279
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Antichagasic evaluation, molecular docking and ADMET properties of the chalcone (2E)-3-(2-fluorophenyl)-1-(2-hydroxy- 3,4,6-trimethoxyphenyl)prop-2-en-1-one against Trypanosoma cruzi

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 7463-7479 | Received 23 Jun 2022, Accepted 02 Sep 2022, Published online: 19 Sep 2022

References

  • Adade, C. M. (2010). Contributions of ultrastructural studies to the cell biology of trypanosmatids: Targets for anti-parasitic drugs. The Open Parasitology Journal, 4(1), 178–187. https://doi.org/10.2174/1874421401004010178
  • Allouche, A. R. (2011). Gabedit—A graphical user interface for computational chemistry softwares. Journal of Computational Chemistry, 32(1), 174–182. https://doi.org/10.1002/jcc.21600
  • Almeida-Neto, F. W. Q., da Silva, L. P., Ferreira, M. K. A., Mendes, F. R. S., de Castro, K. K., Bandeira, P. N., de Menezes, J. E. S., dos Santos, H. S., Monteiro, N. K., Marinho, E. S., & de Lima-Neto, P. (2020). Characterization of the structural, spectroscopic, nonlinear optical, electronic properties and antioxidant activity of the N-{4’-[(E)-3-(Fluorophenyl)-1-(phenyl)-prop-2-en-1-one]}-acetamide. Journal of Molecular Structure, 1220, 128765. https://doi.org/10.1016/j.molstruc.2020.128765
  • Alves, D. F., Muniz, A., S., C., Abrel, C. D. R., Freitas, N. R., Teixeira, A. B., & Ferreira, E. S. (2018). Métodos de diagnóstico para a doença de Chagas: uma atualização. Revista brasileira de Analálise Clinica, 50(4), 330–333.
  • Aponte, J. C., Verástegui, M., Málaga, E., Zimic, M., Quiliano, M., Vaisberg, A. J., Gilman, R. H., & Hammond, G. B. (2008). Synthesis, cytotoxicity, and anti-Trypanosoma cruzi activity of new chalcones. Journal of Medicinal Chemistry, 51(19), 6230–6234. https://doi.org/10.1021/jm800812k
  • Bandeira, P. N., Lemos, T. L. G., Santos, H. S., de Carvalho, M. C. S., Pinheiro, D. P., de Moraes Filho, M. O., Pessoa, C., Barros-Nepomuceno, F. W. A., Rodrigues, T. H. S., Ribeiro, P. R. V., Magalhães, H. S., & Teixeira, A. M. R. (2019). Synthesis, structural characterization, and cytotoxic evaluation of chalcone derivatives. Medicinal Chemistry Research, 28(11), 2037–2049. https://doi.org/10.1007/s00044-019-02434-1
  • Battista, T., Gianni, C., Andrea, I., & Annarita, F. (2020). Targeting trypanothione reductase, a key enzyme in the redox trypanosomatid metabolism, to develop new drugs against leishmaniasis and trypanosomiases. Molecules, 25(8), 1924–1917. https://doi.org/10.3390/molecules25081924
  • Becke, A. D. (1992). Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. The Journal of Chemical Physics, 96(3), 2155–2160. https://doi.org/10.1063/1.462066
  • Belluti, F., Elisa, U., Giacomo, V., Christian, B., Marcel, K., Reto, B., Angelo, V., Romana, F., Paul, A. M., Michels, Luise, R. K. S., Andrea, C., & Maria, L. B. (2014). Toward the development of dual-targeted glyceraldehyde-3-phosphate dehydrogenase/trypanothione reductase inhibitors against Trypanosoma Brucei and Trypanosoma Cruzi. ChemMedChem,.9(2), 371–382. https://doi.org/10.1002/CMDC.201300399.
  • Bickerton, G. R., Paolini, G. V., Besnard, J., Muresan, S., & Hopkins, A. L. (2012). Quantifying the chemical beauty of drugs. Nature Chemistry, 4(2), 90–98. https://doi.org/10.1038/nchem.1243
  • Biovia, D. S., Berman, H. M., & Westbrook, J. (2000). Dassault Systemes BIOVIA, discovery studio visualizer. Journal of Chemical Physics, 17(2), 0021–0999.
  • Böhm, H. J., David, B., Stefanie, B., Manfred, K., Bernd, K., Klaus, M., Ulrike, O., & Martin, S. (2004). Fluorine in medicinal chemistry. ChemBioChem, 5(5), 637–643. https://doi.org/10.1002/cbic.200301023
  • Borsari, C., Santarem, N., Torrado, J., Olías, A. I., Corral, M. J., Baptista, C., Gul, S., Wolf, M., Kuzikov, M., Ellinger, B., Witt, G., Gribbon, P., Reinshagen, J., Linciano, P., Tait, A., Costantino, L., Freitas-Junior, L. H., Moraes, C. B., Bruno Dos Santos, P., … Costi, M. P. (2017). Methoxylated 2'-hydroxychalcones as antiparasitic hit compounds. European Journal of Medicinal Chemistry, 126, 1129–1135. https://doi.org/10.1016/j.ejmech.2016.12.017
  • Braga, R. C., Alves, V. M., Silva, M. F. B., Muratov, E., Fourches, D., Lião, L. M., Tropsha, A., & Andrade, C. H. (2015). Pred‐hERG: A novel web‐accessible computational tool for predicting cardiac toxicity. Molecular Informatics, 34(10), 698–701. https://doi.org/10.1002/minf.201500040
  • Brak, K., Kerr, I. D., Barrett, K. T., Fuchi, N., Debnath, M., Ang, K., Engel, J. C., McKerrow, J. H., Doyle, P. S., Brinen, L. S., & Ellman, J. A. (2010). Nonpeptidic tetrafluorophenoxymethyl ketone cruzain inhibitors as promising new leads for Chagas disease chemotherapy. Journal of Medicinal Chemistry, 53(4), 1763–1773. https://doi.org/10.1021/jm901633v
  • Brenk, R., Schipani, A., James, D., Krasowski, A., Gilbert, I. H., Frearson, J., & Wyatt, P. G. (2008). Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem: Chemistry Enabling Drug Discovery, 3(3), 435–444. https://doi.org/10.1002/cmdc.200700139
  • Cheleski, J., Renato, F., Freitas, H. J. W., Josmar, R. R., Ana, P. U. A., & Carlos, A. M. (2011). Expression, purification and kinetic characterization of his-tagged glyceraldehyde-3-phosphate dehydrogenase from Trypanosoma Cruzi. Protein Expression and Purification, 76(2), 190–196. https://doi.org/10.1016/J.PEP.2010.11.013.
  • Coelho, G. S., Andrade, J. S., Xavier, V. F., Junior, P. A. S., Araujo, B. C. R., Fonseca, K. S., Caetano, M. S., Murta, S. M., Vieira, P. M., Carneiro, C. M., & Taylor, J. G. (2019). Design, synthesis, molecular modelling, and in vitro evaluation of tricyclic coumarins against Trypanosoma cruzi. Chemical Biology & Drug Design, 93(3), 337–350. ) https://doi.org/10.1111/cbdd.13420
  • Csizmadia, P. (1999). MarvinSketch and MarvinView: molecule applets for the World Wide Web [Paper presentation]. https://doi.org/10.3390/ecsoc-3-01775
  • Da Cunha Xavier, J., Ferreira, M. K., A., da Silva, A. W., de Menezes, J. E. S. A., Teixeira, A. M. R., Bandeira, P. N., Bandeira, P. N., Marinho, E. M., Marinho, E. S., Marinho, M. M., & dos Santos, H. S. (2021). Anxiolytic-like and anticonvulsant effect in Adult Zebrafish (Danio rerio) through GABAergic system and molecular docking study of chalcone derived from natural products. Biointerface Research in Applied Chemistry, 11, 14021–14031. 6, https://doi.org/10.33263/BRIAC116.1402114031
  • Daina, A., & Zoete, V. (2016). A boiled‐egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem. 11(11), 1117–1121. https://doi.org/10.1002/cmdc.201600182
  • de Brito, D. H. A., Almeida-Neto, F. W., Ribeiro, L. R., Magalhães, E. P., de Menezes, R. R. B., Sampaio, T. L., Martins, A. M., Bandeira, P. N., Marinho, M. M., Marinho, E. S., Barreto, A. C., de Lima-Neto, P., Saraiva, G. D., Canuto, K. M., dos Santos, H. S., Teixeira, A. M., & Ricardo, N. M. S. (2022). Synthesis, structural and spectroscopic analysis, and antiproliferative activity of chalcone derivate (E)-1-(4-aminophenyl)-3-(benzo [b] thiophen-2-yl) prop-2-en-1-one in Trypanosoma cruzi. Journal of Molecular Structure, 1253, 132197. https://doi.org/10.1016/j.molstruc.2021.132197
  • De Menezes, Ramon, R. P. P. B., T. L., Sampaio, D. B., Lima, P. L., Sousa, I. E. P., de Azevedo, E. P., Magalhães, L. D., Tessarolo, M., Machado Marinho, R., Pires dos Santos., & A. M. C., Martins. (2019). Antiparasitic effect of (−)-α-Bisabolol against Trypanosoma Cruzi Y Strain Forms. Diagnostic Microbiology and Infectious Disease, 95(3), 114860. https://doi.org/10.1016/j.diagmicrobio.2019.06.012.
  • de Souza, M. A., de Castro, K. K., Almeida-Neto, F. W., Bandeira, P. N., Ferreira, M. K., Marinho, M. M., da Rocha, M. N., de Brito, D. H., Mendes, F. R. d S., Rodrigues, T. H., de Oliveira, M. R., de Menezes, J. E., Barreto, A. C., Marinho, E. S., de Lima-Neto, P., dos Santos, H. S., & Teixeira, A. M. (2022). Structural and spectroscopic analysis, ADMET study, and anxiolytic-like effect in adult zebrafish (Danio rerio) of 4′-[(1E, 2E)-1-(2-(2′, 4′-dinitrophenyl) hydrazone-3-(4-methoxyphenyl) allyl) aniline. Journal of Molecular Structure, 1251, 132064. https://doi.org/10.1016/j.molstruc.2021.132064
  • DeLano, W. L. (2002). Pymol: An open-source molecular graphics tool. CCP4 Newsletter on Protein Crystallography, 40(1), 82–92.
  • Diaza, R. G., Manganelli, S., Esposito, A., Roncaglioni, A., Manganaro, A., & Benfenati, E. (2015). Comparison of in silico tools for evaluating rat oral acute toxicity. SAR and QSAR in Environmental Research, 26(1), 1–27. https://doi.org/10.1080/1062936X.2014.977819
  • Ditchfield, R. H. W. J., Hehre, W. J., & Pople, J. A. (1971). Self‐consistent molecular‐orbital methods. IX. An extended Gaussian‐type basis for molecular‐orbital studies of organic molecules. The Journal of Chemical Physics, 54(2), 724–728. https://doi.org/10.1063/1.1674902
  • El-Wakil, M. H., Khattab, S. N., El-Yazbi, A. F., El-Nikhely, N., Soffar, A., & Khalil, H. H. (2020). New chalcone-tethered 1, 3, 5-triazines potentiate the anticancer effect of cisplatin against human lung adenocarcinoma A549 cells by enhancing DNA damage and cell apoptosis. Bioorganic Chemistry, 105, 104393. https://doi.org/10.1016/j.bioorg.2020.104393
  • Espinoza-Hicks, J. C., Chacón-Vargas, K. F., Hernández-Rivera, J. L., Nogueda-Torres, B., Tamariz, J., Sánchez-Torres, L. E., & Camacho-Dávila, A. (2019). Novel prenyloxy chalcones as potential leishmanicidal and trypanocidal agents: Design, synthesis and evaluation. European Journal of Medicinal Chemistry, 167, 402–413. https://doi.org/10.1016/j.ejmech.2019.02.028
  • Filimonov, D. A., Zakharov, A. V., Lagunin, A. A., & Poroikov, V. V. (2009). QNA-based ‘Star Track’QSAR approach. SAR and QSAR in Environmental Research, 20(7–8), 679–709. https://doi.org/10.1080/10629360903438370
  • Firoozpour, L., Edraki, N., Nakhjiri, M., Emami, S., Safavi, M., Ardestani, S. K., Khoshneviszadeh, M., Shafiee, A., & Foroumadi, A. (2012). Cytotoxic activity evaluation and QSAR study of chromene-based chalcones. Archives of Pharmacal Research, 35(12), 2117–2125. https://doi.org/10.1007/s12272-012-1208-2
  • Frisch, M. J., Trucks, G. W., & Schlegel, H. B. (2009). Gaussian 09, revision A. 02. Gaussian, Inc.
  • Geysillene Castro Matos, M., da Silva, L. P., Wagner Queiroz Almeida-Neto, F., Machado Marinho, E., Róseo Paula Pessoa Bezerra de Menezes, R., Lima Sampaio, T., Nunes da Rocha, M., Rodrigues Ribeiro, L., Paula Magalhaes, E., Rodrigues Teixeira, A. M., Dos Santos, H. S., Marinho, E. S., de Lima-Neto, P., Costa Martins, A. M., Monteiro, N. K. V., & Machado Marinho, M. (2022). Quantum mechanical, molecular docking, molecular dynamics, ADMET and antiproliferative activity on Trypanosoma cruzi (Y strain) of chalcone (E)-1-(2-hydroxy-3, 4, 6-trimethoxyphenyl)-3-(3-nitrophenyl) prop-2-en-1-one derived from a natural product. Physical Chemistry Chemical Physics : PCCP, 24(8), 5052–5069. https://doi.org/10.1039/D1CP04992E
  • Gillis, E. P., Kyle, J. E., Matthew, D. H., David, J. D., & Nicholas, A. M. (2015). Applications of fluorine in medicinal chemistry. Journal of Medicinal Chemistry, 58(21), 8315–8359. https://doi.org/10.1021/acs.jmedchem.5b00258.
  • González, L. A., Upegui, Y., A., Rivas, L., Echeverri, F., Escobar, G., Robledo, S. M., & Quiñones, W. (2020). Effect of substituents in the A and B rings of chalcones on antiparasite activity. Archiv der Pharmazie, 353(12), 2000157–2000110. https://doi.org/10.1002/ardp.202000157
  • Griebler, A., Weyand Banhuk, F., Staffen, I. V., Antunes Maciel Bortoluzzi, A., Soprani Ayala, T., Ferreira Gandra, R., Schuquel, I. T. A., Alves da Silva, E. A., Marinho Jorge, T. C., & Andrade Menolli, R. (2021). Anti-Trypanosoma cruzi activity, cytotoxicity and, chemical characterization of extracts from seeds of Lonchocarpus cultratus. Journal of Infection in Developing Countries, 15(2), 270–279. https://doi.org/10.3855/jidc.12669
  • Han, J., Pei, J., & Tong, H. (2012). Data mining: Concepts and techniques. Morgan Kaufmann, 3, 1–703. https://doi.org/10.1016/C2009-0-61819-5
  • Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 17. https://doi.org/10.1186/1758-2946-4-17
  • Huey, R., Morris, G. M., Olson, A. J., & Goodsell, D. S. (2007). Software news and update a semiempirical free energy force field with charge-based desolvation. Journal of Computational Chemistry, 28(6), 1145–1152. https://doi.org/10.1002/jcc.20634
  • Hughes, T. B., Miller, G. P., & Swamidass, S. J. (2015). Modeling epoxidation of drug-like molecules with a deep machine learning network. ACS Central Science, 1(4), 168–180. https://doi.org/10.1021/acscentsci.5b00131
  • Imberty, A., Hardman, K. D., Carver, J. P., & Perez, S. (1991). Molecular modelling of protein-carbohydrate interactions. Docking of monosaccharides in the binding site of concanavalin A. Glycobiology, 1(6), 631–642. https://doi.org/10.1093/glycob/1.6.631
  • Izumi, E., Ueda-Nakamura, T., Dias Filho, B. P., Veiga Junior, V. F., & Nakamura, C. V. (2011). Natural products and Chagas’ disease: A review of plant compounds studied for activity against Trypanosoma cruzi. Natural Product Reports, 28(4), 809–823. https://doi.org/10.1039/c0np00069h
  • Johnson, T. W., Dress, K. R., & Edwards, M. (2009). Using the Golden Triangle to optimize clearance and oral absorption. Bioorganic & Medicinal Chemistry Letters, 19(19), 5560–5564. https://doi.org/10.1016/j.bmcl.2009.08.045
  • Kadela-Tomanek, M., Jastrzębska, M., Marciniec, K., Chrobak, E., Bębenek, E., & Boryczka, S. (2021). Lipophilicity, pharmacokinetic properties, and molecular docking study on SARS-CoV-2 target for betulin triazole derivatives with attached 1, 4-quinone. Pharmaceutics, 13(6), 781. https://doi.org/10.3390/pharmaceutics13060781
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review. B, Condensed Matter, 37(2), 785–789. https://doi.org/10.1103/PhysRevB.37.785
  • Lima, J. d R., Ferreira, M. K. A., Sales, K. V. B., da Silva, A. W., Marinho, E. M., Magalhães, F. E. A., Marinho, E. S., Marinho, M. M., da Rocha, M. N., Bandeira, P. N., Teixeira, A. M. R., de Menezes, J. E. S. A., & dos Santos, H. S. (2021). Diterpene Sonderianin isolated from Croton blanchetianus exhibits acetylcholinesterase inhibitory action and anxiolytic effect in adult zebrafish (Danio rerio) by 5-HT system. Journal of Biomolecular Structure and Dynamics, 39, 1–16. https://doi.org/10.1080/07391102.2021.1991477
  • Lipinski, C. A. (2004). Lead-and drug-like compounds: the rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Magalhães, E. P., Gomes, N. D. B., Freitas, T. A. d., Silva, B. P., Ribeiro, L. R., Ameida-Neto, F. W. Q., Marinho, M. M., Lima-Neto, P. d., Marinho, E. S., Santos, H. S. D., Teixeira, A. M. R., Sampaio, T. L., Menezes, R. R. P. P. B. d., & Martins, A. M. C. (2022). Chloride substitution on 2-hydroxy-3, 4, 6-trimethoxyphenylchalcones improves in vitro selectivity on Trypanosoma cruzi strain Y. Chemico-Biological Interactions, 361, 109920. https://doi.org/10.1016/j.cbi.2022.109920
  • Marinho, E. M., de Andrade Neto, J. B., Silva, J., da Silva, C. R., Cavalcanti, B. C., Marinho, E. S., & Júnior, H. V. N. (2020). Virtual screening based on molecular docking of possible inhibitors of Covid-19 main protease. Microbial Pathogenesis, 148, 104365. https://doi.org/10.1016/j.micpath.2020.104365
  • Martin, Y. C. (2005). A bioavailability score. Journal of Medicinal Chemistry, 48(9), 3164–3170. https://doi.org/10.1021/jm0492002
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Müller, Z. K., Christoph, F., & François, D. (2007). Fluorine in pharmaceuticals: Looking beyond intuition. Science (New York, N.Y.), 317(5846), 1881–1886. https://doi.org/10.1126/SCIENCE.1131943/SUPPL_FILE/MULLER.SOM.PDF.[PMC][17901324
  • Newby, D., Freitas, A. A., & Ghafourian, T. (2015). Decision trees to characterise the roles of permeability and solubility on the prediction of oral absorption. European Journal of Medicinal Chemistry, 90, 751–765. https://doi.org/10.1016/j.molstruc.2021.132064[PMC][25528330
  • Nguyen, D. D., Xiao, T., Wang, M., & Wei, G. W. (2017). Rigidity strengthening: A mechanism for protein–ligand binding. Journal of Chemical Information and Modeling, 57(7), 1715–1721. https://doi.org/10.1021/acs.jcim.7b00226
  • Ortalli, M., Ilari, A., Colotti, G., De Ionna, I., Battista, T., Bisi, A., Gobbi, S., Rampa, A., Di Martino, R. M. C., Gentilomi, G. A., Varani, S., & Belluti, F. (2018). Identification of chalcone-based antileishmanial agents targeting trypanothione reductase. European Journal of Medicinal Chemistry, 152, 527–541. https://doi.org/10.1016/j.ejmech.2018.04.057
  • Pariona-Llanos, R., Raphael, S. P., Marcelo, R., Vincent, N., Ariel, M. S., Hugo, A. A., Maria, I., Nogueira, C., & Maria, C. E. (2015). Glyceraldehyde 3-phosphate dehydrogenase-telomere association correlates with redox status in Trypanosoma Cruzi. PLoS One. 10(3), e0120896. https://doi.org/10.1371/journal.pone.0120896
  • Pavão, F., Castilho, M. S., Pupo, M. T., Dias, R. L. A., Correa, A. G., Fernandes, J. B., da Silva, M. F. G. F., Mafezoli, J., Vieira, P. C., & Oliva, G. (2002). Structure of Trypanosoma cruzi glycosomal glyceraldehyde-3-phosphate dehydrogenase complexed with chalepin, a natural product inhibitor, at 1.95 Å resolution. FEBS Letters, 520(1–3), 13–17. https://doi.org/10.1016/S0014-5793(02)02700-X
  • Pérez-Molina, J. A., Pérez-Ayala, A., Moreno, S., Fernandez-Gonzalez, M. C., Zamora, J., & Lopez-Velez, R. (2009). Use of benznidazole to treat chronic Chagas’ disease: A systematic review with a meta-analysis. The Journal of Antimicrobial Chemotherapy, 64(6), 1139–1147. https://doi.org/10.1093/jac/dkp357
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pires, D. E., Kaminskas, L. M., & Ascher, D. B. (2018). Prediction and optimization of pharmacokinetic and toxicity properties of the ligand. In Computational drug discovery and design (pp. 271–284). Humana Press. https://doi.org/10.1007/978-1-4939-7756-7_14
  • Purser, R. S., Peter, R. M., Steve, S., & Véronique, G. (2008). Fluorine in Medicinal Chemistry. Chemical Society Reviews, 37(2), 320–330. https://doi.org/10.1039/B610213C.
  • Radchenko, E. V., Rulev, Y. A., Safanyaev, A. Y., Palyulin, V. A., & Zefirov, N. S. (2017). Computer-aided estimation of the hERG-mediated cardiotoxicity risk of potential drug components. Doklady. Biochemistry and Biophysics, 473(1), 128–131. (Pleiades Publishing. https://doi.org/10.1134/S1607672917020107
  • Ritchie, T. J., & Macdonald, S. J. (2009). The impact of aromatic ring count on compound developability–are too many aromatic rings a liability in drug design? Drug Discovery Today. 14(21-22), 1011–1020. https://doi.org/10.1016/j.drudis.2009.07.014
  • Rocha, J. E., de Freitas, T. S., da Cunha Xavier, J., Pereira, R. L. S., Junior, F. N. P., Nogueira, C. E. S., Marinho, M. M., Bandeira, P. N., de Oliveira, M. R., Marinho, E. S., Teixeira, A. M. R., Dos Santos, H. S., & Coutinho, H. D. M. (2021). Antibacterial and antibiotic modifying activity, ADMET study and molecular docking of synthetic chalcone (E)-1-(2-hydroxyphenyl)-3-(2, 4-dimethoxy-3-methylphenyl) prop-2-en-1-one in strains of Staphylococcus aureus carrying NorA and MepA efflux pumps. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 140, 111768. https://doi.org/10.1016/j.biopha.2021.111768
  • Rodriguez, S. V., Guíñez, R. F., Matos, M. J., Azar, C. O., Maya, J. D., Uriarte, E., Santana, L., & Borges, F. (2015). Synthesis and trypanocidal properties of new coumarin-chalcone derivatives. Medicinal Chemistry, 5(4), 173–177. https://doi.org/10.4172/2161-0444.1000260
  • Salmazzo, G. R., Verdan, M. H., Silva, F., Cicarelli, R. M., Mota, J. d S., Salvador, M. J., de Carvalho, J. E., & Cardoso, C. A. L. (2021). Chemical composition and antiproliferative, antioxidant and trypanocidal activities of the fruits from Campomanesia xanthocarpa (Mart.) O. Berg (Myrtaceae). Natural Product Research, 35(5), 853–857. https://doi.org/10.1080/14786419.2019.1607333
  • Sanchez, A. M., Jimenez-Ortiz, V., Sartor, T., Tonn, C. E., García, E. E., Nieto, M., Burgos, M. H., & Sosa, M. A. (2006). A novel icetexane diterpene, 5-epi-icetexone from Salvia gilliessi is active against Trypanosoma cruzi. Acta Tropica, 98(2), 118–124. https://doi.org/10.1016/j.actatropica.2005.12.007
  • Saravanamuthu, A., Vickers, T. J., Bond, C. S., Peterson, M. R., Hunter, W. N., & Fairlamb, A. H. (2004). Two interacting binding sites for quinacrine derivatives in the active site of trypanothione reductase: a template for drug design. The Journal of Biological Chemistry, 279(28), 29493–29500. https://doi.org/10.1074/jbc.M403187200
  • Sarma, R. H. (1997). Journal of biomolecular structure and dynamics. Journal of Biomolecular Structure & Dynamics, 15(3), 634–634. https://doi.org/10.1016/j.actatropica.2019.04.024
  • Shityakov, S., & Foerster, C. (2014). In silico predictive model to determine vector-mediated transport properties for the blood–brain barrier choline transporter. Advances and Applications in Bioinformatics and Chemistry, 2014, 7, 23–36. https://doi.org/10.2147/AABC.S63749
  • Silva Mendes, F. R., Wlisses da Silva, A., Amâncio Ferreira, M. K., de Lima Rebouças, E., Marinho, E. M., Marinho, M. M., Bandeira, P. N., Rodrigues Teixeira, A. M., Silva Alencar de Menezes, J. E., Alves de Siqueira, E., Róseo Paula Pessoa Bezerra de Menezes, R., Marinho, E. S., & Silva Dos Santos, H. (2022). GABAA receptor participation in anxiolytic and anticonvulsant effects of (E)-3-(furan-2-yl)-1-(2hydroxy-3,4,6-trimethoxyphenyl)prop-2-en-1-one in adult zebrafish. Neurochemistry International, 155, 105303. https://doi.org/10.1016/j.neuint.2022.105303
  • Silva, J., Esmeraldo Rocha, J., da Cunha Xavier, J., Sampaio de Freitas, T., Douglas Melo Coutinho, H., Nogueira Bandeira, P., Rodrigues de Oliveira, M., Nunes da Rocha, M., Machado Marinho, E., de Kassio Vieira Monteiro, N., Ribeiro, L. R., Róseo Paula Pessoa Bezerra de Menezes, R., Machado Marinho, M., Magno Rodrigues Teixeira, A., Silva Dos Santos, H., & Silva Marinho, E. (2022). Antibacterial and antibiotic modifying activity of chalcone (2E)-1-(4–aminophenyl)-3-(4-methoxyphenyl)-prop-2-en-1-one in strains of Staphylococcus aureus carrying NorA and MepA efflux pumps: In vitro and in silico approaches. Microbial Pathogenesis, 169, 105664. https://doi.org/10.1016/j.micpath.2022.105664
  • Swallow, S. (2015). Fluorine in medicinal chemistry. Progress in Medicinal Chemistry, 54, 65–133. https://doi.org/10.1016/BS.PMCH.2014.11.001.
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Ušjak, D., Ivković, B., Božić, D. D., Bošković, L., & Milenković, M. (2019). Antimicrobial activity of novel chalcones and modulation of virulence factors in hospital strains of Acinetobacter baumannii and Pseudomonas aeruginosa. Microbial Pathogenesis, 131, 186–196. https://doi.org/10.1016/j.micpath.2019.04.015
  • Vázquez, K., Margot, P., Cristian, O. S., Juan, J. Z., R., Brenda, V., & Gildardo, R. (2017). Trypanothione reductase: A target for the development of anti-Trypanosoma Cruzi drugs. Mini Reviews in Medicinal Chemistry, 17(11), 939–946. https://doi.org/10.2174/1389557517666170315145410.
  • Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Wager, T. T., Hou, X., Verhoest, P. R., & Villalobos, A. (2016). Central nervous system multiparameter optimization desirability: application in drug discovery. ACS Chemical Neuroscience, 7(6), 767–775. https://doi.org/10.1021/acschemneuro.6b00029
  • Wheatley, D. E., Clement, Q. F., Ramakrishna, K., Robert, S., Edward, L. B., Jean, B., Vendeville, N. J., Wells, M. E. L., & Bruno, L. (2021). Synthesis and structural characteristics of all mono- and difluorinated 4,6-dideoxy-d-xylo-hexopyranoses. The Journal of Organic Chemistry, 86(11), 7725–7756. https://doi.org/10.1021/ACS.JOC.1C00796.
  • Wu, Z., Lei, T., Shen, C., Wang, Z., Cao, D., & Hou, T. (2019). ADMET evaluation in drug discovery. 19. Reliable prediction of human cytochrome P450 inhibition using artificial intelligence approaches. Journal of Chemical Information and Modeling, 59(11), 4587–4601. https://doi.org/10.1021/acs.jcim.9b00801
  • Yan, J., Zhang, G., Pan, J., & Wang, Y. (2014). α-Glucosidase inhibition by luteolin: Kinetics, interaction and molecular docking. International Journal of Biological Macromolecules, 64, 213–223. https://doi.org/10.1016/j.ijbiomac.2013.12.007
  • Yu, K., Geng, X., Chen, M., Zhang, J., Wang, B., Ilic, K., & Tong, W. (2014). High daily dose and being a substrate of cytochrome P450 enzymes are two important predictors of drug-induced liver injury. Drug Metabolism and Disposition, 42(4), 744–750. https://doi.org/10.1124/dmd.113.056267
  • Yusuf, D., Davis, A. M., Kleywegt, G. J., & Schmitt, S. (2008). An alternative method for the evaluation of docking performance: RSR vs RMSD. Journal of Chemical Information and Modeling, 48(7), 1411–1422. https://doi.org/10.1021/ci800084x
  • Zheng, M., Luo, X., Shen, Q., Wang, Y., Du, Y., Zhu, W., & Jiang, H. (2009). Site of metabolism prediction for six biotransformations mediated by cytochromes P450. Bioinformatics (Oxford, England), 25(10), 1251–1258. https://doi.org/10.1093/bioinformatics/btp140
  • Zheoat, A. M., Alenezi, S., Elmahallawy, E. K., Ungogo, M. A., Alghamdi, A. H., Watson, D. G., Igoli, J. O., Gray, A. I., de Koning, H. P., & Ferro, V. A. (2021). Antitrypanosomal and antileishmanial activity of chalcones and flavanones from Polygonum salicifolium. Pathogens, 10(2), 175–179. https://doi.org/10.3390/pathogens10020175

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.