386
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Identification of defactinib derivatives targeting focal adhesion kinase using ensemble docking, molecular dynamics simulations and binding free energy calculations

, , , , &
Pages 8654-8670 | Received 08 Jul 2022, Accepted 08 Oct 2022, Published online: 25 Oct 2022

References

  • Aguayo-Ortiz, R., Guzman-Ocampo, D. C., & Dominguez, L. (2022). Insights into the binding of morin to human gamma D-crystallin. Biophysical Chemistry, 282, 106750. https://doi.org/10.1016/j.bpc.2021.106750
  • Ahrari, S., Mogharrab, N., & Navapour, L. (2017). Interconversion of inactive to active conformation of Mark2: Insights from molecular modeling and molecular dynamics simulation. Archives of Biochemistry and Biophysics, 630, 66–80. https://doi.org/10.1016/j.abb.2017.07.002
  • Ahrari, S., Mogharrab, N., & Navapour, L. (2020). Structure and dynamics of inactive and active Mark4: Conformational switching through the activation process. Journal of Biomolecular Structure & Dynamics, 38(8), 2468–2481. https://doi.org/10.1080/07391102.2019.1655479
  • Amaro, R. E., Baudry, J., Chodera, J., Demir, O., McCammon, J. A., Miao, Y. L., & Smith, J. C. (2018). Ensemble docking in drug discovery. Biophysical Journal, 114(10), 2271–2278. https://doi.org/10.1016/j.bpj.2018.02.038
  • Aqvist, J., Medina, C., & Samuelsson, J. E. (1994). A new method for predicting binding affinity in computer-aided drug design. Protein Engineering, 7(3), 385–391. https://doi.org/10.1093/protein/7.3.385
  • Arold, S. T., Hoellerer, M. K., & Noble, M. E. M. (2002). The structural basis of localization and signaling by the focal adhesion targeting domain. Structure (London, England : 1993), 10(3), 319–327. https://doi.org/10.1016/S0969-2126(02)00717-7
  • Auger, K., Smitheman, K. N., Korenchuk, S., McHugh, C., Kruger, R., Van Aller, G., Smallwood, A., Gontarek, R. R., Faitg, T., & Johnson, N. (2012). The focal adhesion kinase inhibitor Gsk2256098: A potent and selective inhibitor for the treatment of cancer. European Journal of Cancer, 48, 118. https://doi.org/10.1016/S0959-8049(12)72185-8
  • Bateman, A., Martin, M. J., O'Donovan, C., Magrane, M., Alpi, E., Antunes, R., Bely, B., Bingley, M., Bonilla, C., & Britto, R. (2017). Uniprot: The universal protein knowledgebase. Nucleic Acids Research. 45(D1), D158–D169. https://doi.org/10.1093/nar/gkw1099
  • Bateman, A., Martin, M. J., O'Donovan, C., Magrane, M., Apweiler, R., Alpi, E., Antunes, R., Ar-Ganiska, J., Bely, B., & Bingley, M. (2015). Uniprot: A hub for protein information. Nucleic Acids Research. 43(D1), D204–D212. https://doi.org/10.1093/nar/gku989
  • Bateman, A., Martin, M. J., Orchard, S., Magrane, M., Alpi, E., Bely, B., Bingley, M., Britto, R., Bursteinas, B., & Busiello, G. (2019). Uniprot: A worldwide hub of protein knowledge. Nucleic Acids Research. 47(D1), D506–D515. https://doi.org/10.1093/nar/gky1049
  • Bayly, C. I., Cieplak, P., Cornell, W. D., & Kollman, P. A. (1993). A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. The Journal of Physical Chemistry, 97(40), 10269–10280. https://doi.org/10.1021/j100142a004
  • Bera, I., & Payghan, P. V. (2019). Use of molecular dynamics simulations in structure-based drug discovery. Current Pharmaceutical Design, 25(31), 3339–3349. https://doi.org/10.2174/1381612825666190903153043
  • Berger, B.-T., Amaral, M., Kokh, D. B., Nunes-Alves, A., Musil, D., Heinrich, T., Schröder, M., Neil, R., Wang, J., Navratilova, I., Bomke, J., Elkins, J. M., Müller, S., Frech, M., Wade, R. C., & Knapp, S. (2021). Structure-kinetic relationship reveals the mechanism of selectivity of Fak inhibitors over Pyk2. Cell Chemical Biology, 28(5), 686–698.e7. https://doi.org/10.1016/j.chembiol.2021.01.003
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bhagat, R. T., Butle, S. R., Khobragade, D. S., Wankhede, S. B., Prasad, C. C., Mahure, D. S., & Armarkar, A. V. (2021). Molecular docking in drug discovery. Journal of Pharmaceutical Research International, 33(30B), 46–58. https://doi.org/10.9734/jpri/2021/v33i30B31639
  • Brami-Cherrier, K., Gervasi, N., Arsenieva, D., Walkiewicz, K., Boutterin, M.-C., Ortega, A., Leonard, P. G., Seantier, B., Gasmi, L., Bouceba, T., Kadaré, G., Girault, J.-A., & Arold, S. T. (2014). Fak dimerization controls its kinase-dependent functions at focal adhesions. The EMBO Journal, 33(4), 356–370. https://doi.org/10.1002/embj.201386399
  • Bren, U., Martinek, V., & Florian, J. (2006). Free energy simulations of uncatalyzed DNA replication fidelity: Structure and stability of T center Dot G and Dttp center Dot G terminal DNA mismatches flanked by a single dangling nucleotide. The Journal of Physical Chemistry. B, 110(21), 10557–10566. https://doi.org/10.1021/jp060292b
  • Burley, S. K., Bhikadiya, C., Bi, C., Bittrich, S., Chen, L., Crichlow, G. V., Christie, C. H., Dalenberg, K., Di Costanzo, L., Duarte, J. M., Dutta, S., Feng, Z., Ganesan, S., Goodsell, D. S., Ghosh, S., Green, R. K., Guranović, V., Guzenko, D., Hudson, B. P., … Zhuravleva, M. (2021). RCSB protein data bank: powerful new tools for exploring 3d structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Research, 49(D1), D437–D451. https://doi.org/10.1093/nar/gkaa1038
  • Case, D. A., Ben-Shalom, K. B., Brozell, I. Y., Cerutti, S. R., Cheatham, D. S., III, T. E., Cruzeiro, V. W. D., Darden, T. A., Duke, R. E., Giambasu, G., Gilson, M. K., Gohlke, H., Goetz, A. W., Harris, R., Izadi, S., Izmailov, S. A., Kasavajhala, K., Kovalenko, A., Krasny, R., … Kollman, P. A. (2020). Amber 2020. University of California.
  • Chauhan, A., & Khan, T. (2021). Focal adhesion kinase-an emerging viable target in cancer and development of focal adhesion kinase inhibitors. Chemical Biology & Drug Design, 97(3), 774–794. https://doi.org/10.1111/cbdd.13808
  • Chen, G. L., Seukep, A. J., & Guo, M. Q. (2020). Recent advances in molecular docking for the research and discovery of potential marine drugs. Marine Drugs, 18(11), 545. https://doi.org/10.3390/md18110545
  • Chen, T., Liu, Y., Liu, J., Tang, M., Huang, H., Bai, C., Si, W., Yang, T., Yuan, X., Wen, Y., & Chen, L. (2022). Design, synthesis and biological evaluation of novel Fak inhibitors with better selectivity over Ir than Tae226. Bioorganic Chemistry, 124, 105790. https://doi.org/10.1016/j.bioorg.2022.105790
  • Chen, T., Liu, Y., Shi, M. S., Tang, M. H., Si, W. T., Yuan, X., Wen, Y., & Chen, L. J. (2021). Design, synthesis, and biological evaluation of novel covalent inhibitors targeting focal adhesion kinase. Bioorganic and Medicinal Chemistry Letters. 54(9), 128433. https://doi.org/10.1016/j.bmcl.2021.128433
  • Chen, Y., Yuan, X., Tang, M., Shi, M., Yang, T., Liu, K., Deng, D., & Chen, L. (2022). Degrading Flt3-Itd protein by proteolysis targeting chimera (Protac). Bioorganic Chemistry, 119, 105508. https://doi.org/10.1016/j.bioorg.2021.105508
  • Cheng, P., Li, J. J., Wang, J., Zhang, X. Y., & Zhai, H. L. (2018). Investigations of Fak inhibitors: A combination of 3d-Qsar, docking, and molecular dynamics simulations studies. Journal of Biomolecular Structure & Dynamics, 36(6), 1529–1549. https://doi.org/10.1080/07391102.2017.1329095
  • Cho, H., Shin, I., Yoon, H., Jeon, E., Lee, J., Kim, Y., Ryu, S., Song, C., Kwon, N. H., Moon, Y., Kim, S., Kim, N. D., Choi, H. G., & Sim, T. (2021). Identification of thieno 3,2-D pyrimidine derivatives as dual inhibitors of focal adhesion kinase and FMS-like tyrosine kinase 3. Journal of Medicinal Chemistry, 64(16), 11934–11957. https://doi.org/10.1021/acs.jmedchem.1c00459
  • Choi, H.-S., Wang, Z., Richmond, W., He, X., Yang, K., Jiang, T., Karanewsky, D., Gu, X-j., Zhou, V., Liu, Y., Che, J., Lee, C. C., Caldwell, J., Kanazawa, T., Umemura, I., Matsuura, N., Ohmori, O., Honda, T., Gray, N., & He, Y. (2006). Design and synthesis of 7h-pyrrolo 2,3-D pyrimidines as focal adhesion kinase inhibitors. Part 2. Bioorganic & Medicinal Chemistry Letters, 16(10), 2689–2692. https://doi.org/10.1016/j.bmcl.2006.02.032
  • Choi, H.-S., Wang, Z., Richmond, W., He, X., Yang, K., Jiang, T., Sim, T., Karanewsky, D., Gu, X-j., Zhou, V., Liu, Y., Ohmori, O., Caldwell, J., Gray, N., & He, Y. (2006). Design and synthesis of 7h-pyrrolo 2,3-D pyrimidines as focal adhesion kinase inhibitors. Part 1. Bioorganic & Medicinal Chemistry Letters, 16(8), 2173–2176. https://doi.org/10.1016/j.bmcl.2006.01.053
  • Chuang, H. H., Zhen, Y. Y., Tsai, Y. C., Chuang, C. H., Hsiao, M. C., Huang, M. S., & Yang, C. J. (2022). Fak in cancer: From mechanisms to therapeutic strategies. International Journal of Molecular Sciences, 23(3), 1726. https://doi.org/10.3390/ijms23031726
  • Cooper, J., & Giancotti, F. G. (2019). Integrin Signaling in Cancer: Mechanotransduction, Stemness, Epithelial Plasticity, and Therapeutic Resistance. Cancer Cell, 35(3), 347–367. https://doi.org/10.1016/j.ccell.2019.01.007
  • Cowan-Jacob, S. W., Fendrich, G., Floersheimer, A., Furet, P., Liebetanz, J., Rummel, G., Rheinberger, P., Centeleghe, M., Fabbro, D., & Manley, P. W. (2007). Structural biology contributions to the discovery of drugs to treat chronic myelogenous leukaemia. Acta Crystallographica. Section D, Biological Crystallography, 63(Pt 1), 80–93. https://doi.org/10.1107/s0907444906047287
  • Darden, T., York, D., & Pedersen, L. (1993). Particle Mesh Ewald: An N⋅Log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Dawson, J. C., Serrels, A., Stupack, D. G., Schlaepfer, D. D., & Frame, M. C. (2021). Targeting Fak in anticancer combination therapies. Nature Reviews Cancer, 21(5), 313–324. https://doi.org/10.1038/s41568-021-00340-6
  • Del Mistro, G., Riemann, S., Schindler, S., Beissert, S., Kontermann, R. E., Ginolhac, A., Halder, R., Presta, L., Sinkkonen, L., Sauter, T., & Kulms, D. (2022). Focal adhesion kinase plays a dual role in trail resistance and metastatic outgrowth of malignant melanoma. Cell Death & Disease, 13(1), 15. https://doi.org/10.1038/s41419-022-04502-8
  • Dhani, N. C., Burris, H. A., Siu, L. L., Camidge, D. R., Mileshkin, L. R., Xu, H., Pierce, K. J., Fahey, N. R., Fingert, H. J., & Shreeve, S. M. (2010). Final report of phase i clinical, pharmacokinetic (Pk), pharmacodynamic (Pd) study of Pf-00562271 targeting focal adhesion kinase (Fak) in patients (Pts) with solid tumors. Journal of Clinical Oncology, 28(15_suppl), 3028–3028. https://doi.org/10.1200/jco.2010.28.15_suppl.3028
  • Du, Q. Q., Qian, Y., Yao, X. J., & Xue, W. W. (2020). Elucidating the tight-binding mechanism of two oral anticoagulants to factor Xa by using induced-fit docking and molecular dynamics simulation. Journal of Biomolecular Structure & Dynamics, 38(2), 625–633. https://doi.org/10.1080/07391102.2019.1583605
  • Feller, S. E., Zhang, Y. H., Pastor, R. W., & Brooks, B. R. (1995). Constant pressure molecular dynamics simulation: The Langevin Piston method. Journal of Chemical Physics. 103(11), 4613–4621. https://doi.org/10.1063/1.470648
  • Fontana, R., & Vivo, M. (2018). Dynamics of P14arf and focal adhesion kinase-mediated autophagy in cancer. Cancers, 10(7), 221. https://doi.org/10.3390/cancers10070221
  • Fuhrmann, J., Rurainski, A., Lenhof, H. P., & Neumann, D. (2010). A new Lamarckian genetic algorithm for flexible ligand-receptor docking. Journal of Computational Chemistry, 31(9), 1911–1918. https://doi.org/10.1002/jcc.21478
  • Garron, M. L., Arthos, J., Guichou, J. F., McNally, J., Cicala, C., & Arold, S. T. (2008). Structural basis for the interaction between focal adhesion kinase and Cd4. Journal of Molecular Biology, 375(5), 1320–1328. https://doi.org/10.1016/j.jmb.2007.11.040
  • Gasteiger, J., & Marsili, M. (1980). Iterative partial equalization of orbital electronegativity—A rapid access to atomic charges. Tetrahedron, 36(22), 3219–3228. https://doi.org/10.1016/0040-4020(80)80168-2
  • Gaussian 09. (2009). Gaussian, Inc. Wallingford CT, 2016.
  • George, D. M., Breinlinger, E. C., Friedman, M., Zhang, Y., Wang, J., Argiriadi, M., Bansal-Pakala, P., Barth, M., Duignan, D. B., Honore, P., Lang, Q., Mittelstadt, S., Potin, D., Rundell, L., & Edmunds, J. J. (2015). Discovery of selective and orally bioavailable protein kinase c theta (Pkc Theta) inhibitors from a fragment hit. Journal of Medicinal Chemistry, 58(1), 222–236. https://doi.org/10.1021/jm500669m
  • Gerber, D. E., Camidge, D. R., Morgensztern, D., Cetnar, J., Kelly, R. J., Ramalingam, S. S., Spigel, D. R., Jeong, W., Scaglioni, P. P., Zhang, S., Li, M., Weaver, D. T., Vaikus, L., Keegan, M., Horobin, J. C., & Burns, T. F. (2020). Phase 2 study of the focal adhesion kinase inhibitor defactinib (Vs-6063) in previously treated advanced Kras mutant non-small cell lung cancer. Lung Cancer (Amsterdam, Netherlands), 139, 60–67. https://doi.org/10.1016/j.lungcan.2019.10.033
  • Gerber, D. E., Ramalingam, S. S., Morgensztern, D., Kelly, R. J., Burns, T. F., Lopez-Chavez, A., Spigel, D. R., Wehbe, A. M., Sorensen, R., Weaver, D. T., Horobin, J., Keegan, M., Scaglioni, P. P., Camidge, D. R, & VS-6063 PIs (2014). A phase 2 study of defactinib (Vs-6063), a cancer stem cell inhibitor that acts through inhibition of focal adhesion kinase (Fak), in patients with Kras-Mutant non-small cell lung cancer. Journal of Clinical Oncology, 32(15_suppl), TPS8126–TPS8126. https://doi.org/10.1200/jco.2014.32.15_suppl.tps8126
  • Gilson, M. K., & Zhou, H. X. (2007). Calculation of protein-ligand binding affinities. Annual Review of Biophysics and Biomolecular Structure, 36, 21–42. https://doi.org/10.1146/annurev.biophys.36.040306.132550
  • Gradler, U., Bomke, J., Musil, D., Dresing, V., Lehmann, M., Holzemann, G., Greiner, H., Esdar, C., Krier, M., & Heinrich, T. (2013). Fragment-based discovery of focal adhesion kinase inhibitors. Bioorganic & Medicinal Chemistry Letters, 23(19), 5401–5409. https://doi.org/10.1016/j.bmcl.2013.07.050
  • Haile, P. A., Casillas, L. N., Votta, B. J., Wang, G. Z., Charnley, A. K., Dong, X., Bury, M. J., Romano, J. J., Mehlmann, J. F., King, B. W., Erhard, K. F., Hanning, C. R., Lipshutz, D. B., Desai, B. M., Capriotti, C. A., Schaeffer, M. C., Berger, S. B., Mahajan, M. K., Reilly, M. A., … Marquis, R. W. (2019). Discovery of a first-in-class receptor interacting protein 2 (Rip2) kinase specific clinical candidate, 2-((4-(benzo d thiazol-5-ylamino)-6-(tert-butylsulfonyl)quinazolin-7-yl) oxy)ethyl dihydrogen phosphate, for the treatment of inflammatory diseases. Journal of Medicinal Chemistry, 62(14), 6482–6494. https://doi.org/10.1021/acs.jmedchem.9b00575
  • Heinrich, T., Seenisamy, J., Emmanuvel, L., Kulkarni, S. S., Bomke, J., Rohdich, F., Greiner, H., Esdar, C., Krier, M., Grädler, U., & Musil, D. (2013). Fragment-based discovery of new highly substituted 1h-pyrrolo 2,3-b - and 3h-imidazolo 4,5-b -pyridines as focal adhesion kinase inhibitors. Journal of Medicinal Chemistry, 56(3), 1160–1170. https://doi.org/10.1021/jm3016014
  • Hirt, U. A., Waizenegger, I. C., Schweifer, N., Haslinger, C., Gerlach, D., Braunger, J., Weyer-Czernilofsky, U., Stadtmüller, H., Sapountzis, I., Bader, G., Zoephel, A., Bister, B., Baum, A., Quant, J., Kraut, N., Garin-Chesa, P., & Adolf, G. R. (2018). Efficacy of the highly selective focal adhesion kinase inhibitor Bi 853520 in adenocarcinoma xenograft models is linked to a mesenchymal tumor phenotype. Oncogenesis, 7(2), 11. https://doi.org/10.1038/s41389-018-0032-z
  • Hoellerer, M. K., Noble, M., E. M., Labesse, G., Campbell, I. D., Werner, J. M., & Arold, S. T. (2003). Molecular recognition of Paxillin Ld motifs by the focal adhesion targeting domain. Structure, 11(10), 1207–1217. https://doi.org/10.1016/j.str.2003.08.010
  • Ignjatovic, V. B., Miljus, J. R. J., Roncevic, J. V., Tatic, S. B., Dencic, T. M. I., Doric, I. D., & Selemetjev, S. A. (2022). Focal adhesion kinase splicing and protein activation in papillary thyroid carcinoma progression. Histochemistry and Cell Biology, 157(2), 183–194. https://doi.org/10.1007/s00418-021-02056-y
  • Infante, J. R., Camidge, D. R., Mileshkin, L. R., Chen, E. X., Hicks, R. J., Rischin, D., Fingert, H., Pierce, K. J., Xu, H., Roberts, W. G., Shreeve, S. M., Burris, H. A., & Siu, L. L. (2012). Safety, pharmacokinetic, and pharmacodynamic phase I dose-escalation trial of Pf-00562271, an inhibitor of focal adhesion kinase, in advanced solid tumors. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 30(13), 1527–1533. https://doi.org/10.1200/jco.2011.38.9346
  • Iwatani, M., Iwata, H., Okabe, A., Skene, R. J., Tomita, N., Hayashi, Y., Aramaki, Y., Hosfield, D. J., Hori, A., Baba, A., & Miki, H. (2013). Discovery and characterization of novel allosteric Fak inhibitors. European Journal of Medicinal Chemistry, 61, 49–60. https://doi.org/10.1016/j.ejmech.2012.06.035
  • Jakhar, R., Dangi, M., Khichi, A., & Chhillar, A. K. (2020). Relevance of molecular docking studies in drug designing. Current Bioinformatics, 15(4), 270–278. https://doi.org/10.2174/1574893615666191219094216
  • Jones, S. F., Shapiro, G., Bendell, J. C., Chen, E. X., Bedard, P., Cleary, J. M., Pandya, S., Pierce, K. J., Houk, B., Hosea, N., Zandi, K. S., Roberts, W. G., Shreeve, S. M., & Siu, L. L. (2011). Phase I study of Pf-04554878, a second-generation focal adhesion kinase (Fak) inhibitor, in patients with advanced solid tumors. Journal of Clinical Oncology, 29(15_suppl), 3002–3002. https://doi.org/10.1200/jco.2011.29.15_suppl.3002
  • Jones, S. F., Siu, L. L., Bendell, J. C., Cleary, J. M., Razak, A. R. A., Infante, J. R., Pandya, S. S., Bedard, P. L., Pierce, K. J., Houk, B., Roberts, W. G., Shreeve, S. M., & Shapiro, G. I. (2015). A phase i study of Vs-6063, a second-generation focal adhesion kinase inhibitor, in patients with advanced solid tumors. Investigational New Drugs, 33(5), 1100–1107. https://doi.org/10.1007/s10637-015-0282-y
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kadare, G., Gervasi, N., Brami-Cherrier, K., Blockus, H., El Messari, S., Arold, S. T., & Girault, J. A. (2015). Conformational dynamics of the focal adhesion targeting domain control specific functions of focal adhesion kinase in cells. The Journal of Biological Chemistry, 290(1), 478–491. https://doi.org/10.1074/jbc.M114.593632
  • King, E., Aitchison, E., Li, H., & Luo, R. (2021). Recent developments in free energy calculations for drug discovery. Frontiers in Molecular Biosciences, 8, 24. https://doi.org/10.3389/fmolb.2021.712085
  • Klaeger, S., Heinzlmeir, S., Wilhelm, M., Polzer, H., Vick, B., Koenig, P.-A., Reinecke, M., Ruprecht, B., Petzoldt, S., Meng, C., Zecha, J., Reiter, K., Qiao, H., Helm, D., Koch, H., Schoof, M., Canevari, G., Casale, E., Depaolini, S. R., … Kuster, B. (2017). The target landscape of clinical kinase drugs. Science, 358(6367), 16. https://doi.org/10.1126/science.aan4368
  • Koolman, H., Heinrich, T., & Musil, D. Focal adhesion kinase catalytic domain in complex with pyrrolo[2,3-D]thiazole. https://doi.org/10.2210/pdb3PXK/pdb
  • Kurmasheva, R. T., Gorlick, R., Kolb, E. A., Keir, S. T., Maris, J. M., Lock, R. B., Carol, H., Kang, M., Reynolds, C. P., & Wu, J. R. (2017). Initial testing of Vs-4718, a novel inhibitor of focal adhesion kinase (Fak), against pediatric tumor models by the pediatric preclinical testing program. Pediatric Blood & Cancer, 64(4), 5. https://doi.org/10.1002/pbc.26304
  • Law, R. P., Nunes, J., Chung, C.-W., Bantscheff, M., Buda, K., Dai, H., Evans, J. P., Flinders, A., Klimaszewska, D., Lewis, A. J., Muelbaier, M., Scott-Stevens, P., Stacey, P., Tame, C. J., Watt, G. F., Zinn, N., Queisser, M. A., Harling, J. D., & Benowitz, A. B. (2021). Discovery and characterisation of highly cooperative FAK-degrading protacs. Angewandte Chemie (International ed. in English), 60(43), 23327–23334. https://doi.org/10.1002/anie.202109237
  • Le Large, T. Y. S., Bijlsma, M. F., El Hassouni, B., Mantini, G., Lagerweij, T., Henneman, A. A., Funel, N., Kok, B., Pham, T. V., & de Haas, R. (2021). Focal adhesion kinase inhibition synergizes with Nab-paclitaxel to target pancreatic ductal adenocarcinoma. Journal of Experimental & Clinical Cancer Research, 40(1), 12. https://doi.org/10.1186/s13046-021-01892-z
  • Lee, C. C. (2006). Crystal structure of focal adhesion kinase domain complexed with 7h-pyrrolo [2,3-D] pyrimidine derivative. https://doi.org/10.2210/pdb2ETM/pdb
  • Lee, C. C. (2007). Crystal structure of focal adhesion kinase domain with 2 molecules in the asymmetric unit complexed with Adp and Atp. https://doi.org/10.2210/pdb2IJM/pdb
  • Lee, F. S., Chu, Z. T., Bolger, M. B., & Warshel, A. (1992). Calculations of antibody-antigen interactions: Microscopic and semi-microscopic evaluation of the free energies of binding of phosphorylcholine analogs to Mcpc603. Protein Engineering, 5(3), 215–228. https://doi.org/10.1093/protein/5.3.215
  • Lee, M. S., Salsbury, F. R., & Olson, M. A. (2004). An efficient hybrid explicit/implicit solvent method for biomolecular simulations. Journal of Computational Chemistry, 25(16), 1967–1978. https://doi.org/10.1002/jcc.20119
  • Li, H., Gao, Y. Z., & Ren, C. C. (2021). Focal adhesion kinase inhibitor Bi 853520 inhibits cell proliferation, migration and EMT process through Pi3k/Akt/Mtor signaling pathway in ovarian cancer. Discover Oncology, 12(1), 14. https://doi.org/10.1007/s12672-021-00425-6
  • Lietha, D., & Eck, M. J. (2008). Crystal structures of the Fak kinase in complex with Tae226 and related bis-anilino pyrimidine inhibitors reveal a helical Dfg conformation. PLoS One, 3(11), e3800. https://doi.org/10.1371/journal.pone.0003800
  • Lim, S. T., Mikolon, D., Stupack, D. G., & Schlaepfer, D. D. (2008). Ferm control of Fak function—Implications for cancer therapy. Cell Cycle (Georgetown, Tex.), 7(15), 2306–2314. https://doi.org/10.4161/cc.6367
  • Lombardo, L. J., Lee, F. Y., Chen, P., Norris, D., Barrish, J. C., Behnia, K., Castaneda, S., Cornelius, L. A. M., Das, J., Doweyko, A. M., Fairchild, C., Hunt, J. T., Inigo, I., Johnston, K., Kamath, A., Kan, D., Klei, H., Marathe, P., Pang, S., … Borzilleri, R. M. (2004). Discovery of N-(2-chloro-6-methylphenyl)-2-(6-(4-(2-hydroxyethyl)-piperazin-1-yl)-2-m ethylpyrimidin-4-ylamino)thiazole-5-carboxamide (Bms-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. Journal of Medicinal Chemistry, 47(27), 6658–6661. https://doi.org/10.1021/jm049486a
  • Lu, Y., & Sun, H. Y. (2020). Progress in the development of small molecular inhibitors of focal adhesion kinase (Fak). Journal of Medicinal Chemistry, 63(23), 14382–14403. https://doi.org/10.1021/acs.jmedchem.0c01248
  • Lv, P. C., Chen, K., & Zhu, H. L. (2021). Recent advances of small molecule focal adhesion kinase (Fak) inhibitors as promising anticancer therapeutics. Current Medicinal Chemistry, 28(34), 6977–6989. https://doi.org/10.2174/0929867328666210331143827
  • Margiotta, E., van der Lubbe, S. C. C., Santos, L. D., Paragi, G., Moro, S., Bickelhaupt, F. M., & Guerra, C. F. (2020). Halogen bonds in ligand-protein systems: Molecular orbital theory for drug design. Journal of Chemical Information and Modeling, 60(3), 1317–1328. https://doi.org/10.1021/acs.jcim.9b00946
  • Martyna, G. J., Tobias, D. J., & Klein, M. L. (1994). Constant pressure molecular dynamics algorithms. Journal of Chemical Physics. 101(5), 4177–4189. https://doi.org/10.1063/1.467468
  • Matsukura, L., & Miyashita, N. (2020). Binding mechanism of anti-cancer target Hsp90 and peptide drug. Biophysical Journal, 118(3), 512A–512A. https://doi.org/10.1016/j.bpj.2019.11.2820
  • Modi, V., & Dunbrack, R. L. (2019). Defining a new nomenclature for the structures of active and inactive kinases. Proceedings of the National Academy of Sciences of the United States of America, 116(14), 6818–6827. https://doi.org/10.1073/pnas.1814279116
  • Momin, A. A., Hameed, U. F. S., & Arold, S. T. (2019). Passenger sequences can promote interlaced dimers in a common variant of the maltose-binding protein. Scientific Reports, 9(1), 9. https://doi.org/10.1038/s41598-019-56718-y
  • Morris, C. J., & Della Corte, D. (2021). Using molecular docking and molecular dynamics to investigate protein-ligand interactions. Modern Physics Letters B, 35(08), 2130002. https://doi.org/10.1142/S0217984921300027
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Autodock4 and Autodocktools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Mousson, A., Legrand, M., Steffan, T., Vauchelles, R., Carl, P., Gies, J.-P., Lehmann, M., Zuber, G., De Mey, J., Dujardin, D., Sick, E., & Rondé, P. (2021). Inhibiting Fak-Paxillin interaction reduces migration and invadopodia-mediated matrix degradation in metastatic melanoma cells. Cancers, 13(8), 1871. https://doi.org/10.3390/cancers13081871
  • Mousson, A., Sick, E., Carl, P., Dujardin, D., De Mey, J., & Ronde, P. (2018). Targeting focal adhesion kinase using inhibitors of protein-protein interactions. Cancers, 10(9), 278. https://doi.org/10.3390/cancers10090278
  • Mustafa, M., Abd El-Hafeez, A. A., Abdelhafeez, D. A., Abdelhamid, D., Mostafa, Y. A., Ghosh, P., Hayallah, A. M., & Abuo-Rahma, G. E. A. (2021). Fak inhibitors as promising anticancer targets: Present and future directions. Future Medicinal Chemistry, 13(18), 1559–1590. https://doi.org/10.4155/fmc-2021-0015
  • Naïm, M., Bhat, S., Rankin, K. N., Dennis, S., Chowdhury, S. F., Siddiqi, I., Drabik, P., Sulea, T., Bayly, C. I., Jakalian, A., & Purisima, E. O. (2007). Solvated interaction energy (SIE) for scoring protein-ligand binding affinities. 1. Exploring the parameter space. Journal of Chemical Information and Modeling, 47(1), 122–133. https://doi.org/10.1021/ci600406v
  • Nana, F. A., Vanderputten, M., & Ocak, S. (2019). Role of focal adhesion kinase in small-cell lung cancer and its potential as a therapeutic target. Cancers, 11(11), 1683. https://doi.org/10.3390/cancers11111683
  • Nowakowski, J., Cronin, C. N., McRee, D. E., Knuth, M. W., Nelson, C. G., Pavletich, N. P., Rogers, J., Sang, B.-C., Scheibe, D. N., Swanson, R. V., & Thompson, D. A. (2002). Structures of the cancer-related aurora-a, Fak, and Epha2 protein kinases from nanovolume crystallography. Structure (London, England : 1993), 10(12), 1659–1667. https://doi.org/10.1016/S0969-2126(02)00907-3
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open babel: An open chemical toolbox. Journal of Cheminformatics, 3, 33. https://doi.org/10.1186/1758-2946-3-33
  • Osipov, A., B. Blair, A., Liberto, J., Wang, J., Li, K., Herbst, B., Xu, Y., Li, S., Niu, N., Rashid, R., Ding, D., Liu, Y., Wang, Z., L. Wolfgang, C., A. Burkhart, R., Laheru, D., & Zheng, L. (2021). Inhibition of focal adhesion kinase enhances antitumor response of radiation therapy in pancreatic cancer through Cd8 + T cells. Cancer Biology and Medicine, 18(1), 206–214. https://doi.org/10.20892/j.issn.2095-3941.2020.0273
  • Ott, G. R., Cheng, M., Learn, K. S., Wagner, J., Gingrich, D. E., Lisko, J. G., Curry, M., Mesaros, E. F., Ghose, A. K., Quail, M. R., Wan, W., Lu, L., Dobrzanski, P., Albom, M. S., Angeles, T. S., Wells-Knecht, K., Huang, Z., Aimone, L. D., Bruckheimer, E., … Dorsey, B. D. (2016). Discovery of clinical candidate Cep-37440, a selective inhibitor of focal adhesion kinase (Fak) and anaplastic lymphoma kinase (Alk). Journal of Medicinal Chemistry, 59(16), 7478–7496. https://doi.org/10.1021/acs.jmedchem.6b00487
  • Panera, N., Crudele, A., Romito, I., Gnani, D., & Alisi, A. (2017). Focal adhesion kinase: Insight into molecular roles and functions in hepatocellular carcinoma. International Journal of Molecular Sciences, 18(1), 99. https://doi.org/10.3390/ijms18010099
  • Pang, X.-J., Liu, X.-J., Liu, Y., Liu, W.-B., Li, Y.-R., Yu, G.-X., Tian, X.-Y., Zhang, Y.-B., Song, J., Jin, C.-Y., & Zhang, S.-Y. (2021). Drug discovery targeting focal adhesion kinase (Fak) as a promising cancer therapy. Molecules, 26(14), 4250. https://doi.org/10.3390/molecules26144250
  • Perdih, A., Bren, U., & Solmajer, T. (2009). Binding free energy calculations of N-sulphonyl-glutamic acid inhibitors of murd ligase. Journal of Molecular Modeling, 15(8), 983–996. https://doi.org/10.1007/s00894-009-0455-8
  • Popow, J., Arnhof, H., Bader, G., Berger, H., Ciulli, A., Covini, D., Dank, C., Gmaschitz, T., Greb, P., Karolyi-Özguer, J., Koegl, M., McConnell, D. B., Pearson, M., Rieger, M., Rinnenthal, J., Roessler, V., Schrenk, A., Spina, M., Steurer, S., … Ettmayer, P. (2019). Highly selective Ptk2 proteolysis targeting chimeras to probe focal adhesion kinase scaffolding functions. Journal of Medicinal Chemistry, 62(5), 2508–2520. https://doi.org/10.1021/acs.jmedchem.8b01826
  • Qi, Y. H., Li, Y., Fang, Y., Gao, H., Qiang, B. C., Wang, S. X., & Zhang, H. B. (2021). Design, synthesis, biological evaluation, and molecular docking of 2,4-diaminopyrimidine derivatives targeting focal adhesion kinase as tumor radiotracers. Molecular Pharmaceutics, 18(4), 1634–1642. https://doi.org/10.1021/acs.molpharmaceut.0c01088
  • Quispe, P. A., Lavecchia, M. J., & Leon, I. E. (2022). Focal adhesion kinase inhibitors in the treatment of solid tumors: Preclinical and clinical evidence. Drug Discovery Today, 27(2), 664–674. https://doi.org/10.1016/j.drudis.2021.11.025
  • Rashid, M., Belmont, J., Carpenter, D., Turner, C. E., & Olson, E. C. (2017). Neural-specific deletion of the focal adhesion adaptor protein paxillin slows migration speed and delays cortical layer formation. Development (Cambridge, England), 144(21), 4002–4014. https://doi.org/10.1242/dev.147934
  • Riel, A. M. S., Rowe, R. K., Ho, E. N., Carlsson, A.-C C., Rappé, A. K., Berryman, O. B., & Ho, P. S. (2019). Hydrogen bond enhanced halogen bonds: A synergistic interaction in chemistry and biochemistry. Accounts of Chemical Research, 52(10), 2870–2880. https://doi.org/10.1021/acs.accounts.9b00189
  • Rigiracciolo, D. C., Cirillo, F., Talia, M., Muglia, L., Gutkind, J. S., Maggiolini, M., & Lappano, R. (2021). Focal adhesion kinase fine tunes multifaced signals toward breast cancer progression. Cancers, 13(4), 645. https://doi.org/10.3390/cancers13040645
  • Roberts, W. G., Ung, E., Whalen, P., Cooper, B., Hulford, C., Autry, C., Richter, D., Emerson, E., Lin, J., Kath, J., Coleman, K., Yao, L., Martinez-Alsina, L., Lorenzen, M., Berliner, M., Luzzio, M., Patel, N., Schmitt, E., LaGreca, S., … Vajdos, F. (2008). Antitumor activity and pharmacology of a selective focal adhesion kinase inhibitor, Pf-562,271. Cancer Research, 68(6), 1935–1944. https://doi.org/10.1158/0008-5472.Can-07-5155
  • Roe, D. R., & Cheatham, T. E. (2013). Ptraj and Cpptraj: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Roe, D. R., & Cheatham, T. E. (2018). Parallelization of CPPTRAJ enables large scale analysis of molecular dynamics trajectory data. Journal of Computational Chemistry, 39(25), 2110–2117. https://doi.org/10.1002/jcc.25382
  • Roskoski, R. (2016). Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes. Pharmacological Research, 103, 26–48. https://doi.org/10.1016/j.phrs.2015.10.021
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of N-alkanes. Journal of Computational Physics. 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Saha, B. C., Kumari, R., Kushumesh, R., Ambasta, A., & Sinha, B. P. (2021). Status of rho kinase inhibitors in glaucoma therapeutics—an overview. International Ophthalmology, 42(1), 281-294. https://doi.org/10.1007/s10792-021-02002-w
  • Salmaso, V., & Jacobson, K. A. (2020). In silico drug design for purinergic gpcrs: overview on molecular dynamics applied to adenosine and P2y receptors. Biomolecules, 10(6), 812. https://doi.org/10.3390/biom10060
  • Salo-Ahen, O. M. H., Alanko, I., Bhadane, R., Bonvin, A. M. J. J., Honorato, R. V., Hossain, S., Juffer, A. H., Kabedev, A., Lahtela-Kakkonen, M., Larsen, A. S., Lescrinier, E., Marimuthu, P., Mirza, M. U., Mustafa, G., Nunes-Alves, A., Pantsar, T., Saadabadi, A., Singaravelu, K., & Vanmeert, M. (2020). Molecular dynamics simulations in drug discovery and pharmaceutical development. Processes, 9(1), 71. https://doi.org/10.3390/pr9010071
  • Sanner, M. F. (1999). Python: A programming language for software integration and development. The Journal of Molecular Graphics, 17(1), 57–61.
  • Sanner, M. F., Dieguez, L., Forli, S., & Lis, E. (2021). Improving docking power for short peptides using random forest. Journal of Chemical Information and Modeling, 61(6), 3074–3090. https://doi.org/10.1021/acs.jcim.1c00573
  • Sen Gupta, P. S., Biswal, S., Panda, S. K., Ray, A. K., & Rana, M. K. (2022). Binding mechanism and structural insights into the identified protein target of Covid-19 and importin-Alpha with in-vitro effective drug ivermectin. Journal of Biomolecular Structure & Dynamics, 40(5), 2217–2226. https://doi.org/10.1080/07391102.2020.1839564
  • Shah, N. R., Tancioni, I., Ward, K. K., Lawson, C., Chen, X. L., Jean, C., Sulzmaier, F. J., Uryu, S., Miller, N. L., Connolly, D. C., & Schlaepfer, D. D. (2014). Analyses of merlin/Nf2 connection to FAK inhibitor responsiveness in serous ovarian cancer. Gynecologic Oncology, 134(1), 104–111. https://doi.org/10.1016/j.ygyno.2014.04.044
  • Shanthi, E., Krishna, M. H., Arunesh, G. M., Reddy, K. V., Kumar, J. S., & Viswanadhan, V. N. (2014). Focal adhesion kinase inhibitors in the treatment of metastatic cancer: A patent review. Expert Opinion on Therapeutic Patents, 24(10), 24. https://doi.org/10.1517/13543776.2014.948845
  • Shapiro, I. M., Kolev, V. N., Vidal, C. M., Kadariya, Y., Ring, J. E., Wright, Q., Weaver, D. T., Menges, C., Padval, M., McClatchey, A. I., Xu, Q., Testa, J. R., & Pachter, J. A. (2014). Merlin deficiency predicts Fak inhibitor sensitivity: A synthetic lethal relationship. Science Translational Medicine, 6(237), 11. https://doi.org/10.1126/scitranslmed.3008639
  • Shen, T., & Guo, Q. (2020). EGFR signaling pathway occupies an important position in cancer-related downstream signaling pathways of Pyk2. Cell Biology International, 44(1), 2–13. https://doi.org/10.1002/cbin.11209
  • Shi, M., Chen, T., Wei, S., Zhao, C., Zhang, X., Li, X., Tang, X., Liu, Y., Yang, Z., & Chen, L. (2022). Molecular docking, molecular dynamics simulations, and free energy calculation insights into the binding mechanism between vs-4718 and focal adhesion kinase. ACS Omega, 7(36), 32442–32456. https://doi.org/10.1021/acsomega.2c03951
  • Shi, M., Wang, L., Li, P., Liu, J., Chen, L., & Xu, D. (2021). Dasatinib-Sik2 binding elucidated by homology modeling, molecular docking, and dynamics simulations. ACS Omega, 6(16), 11025–11038. https://doi.org/10.1021/acsomega.1c00947
  • Shi, M., Wang, L., Liu, K., Chen, Y., Hu, M., Yang, L., He, J., Chen, L., & Xu, D. (2022). Molecular dynamics simulations of the conformational plasticity in the active pocket of salt-inducible kinase 2 (Sik2) multi-state binding with bosutinib. Computational and Structural Biotechnology Journal, 20, 2574–2586. https://doi.org/10.1016/j.csbj.2022.05.039
  • Shi, M., Zhao, M., Wang, L., Liu, K., Li, P., Liu, J., Cai, X., Chen, L., & Xu, D. (2021). Exploring the stability of inhibitor binding to Sik2 using molecular dynamics simulation and binding free energy calculation. Physical Chemistry Chemical Physics, 23(23), 13216–13227. https://doi.org/10.1039/d1cp00717c
  • Shimizu, T., Fukuoka, K., Takeda, M., Iwasa, T., Yoshida, T., Horobin, J., Keegan, M., Vaickus, L., Chavan, A., Padval, M., & Nakagawa, K. (2016). A first-in-Asian phase 1 study to evaluate safety, pharmacokinetics and clinical activity of Vs-6063, a Focal adhesion kinase (Fak) inhibitor in Japanese patients with advanced solid tumors. Cancer Chemotherapy and Pharmacology, 77(5), 997–1003. https://doi.org/10.1007/s00280-016-3010-1
  • Shinada, N. K., de Brevern, A. G., & Schmidtke, P. (2019). Halogens in protein-ligand binding mechanism: A structural perspective. Journal of Medicinal Chemistry, 62(21), 9341–9356. https://doi.org/10.1021/acs.jmedchem.8b01453
  • Shirvani, P., & Fassihi, A. (2022). In silico design of novel Fak inhibitors using integrated molecular docking, 3d-Qsar and molecular dynamics simulation studies. Journal of Biomolecular Structure & Dynamics, 40(13), 5965–5982. https://doi.org/10.1080/07391102.2021.1875880
  • Sivakumar, K. C., Jin, H. X., Naman, C. B., & Sajeevan, T. P. (2020). Prospects of multitarget drug designing strategies by linking molecular docking and molecular dynamics to explore the protein-ligand recognition process. Drug Development Research, 81(6), 685–699. https://doi.org/10.1002/ddr.21673
  • Song, X., Xu, H., Wang, P., Wang, J., Affo, S., Wang, H., Xu, M., Liang, B., Che, L., Qiu, W., Schwabe, R. F., Chang, T. T., Vogl, M., Pes, G. M., Ribback, S., Evert, M., Chen, X., & Calvisi, D. F. (2021). Focal adhesion kinase (Fak) promotes cholangiocarcinoma development and progression via Yap activation. Journal of Hepatology, 75(4), 888–899. https://doi.org/10.1016/j.jhep.2021.05.018
  • Soria, J. C., Gan, H. K., Blagden, S. P., Plummer, R., Arkenau, H. T., Ranson, M., Evans, T. R. J., Zalcman, G., Bahleda, R., Hollebecque, A., Lemech, C., Dean, E., Brown, J., Gibson, D., Peddareddigari, V., Murray, S., Nebot, N., Mazumdar, J., Swartz, L., … Millward, M. (2016). A Phase I, pharmacokinetic and pharmacodynamic study of Gsk2256098, a focal adhesion kinase inhibitor, in patients with advanced solid tumors. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 27(12), 2268–2274. https://doi.org/10.1093/annonc/mdw427
  • Srinivasan, J., Cheatham, T. E., Cieplak, P., Kollman, P. A., & Case, D. A. (1998). Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate—DNA helices. Journal of the American Chemical Society, 120(37), 9401–9409. https://doi.org/10.1021/ja981844+
  • Srinivasan, J., Trevathan, M. W., Beroza, P., & Case, D. A. (1999). Application of a pairwise generalized born model to proteins and nucleic acids: Inclusion of salt effects. Theoretical Chemistry Accounts, 101(6), 426–434. https://doi.org/10.1007/s002140050460
  • Stewart, J. J. P. (1989). Optimization of parameters for semi-empirical methods I-method. Journal of Computational Chemistry, 10(2), 209–220. https://doi.org/10.1002/jcc.540100208
  • Still, W. C., Tempczyk, A., Hawley, R. C., & Hendrickson, T. (1990). Semianalytical treatment of solvation for molecular mechanics and dynamics. Journal of the American Chemical Society, 112(16), 6127–6129. https://doi.org/10.1021/ja00172a038
  • Su, M. Y., Yang, Q. F., Du, Y., Feng, G. Q., Liu, Z. H., Li, Y., & Wang, R. X. (2019). Comparative assessment of scoring functions: The casf-2016 update. Journal of Chemical Information and Modeling, 59(2), 895–913. https://doi.org/10.1021/acs.jcim.8b00545
  • Sun, C. C., Feng, L. J., Sun, X. H., Yu, R. L., & Kang, C. M. (2021). Design and screening of Fak, Cdk 4/6 dual inhibitors by pharmacophore model, molecular docking, and molecular dynamics simulation. Journal of Biomolecular Structure & Dynamics, 39(15), 5358–5367. https://doi.org/10.1080/07391102.2020.1786458
  • Sun, Z. C., Jiang, Q. W., Li, J., & Guo, J. P. (2020). The potent roles of salt-inducible kinases (Siks) in metabolic homeostasis and tumorigenesis. Signal Transduction and Targeted Therapy, 5(1), 150. https://doi.org/10.1038/s41392-020-00265-w
  • Tanjoni, I., Walsh, C., Uryu, S., Tomar, A., Nam, J.-O., Mielgo, A., Lim, S.-T., Liang, C., Koenig, M., Sun, C., Patel, N., Kwok, C., McMahon, G., Stupack, D. G., & Schlaepfer, D. D. (2010). Pnd-1186 Fak inhibitor selectively promotes tumor cell apoptosis in three-dimensional environments. Cancer Biology & Therapy, 9(10), 764–777. https://doi.org/10.4161/cbt.9.10.11434
  • The PYMOL Molecular Graphics System, Version 2.0, Schrödinger, LLC.
  • Thifault, D. G., Fromme, P., & Martin-Garcia, J. M. (2020). Hydrocarbon-stapled paxillin peptide bound to the focal adhesion targeting (fat) domain of the focal adhesion kinase (Fak). https://doi.org/10.2210/pdb6PW8/pdb
  • Tian, C., Kasavajhala, K., Belfon, K. A. A., Raguette, L., Huang, H., Migues, A. N., Bickel, J., Wang, Y., Pincay, J., Wu, Q., & Simmerling, C. (2020). Ff19sb: Amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. Journal of Chemical Theory and Computation, 16(1), 528–552. https://doi.org/10.1021/acs.jctc.9b00591
  • Tokarski, J. S., Newitt, J. A., Chang, C. Y. J., Cheng, J. D., Wittekind, M., Kiefer, S. E., Kish, K., Lee, F. Y. F., Borzillerri, R., Lombardo, L. J., Xie, D., Zhang, Y., & Klei, H. E. (2006). The structure of dasatinib (Bms-354825) bound to activated Abl kinase domain elucidates its inhibitory activity against imatinib-resistant Abl mutants. Cancer Research, 66(11), 5790–5797. https://doi.org/10.1158/0008-5472.Can-05-4187
  • Tomita, N., Hayashi, Y., Suzuki, S., Oomori, Y., Aramaki, Y., Matsushita, Y., Iwatani, M., Iwata, H., Okabe, A., Awazu, Y., Isono, O., Skene, R. J., Hosfield, D. J., Miki, H., Kawamoto, T., Hori, A., & Baba, A. (2013). Structure-based discovery of cellular-active allosteric inhibitors of Fak. Bioorganic & Medicinal Chemistry Letters, 23(6), 1779–1785. https://doi.org/10.1016/j.bmcl.2013.01.047
  • Vilar, S., & Costanzi., S. (2013). Application of Monte Carlo-based receptor ensemble docking to virtual screening for GPCR ligands. In Conn, P. M. (Ed.), G Protein Coupled Receptors: Modeling, Activation, Interactions and Virtual Screening, Methods in Enzymology (Vol. 522, 263–278). Elsevier Academic Press Inc.
  • Wang, J. M., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Wang, L., Zheng, Y., Li, D., Yang, J., Lei, L., Yan, W., Zheng, W., Tang, M., Shi, M., Zhang, R., Cai, X., Ni, H., Ma, X., Li, N., Hong, F., Ye, H., & Chen, L. (2021). Design, synthesis, and bioactivity evaluation of dual-target inhibitors of tubulin and Src kinase guided by crystal structure. Journal of Medicinal Chemistry, 64(12), 8127–8141. https://doi.org/10.1021/acs.jmedchem.0c01961
  • Waseem, R., Shamsi, A., Khan, T., Hassan, M. I., Kazim, S. N., Shahid, M., & Islam, A. (2022). Unraveling the binding mechanism of Alzheimer’s Drugs with irisin: Spectroscopic, calorimetric, and computational approaches. International Journal of Molecular Sciences, 23(11), 5965. https://doi.org/10.3390/ijms23115965
  • Weiser, J., Shenkin, P. S., & Still, W. C. (1999). Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). Journal of Computational Chemistry, 20(2), 217–230. https://doi.org/10.1002/(sici)1096-987x(19990130)20:2 < 217::Aid-jcc4 > 3.0.Co;2-a
  • Wu, C. H., Apweiler, R., Bairoch, A., Natale, D. A., Barker, W. C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M. J., Mazumder, R., O'Donovan, C., Redaschi, N., & Suzek, B. (2006). The universal protein resource (Uniprot): An expanding universe of protein information. Nucleic Acids Research, 34(Database issue), D187–D191. https://doi.org/10.1093/nar/gkj161
  • Wu, Y. L., Li, N., Ye, C. F., Jiang, X. M., Luo, H., Zhang, B. Y., Zhang, Y., & Zhang, Q. Y. (2021). Focal adhesion kinase inhibitors, a heavy punch to cancer. Discover Oncology, 12(1), 15. https://doi.org/10.1007/s12672-021-00449-y
  • Xia, H., Nho, R. S., Kahm, J., Kleidon, J., & Henke, C. A. (2004). Focal adhesion kinase is upstream of phosphatidylinositol 3-kinase/Akt in regulating fibroblast survival in response to contraction of type I collagen matrices via a Beta(1) integrin viability signaling pathway. The Journal of Biological Chemistry, 279(31), 33024–33034. https://doi.org/10.1074/jbc.M313265200
  • Xu, Z., Liu, Z., Chen, T., Chen, T., Wang, Z., Tian, G., Shi, J., Wang, X., Lu, Y., Yan, X., Wang, G., Jiang, H., Chen, K., Wang, S., Xu, Y., Shen, J., & Zhu, W. (2011). Utilization of halogen bond in lead optimization: A case study of rational design of potent phosphodiesterase type 5 (Pde5) inhibitors. Journal of Medicinal Chemistry, 54(15), 5607–5611. https://doi.org/10.1021/jm200644r
  • Yang, J. Y., Lin, X. Y., Xing, N., Zhang, Z., Zhang, H. W., Wu, H. B., & Xue, W. W. (2021). Structure-based discovery of novel nonpeptide inhibitors targeting Sars-Cov-2 M-Pro. Journal of Chemical Information and Modeling, 61(8), 3917–3926. https://doi.org/10.1021/acs.jcim.1c00355
  • Yang, T., Cui, X., Tang, M., Qi, W., Zhu, Z., Shi, M., Yang, L., Pei, H., Zhang, W., Xie, L., Xu, Y., Yang, Z., & Chen, L. (2022). Identification of a novel 2,8-diazaspiro 4.5 decan-1-one derivative as a potent and selective dual tyk2/jak1 inhibitor for the treatment of inflammatory bowel disease. Journal of Medicinal Chemistry, 65(4), 3151–3172. https://doi.org/10.1021/acs.jmedchem.1c01137
  • Yang, T., Hu, M., Chen, Y., Xiang, M., Tang, M., Qi, W., Shi, M., He, J., Yuan, X., Zhang, C., Liu, K., Li, J., Yang, Z., & Chen, L. (2020). N-(pyrimidin-2-Yl)-1,2,3,4-tetrahydroisoquinolin-6-amine derivatives as selective janus kinase 2 inhibitors for the treatment of myeloproliferative neoplasms. Journal of Medicinal Chemistry, 63(23), 14921–14936. https://doi.org/10.1021/acs.jmedchem.0c01488
  • Yen-Pon, E., Li, B., Acebrón-Garcia-de-Eulate, M., Tomkiewicz-Raulet, C., Dawson, J., Lietha, D., Frame, M. C., Coumoul, X., Garbay, C., Etheve-Quelquejeu, M., & Chen, H. (2018). Structure-based design, synthesis, and characterization of the first irreversible inhibitor of focal adhesion kinase. ACS Chemical Biology, 13(8), 2067–2073. https://doi.org/10.1021/acschembio.8b00250
  • Yuce, M., Sarica, Z., Ates, B., & Kurkcuoglu, O. (2022). Exploring species-specific inhibitors with multiple target sites on S. Aureus pyruvate kinase using a computational workflow. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2022.2051743
  • Zhan, J. Y., Zhang, J. L., Wang, Y., Li, Y., Zhang, H. X., & Zheng, Q. C. (2016). Exploring the interaction between human focal adhesion kinase and inhibitors: A molecular dynamic simulation and free energy calculations. Journal of Biomolecular Structure & Dynamics, 34(11), 2351–2366. https://doi.org/10.1080/07391102.2015.1115780
  • Zhang, Y. M., Liu, S., Zhou, S., Yu, D. D., Gu, J. J., Qin, Q., Cheng, Y., & Sun, X. C. (2021). Focal adhesion kinase: insight into its roles and therapeutic potential in oesophageal cancer. Cancer Letters, 496, 93–103. https://doi.org/10.1016/j.canlet.2020.10.005
  • Zhou, J., Bronowska, A., Le Coq, J., Lietha, D., & Grater, F. (2015). Allosteric regulation of focal adhesion kinase by PIP2 and ATP. Biophysical Journal, 108(3), 698–705. https://doi.org/10.1016/j.bpj.2014.11.3454

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.