkoczy, P., & Czabanka, M. (2022). Endothelial EphrinB2 regulates sunitinib therapy response in murine glioma. Life, 12(5), 691. https://doi.org/10.3390/life12050691
  • Chandirasegaran, G., Elanchezhiyan, C., Ghosh, K., & Sethupathy, S. (2016). Determination of antidiabetic compounds from Helicteres isora fruits by oral glucose tolerance test. Journal of Applied Pharmaceutical Science, 6(2), 172–174. https://doi.org/10.7324/JAPS.2016.60227
  • Chaudhari, B., Patel, H., Thakar, S., Ahmad, I., & Bansode, D. (2022). Optimizing the Sunitinib for cardio-toxicity and thyro-toxicity by scaffold hopping approach. In Silico Pharmacology, 10(1), 10–14. https://doi.org/10.1007/s40203-022-00125-1
  • Chawla, S., & Bansal, Y. K. (2014). Qualitative and quantitative estimation of β-sitosterol from in vitro regenerated stem bark and callus of Helicteres isora L. Asian Journal of Pharmaceutical and Clinical Research, 7(3), 178–180.
  • Cheng, F., Li, W., Liu, G., & Tang, Y. (2013). In silico ADMET prediction: Recent advances, current challenges and future trends. Current Topics in Medicinal Chemistry, 13(11), 1273–1289. https://doi.org/10.2174/15680266113139990033
  • Chitra, M. S., & Prema, S. (2009). Hepatoprotective activity of Helicteres isora Linn. against CCl4 induced hepatic damage in rats. Hamdard Medicus, 52(1), 112–115.
  • da Silva, D. D. C., Orfali, G. D. C., Santana, M. G., Palma, J. K. Y., de Oliveira Assunção, I. R., Marchesi, I. M., Grizotto, A. Y. K., Martinez, N. P., Felliti, S., Pereira, J. A., & Priolli, D. G. (2022). Antitumor effect of isoquercetin on tissue vasohibin expression and colon cancer vasculature. Oncotarget, 13, 307–318. 10.18632/oncotarget.28181
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717–42713. https://doi.org/10.1038/srep42717
  • Daina, A., Michielin, O., & Zoete, V. (2019). SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47(W1), W357–W364. https://doi.org/10.1093/nar/gkz382
  • Daina, A., & Zoete, V. (2016). A boiled‐egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem. 11(11), 1117–1121. https://doi.org/10.1002/cmdc.201600182
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. In J. M. Walker (Ed.), Chemical biology (pp. 243–250). Humana Press.
  • Dayal, R., Singh, A., Ojha, R. P., & Mishra, K. P. (2015). Possible therapeutic potential of Helicteres isora (L.) and it’s mechanism of action in diseases. Journal of Medicinal Plant Studies, 3(2), 95–100.
  • Dijk, V. E., Hoogeveen, A., & Abeln, S. (2015). The hydrophobic temperature dependence of amino acids directly calculated from protein structures. PLoS Computational Biology, 11(5), e1004277. https://doi.org/10.1371/journal.pcbi.1004277
  • Gaikwad, M. S., & Dhasade, V. V. (2019). Review on phytochemicals and pharmacological profile of Helicteres isora Linn. Journal of Current Pharma Research, 9(3), 2955–2969. https://doi.org/10.33786/JCPR.2019.v09i03.015
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Guex, N., & Peitsch, M. C. (1997). SWISS‐MODEL and the Swiss‐Pdb Viewer: An environment for comparative protein modeling. Electrophoresis, 18(15), 2714–2723. https://doi.org/10.1002/elps.1150181505
  • Halgren, T. A. (1996). Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. Journal of Computational Chemistry, 17(5–6), 490–519. https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6%3C490::AID-JCC1%3E3.0.CO;2-P
  • Hasegawa, M., Nishigaki, N., Washio, Y., Kano, K., Harris, P. A., Sato, H., Mori, I., West, R. I., Shibahara, M., Toyoda, H., Wang, L., Nolte, R. T., Veal, J. M., & Cheung, M. (2007). Discovery of novel benzimidazoles as potent inhibitors of TIE-2 and VEGFR-2 tyrosine kinase receptors. Journal of Medicinal Chemistry, 50(18), 4453–4470. https://doi.org/10.1021/jm0611051
  • Idakwo, G., Luttrell, J., Chen, M., Hong, H., Zhou, Z., Gong, P., & Zhang, C. (2018). A review on machine learning methods for in silico toxicity prediction. Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis & Ecotoxicology Reviews, 36(4), 169–191. https://doi.org/10.1080/10590501.2018.1537118
  • Jeong, S. J., Koh, W., Lee, E. O., Lee, H. J., Lee, H. J., Bae, H., Lu, J., & Kim, S. H. (2011). Antiangiogenic phytochemicals and medicinal herbs. Phytotherapy Research : PTR, 25(1), 1–10. https://doi.org/10.1002/ptr.3224
  • Kim, B. G., Choi, S. H., Letterio, J. J., Song, J. Y., & Huang, A. Y. (2022). Overexpression of VEGF in the MOPC 315 Plasmacytoma induces tumor immunity in mice. International Journal of Molecular Sciences, 23(9), 5235. https://doi.org/10.3390/ijms23095235
  • Kim, M. J., Kwon, S. B., Kim, M. S., Jin, S. W., Ryu, H. W., Oh, S. R., & Yoon, D. Y. (2016). Trifolin induces apoptosis via extrinsic and intrinsic pathways in the NCI-H460 human non-small cell lung-cancer cell line. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, 23(10), 998–1004. https://doi.org/10.1016/j.phymed.2016.05.009
  • Kumar, N., & Singh, A. K. (2014). Plant profile, phytochemistry and pharmacology of Avartani (Helicteres isora Linn.): A review. Asian Pacific Journal of Tropical Biomedicine, 4(Suppl 1), S22–S26. https://doi.org/10.12980/APJTB.4.2014C872
  • Kuntz, I. D., Blaney, J. M., Oatley, S. J., Langridge, R., & Ferrin, T. E. (1982). A geometric approach to macromolecule-ligand interactions. Journal of Molecular Biology, 161(2), 269–288. https://doi.org/10.1016/0022-2836(82)90153-X
  • Lecanu, L., Tillement, L., Rammouz, G., Paul Tillement, J., Greeson, J., & Papadopoulos, V. (2009). Caprospinol: Moving from a neuroactive steroid to a neurotropic drug. Expert Opinion on Investigational Drugs, 18(3), 265–276. https://doi.org/10.1517/13543780902762827
  • Lian, L., Li, X. L., Xu, M. D., Li, X. M., Wu, M. Y., Zhang, Y., Tao, M., Li, W., Shen, X., Zhou, C., & Jiang, M. (2019). VEGFR2 promotes tumorigenesis and metastasis in a pro-angiogenic-independent way in gastric cancer. BMC Cancer, 19(1), 1–15. https://doi.org/10.1186/s12885-019-5322-0
  • Ma, L., Zhang, J., Wang, X., Yang, J., Guo, L., Wang, X., Song, B., Dong, W., & Wang, W. (2021). Design and synthesis of diosgenin derivatives as apoptosis inducers through mitochondria-related pathways. European Journal of Medicinal Chemistry, 217, 113361. https://doi.org/10.1016/j.ejmech.2021.113361
  • Maj, E., Papiernik, D., & Wietrzyk, J. (2016). Antiangiogenic cancer treatment: The great discovery and greater complexity. International Journal of Oncology, 49(5), 1773–1784. https://doi.org/10.3892/ijo.2016.3709
  • Metibemu, D. S., Akinloye, O. A., Akamo, A. J., Okoye, J. O., Ojo, D. A., Morifi, E., & Omotuyi, I. O. (2021). VEGFR-2 kinase domain inhibition as a scaffold for anti-angiogenesis: Validation of the anti-angiogenic effects of carotenoids from Spondias mombin in DMBA model of breast carcinoma in Wistar rats. Toxicology Reports, 8, 489–498. https://doi.org/10.1016/j.toxrep.2021.02.011
  • Meza, J. C. (2010). Steepest descent. WIREs Computational Statistics, 2(6), 719–722. https://doi.org/10.1002/wics.117
  • Morris, G. M., Huey, R., & Olson, A. J. (2008). Using autodock for ligand‐receptor docking. Current Protocols in Bioinformatics, 24(1), 8–14. https://doi.org/10.1002/0471250953.bi0814s24
  • Noh, H. R., Kang, J. Y., & Kim, B. G. (2021). Biosynthesis of trifolin, a bioactive flavonoid by biotransformation. Journal of Applied Biological Chemistry, 64(3), 309–316. https://doi.org/10.3839/jabc.2021.042
  • Nouri, Z., Fakhri, S., Nouri, K., Wallace, C. E., Farzaei, M. H., & Bishayee, A. (2020). Targeting multiple signaling pathways in cancer: The rutin therapeutic approach. Cancers, 12(8), 2276. https://doi.org/10.3390/cancers12082276
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 33–14. https://doi.org/10.1186/1758-2946-3-33
  • Oostenbrink, C., Villa, A., Mark, A. E., & Van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 25(13), 1656–1676. https://doi.org/10.1002/jcc.20090
  • Ozel, I., Duerig, I., Domnich, M., Lang, S., Pylaeva, E., & Jablonska, J. (2022). The good, the bad, and the ugly: Neutrophils, angiogenesis, and cancer. Cancers, 14(3), 536. https://doi.org/10.3390/cancers14030536
  • Paciaroni, N. G., Norwood, IV, V. M., Ratnayake, R., Luesch, H., Huigens,., & I. I. I., R. W. (2020). Yohimbine as a starting point to access diverse natural product-like agents with re-programmed activities against cancer-relevant GPCR targets. Bioorganic & Medicinal Chemistry, 28(14), 115546. https://doi.org/10.1016/j.bmc.2020.115546
  • Pandey, S., Patel, D., Mishra, P., & Tiwari, R. (2021). Morphological, phytochemical and pharmacological study of Helicteres isora (Marorphali). International Journal of Research in Pharmacy and Pharmaceutical Sciences, 6(3), 13–17.
  • Paramashivam, S. K., Elayaperumal, K., Natarajan, B. B., Ramamoorthy, M. D., Balasubramanian, S., & Dhiraviam, K. N. (2015). In silico pharmacokinetic and molecular docking studies of small molecules derived from Indigofera aspalathoides Vahl targeting receptor tyrosine kinases. Bioinformation, 11(2), 73–84.
  • Patel, K., Gadewar, M., Tahilyani, V., & Patel, D. K. (2012). A review on pharmacological and analytical aspects of diosgenin: A concise report. Natural Products and Bioprospecting, 2(2), 46–52. https://doi.org/10.1007/s13659-012-0014-3
  • Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Rahman, A., Naheed, N. H., Raka, S. C., Qais, N., & Momen, A. Z. M. (2020). Ligand-based virtual screening, consensus molecular docking, multi-target analysis and comprehensive ADMET profiling and MD stimulation to find out noteworthy tyrosine kinase inhibitor with better efficacy and accuracy. Advances in Traditional Medicine, 20(4), 645–661. https://doi.org/10.1007/s13596-019-00406-9
  • Rusnati, M., Paiardi, G., Tobia, C., Urbinati, C., Lodola, A., D'Ursi, P., Corrado, M., Castelli, R., Wade, R. C., Tognolini, M., & Chiodelli, P. (2022). Cholenic acid derivative UniPR1331 impairs tumor angiogenesis via blockade of VEGF/VEGFR2 in addition to Eph/ephrin. Cancer Gene Therapy, 29(7), 908–917. https://doi.org/10.1038/s41417-021-00379-5
  • Salve, S. D., & Bhuktar, A. S. (2019). Phytochemical evaluation of Helicteres isora L. fruits. Bioinfolet, 16(1–2), 56–58.
  • Sarkar, B., Ullah, M. A., Islam, S. S., Rahman, M. H., & Araf, Y. (2021). Analysis of plant-derived phytochemicals as anti-cancer agents targeting cyclin dependent kinase-2, human topoisomerase IIa and vascular endothelial growth factor receptor-2. Journal of Receptor and Signal Transduction Research, 41(3), 217–233. https://doi.org/10.1080/10799893.2020.1805628
  • Schuler, L. D., Daura, X., & Van Gunsteren, W. F. (2001). An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. Journal of Computational Chemistry, 22(11), 1205–1218. https://doi.org/10.1002/jcc.1078
  • Schüttelkopf, A. W., & Van Aalten, D. M. F. (2004). PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica. Section D, Biological Crystallography, 60(Pt 8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Semwal, P., Painuli, S., Abu-Izneid, T., Rauf, A., Sharma, A., Daştan, S. D., Kumar, M., Alshehri, M. M., Taheri, Y., Das, R., Mitra, S., Emran, T. B., Sharifi-Rad, J., Calina, D., & Cho, W. C. (2022). Diosgenin: An updated pharmacological review and therapeutic perspectives. Oxidative Medicine and Cellular Longevity, 2022, 1035441. https://doi.org/10.1155/2022/1035441
  • Sharma, N., Sharma, M., Rahman, Q. I., Akhtar, S., & Muddassir, M. (2021). Quantitative structure activity relationship and molecular simulations for the exploration of natural potent VEGFR-2 inhibitors: An in silico anti-angiogenic study. Journal of Biomolecular Structure & Dynamics, 39(8), 2806–2823. https://doi.org/10.1080/07391102.2020.1754916
  • Shriram, V., Kumar, V., & Shitole, M. G. (2008). Indirect organogenesis and plant regeneration in Helicteres isora L., an important medicinal plant. In Vitro Cellular & Developmental Biology - Plant, 44(3), 186–193. https://doi.org/10.1007/s11627-008-9108-3
  • Song, Z., Xiang, X., Li, J., Deng, J., Fang, Z., Zhang, L., & Xiong, J. (2020). Ruscogenin induces ferroptosis in pancreatic cancer cells. Oncology Reports, 43(2), 516–524. https://doi.org/10.3892/or.2019.7425
  • Talele, T. T., Khedkar, S. A., & Rigby, A. C. (2010). Successful applications of computer aided drug discovery: Moving drugs from concept to the clinic. Current Topics in Medicinal Chemistry, 10(1), 127–141. https://doi.org/10.2174/156802610790232251
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Uddin, S. N., & Hassan, M. A. (2018). Vascular flora of Chittagong and the Chittagong hill tracts (Vol. 1, pp. 411–412). Bangladesh National Herbarium.
  • Umar, H. I., Awonyemi, I. O., Abegunde, S. M., Igbe, F. O., & Siraj, B. (2021). In silico molecular docking of bioactive molecules isolated from Raphia taedigera seed oil as potential anti-cancer agents targeting vascular endothelial growth factor receptor-2. Chemistry Africa, 4(1), 161–174. https://doi.org/10.1007/s42250-020-00206-8
  • Van Gunsteren, W. F., & Berendsen, H. J. (1988). A leap-frog algorithm for stochastic dynamics. Molecular Simulation, 1(3), 173–185. https://doi.org/10.1080/08927028808080941
  • Varma, D. A., Singh, M., Wakode, S., Dinesh, N. E., Vinaik, S., Asthana, S., & Tiwari, M. (2022). Structure-based pharmacophore mapping and virtual screening of natural products to identify polypharmacological inhibitor against c-MET/EGFR/VEGFR-2. Journal of Biomolecular Structure and Dynamics, 1–15. https://doi.org/10.1080/07391102.2022.2042388
  • Vasilyeva, A., Clodfelter, J. E., Gorczynski, M. J., Gerardi, A. R., King, S. B., Salsbury, F., & Scarpinato, K. D. (2010). Parameters of reserpine analogs that induce MSH2/MSH6-dependent cytotoxic response. Journal of Nucleic Acids, 2010, 1–13. https://doi.org/10.4061/2010/162018
  • Vasilyeva, A., Clodfelter, J. E., Rector, B., Hollis, T., Scarpinato, K. D., & Salsbury, F. R. Jr, (2009). Small molecule induction of MSH2-dependent cell death suggests a vital role of mismatch repair proteins in cell death. DNA Repair, 8(1), 103–113. https://doi.org/10.1016/j.dnarep.2008.09.008
  • Vennila, S., Bupesh, G., Saravanamurali, K., SenthilKumar, V., SenthilRaja, R., Saran, N., & Magesh, S. (2014). In silico docking study of compounds elucidated from Helicteres isora fruits with ampkinase-insulin receptor. Bioinformation, 10(5), 263–266.
  • Wang, Z., Pan, H., Sun, H., Kang, Y., Liu, H., Cao, D., & Hou, T. (2022). fastDRH: A webserver to predict and analyze protein–ligand complexes based on molecular docking and MM/PB (GB) SA computation. Briefings in Bioinformatics, https://doi.org/10.1093/bib/bbac201
  • Yadav, B. V., Bodhankar, S. L., & Dhaneshwar, S. R. (2008). Antihyperglycaemic activity of ethanol extract of Helicteres isora fruits in alloxan induced diabetic mice. Pharmacologyonline, 3, 820–830.
  • Yuan, S., Chan, H. S., & Hu, Z. (2017). Using PyMOL as a platform for computational drug design. Wiley Interdisciplinary Reviews Computational Molecular Science, 7(2), e1298. https://doi.org/10.1002/wcms.1298
  • Zoete, V., Daina, A., Bovigny, C., & Michielin, O. (2016). SwissSimilarity: A web tool for low to ultra high throughput ligand-based virtual screening. Journal of Chemical Information and Modeling, 56(8), 1399–1404. https://doi.org/10.1021/acs.jcim.6b00174

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.