656
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Deep learning in drug discovery: a futuristic modality to materialize the large datasets for cheminformatics

, , ORCID Icon, , , , , & show all
Pages 9177-9192 | Received 24 May 2022, Accepted 08 Oct 2022, Published online: 28 Oct 2022

References

  • Abdel-Zaher, A. M., & Eldeib, A. M. (2016). Breast cancer classification using deep belief networks. Expert Systems with Applications, 46, 139–144. https://doi.org/10.1016/j.eswa.2015.10.015
  • Arango-Argoty, G., Garner, E., Pruden, A., Heath, L. S., Vikesland, P., & Zhang, L. (2018). DeepARG: A deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome, 6(1), 1–15. https://doi.org/10.1186/s40168-018-0401-z
  • Bailly, C. (2020). Xihuang pills, a traditional Chinese preparation used as a complementary medicine to treat cancer: An updated review. World Journal of Traditional Chinese Medicine, 6(2), 152–162. https://doi.org/10.4103/wjtcm.wjtcm_6_20
  • Baumans, V. (2004). Use of animals in experimental research: An ethical dilemma? Gene Therapy, 11(Suppl 1), S64–S66. https://doi.org/10.1038/sj.gt.3302371
  • Beck, B. R., Shin, B., Choi, Y., Park, S., & Kang, K. (2020). Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. Computational and Structural Biotechnology Journal, 18, 784–790. https://doi.org/10.1016/j.csbj.2020.03.025
  • Björne, J., Airola, A., Pahikkala, T., & Salakoski, T. (2011). Drug-drug interaction extraction from biomedical texts with SVM and RLS classifiers [Paper presentation]. Proceedings of DDIExtraction-2011 Challenge Task, pp. 35–42, Huelva, Spain.
  • Bohacek, R. S., McMartin, C., & Guida, W. C. (1996). The art and practice of structure-based drug design: A molecular modeling perspective. Medicinal Research Reviews, 16(1), 3–50. https://doi.org/10.1002/(SICI)1098-1128(199601)16:1<3::AID-MED1>3.0.CO;2-6
  • Brocke, S. A., Degen, A., MacKerell, A. D., Jr., Dutagaci, B., & Feig, M. (2019). Prediction of membrane permeation of drug molecules by combining an implicit membrane model with machine learning. Journal of Chemical Information and Modeling, 59(3), 1147–1162. https://doi.org/10.1021/acs.jcim.8b00648
  • Bung, N., Krishnan, S. R., Bulusu, G., & Roy, A. (2020). De novo design of new chemical entities (NCEs) for SARS-CoV-2 using artificial intelligence. ChemRxiv.
  • Xu, X., Jiang, X., Ma, C., Du, P., Li, X., Lv, S., Yu, L., Ni, Q., Chen, Y., Su, J., Lang, G., Li, Y., Zhao, H., Liu, J., Xu, K., Ruan, L., Sheng, J., Qiu, Y., Wu, W., ˙˙˙ Li, L. (2020). A deep learning system to screen novel coronavirus disease 2019 pneumonia. Engineering, 6(10), 1122–1129.
  • Capuzzi, S. J., Politi, R., Isayev, O., Farag, S., & Tropsha, A. (2016). QSAR modeling of Tox21 challenge stress response and nuclear receptor signaling toxicity assays. Frontiers in Environmental Science, 4, 3. https://doi.org/10.3389/fenvs.2016.00003
  • Carrio, A., Sampedro, C., Rodriguez-Ramos, A., & Campoy, P. (2017). A review of deep learning methods and applications for unmanned aerial vehicles. Journal of Sensors, 2017, 1–13. https://doi.org/10.1155/2017/3296874
  • Chandershekar, A., Bhaskar, A., Mekkanti, M. R., & Rinku, M. (2020). A review on computer aided drug design (CAAD) and it’s implications in drug discovery and development process. International Journal of Health Care and Biological Sciences, 1(1), 27–33.
  • Charifson, P. S., & Walters, W. P. (2014). Acidic and basic drugs in medicinal chemistry: A perspective. Journal of Medicinal Chemistry, 57(23), 9701–9717. https://doi.org/10.1021/jm501000a
  • Chen, B., Zhang, H., & Li, M. (2019). Prediction of pK (a) values of neutral and alkaline drugs with particle swarm optimization algorithm and artificial neural network. Neural Computing and Applications, 31(12), 8297–8304. https://doi.org/10.1007/s00521-018-3956-5
  • Chen, L., Li, Y., Zhao, Q., Peng, H., & Hou, T. (2011). ADME evaluation in drug discovery. 10. Predictions of P-glycoprotein inhibitors using recursive partitioning and naive Bayesian classification techniques. Molecular Pharmaceutics, 8(3), 889–900. https://doi.org/10.1021/mp100465q
  • Chen, Y., Zhang, J. J., Liu, Y., & Shang, H. C. (2020). Comprehensive comparison and analysis of the prevention and treatment of coronavirus disease 2019 and severe acute respiratory syndrome with traditional Chinese medicine. World Journal of Traditional Chinese Medicine, 6(2), 124–131. https://doi.org/10.4103/wjtcm.wjtcm_13_20
  • Chenthamarakshan, V., Das, P., Padhi, I., Strobelt, H., Lim, K. W., & Hoover, B. (2020). Target-specific and selective drug design for covid-19 using deep generative models. arXiv Preprint, arXiv:200401215.
  • Chitranshi, N., Gupta, V. K., Rajput, R., Godinez, A., Pushpitha, K., Shen, T., Mirzaei, M., You, Y., Basavarajappa, D., Gupta, V., & Graham, S. L. (2020). Evolving geographic diversity in SARS-CoV2 and in silico analysis of replicating enzyme 3CL pro targeting repurposed drug candidates. Journal of Translational Medicine, 18(1), 1–15. https://doi.org/10.1186/s12967-020-02448-z
  • Delaney, J. S. (2004). ESOL: Estimating aqueous solubility directly from molecular structure. Journal of Chemical Information and Computer Sciences, 44(3), 1000–1005. https://doi.org/10.1021/ci034243x
  • Deng, T., & Jia, G-z (2020). Prediction of aqueous solubility of compounds based on neural network. Molecular Physics, 118(2), e1600754. https://doi.org/10.1080/00268976.2019.1600754
  • Dong, J., Wang, N.-N., Yao, Z.-J., Zhang, L., Cheng, Y., Ouyang, D., Lu, A.-P., & Cao, D.-S. (2018). ADMETlab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. Journal of Cheminformatics, 10(1), 29. https://doi.org/10.1186/s13321-018-0283-x
  • Durrant, J. D., & McCammon, J. A. (2011). NNScore 2.0: A neural-network receptor–ligand scoring function. Journal of Chemical Information and Modeling, 51(11), 2897–2903. https://doi.org/10.1021/ci2003889
  • Ekins, S. (2016). The next era: Deep learning in pharmaceutical research. Pharmaceutical Research, 33(11), 2594–2603. https://doi.org/10.1007/s11095-016-2029-7
  • Feinberg, E. N., Joshi, E., Pande, V. S., & Cheng, A. C. (2020). Improvement in ADMET prediction with multitask deep featurization. Journal of Medicinal Chemistry, 63(16), 8835–8848. https://doi.org/10.1021/acs.jmedchem.9b02187
  • Fernandez, M., Ban, F., Woo, G., Hsing, M., Yamazaki, T., LeBlanc, E., Rennie, P. S., Welch, W. J., & Cherkasov, A. (2018). Toxic colors: The use of deep learning for predicting toxicity of compounds merely from their graphic images. Journal of Chemical Information and Modeling, 58(8), 1533–1543. https://doi.org/10.1021/acs.jcim.8b00338
  • Fitriawan, A., Wasito, I., Syafiandini, A. F., Azminah, A., Amien, M., & Yanuar, A. (Eds.). (2016). Deep belief networks for ligand-based virtual screening of drug design. In Proceedings of 2016 6th International Workshop on Computer Science and Engineering (WCSE 2016) Tokyo, Japan.
  • Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., & Garcia-Rodriguez, J. (2017). A review on deep learning techniques applied to semantic segmentation. arXiv Preprint, 170406857.
  • Ghaheri, A., Shoar, S., Naderan, M., & Hoseini, S. S. (2015). The applications of genetic algorithms in medicine. Oman Medical Journal, 30(6), 406–416. https://doi.org/10.5001/omj.2015.82
  • Ghasemi, F., Mehridehnavi, A., Perez-Garrido, A., & Perez-Sanchez, H. (2018). Neural network and deep-learning algorithms used in QSAR studies: Merits and drawbacks. Drug Discovery Today, 23(10), 1784–1790. https://doi.org/10.1016/j.drudis.2018.06.016
  • Goh, G. B., Hodas, N. O., & Vishnu, A. (2017). Deep learning for computational chemistry. Journal of Computational Chemistry, 38(16), 1291–1307. https://doi.org/10.1002/jcc.24764
  • Gomes, J., Ramsundar, B., Feinberg, E. N., & Pande, V. S. (2017). Atomic convolutional networks for predicting protein–ligand binding affinity. arXiv Preprint, arXiv:170310603.
  • Gupta, A., Müller, A. T., Huisman, B. J., Fuchs, J. A., Schneider, P., & Schneider, G. (2018). Generative recurrent networks for de novo drug design. Molecular Informatics, 37(1–2), 1700111. https://doi.org/10.1002/minf.201700111
  • Hodgson, J. (2001). ADMET—Turning chemicals into drugs. Nature Biotechnology, 19(8), 722–726. https://doi.org/10.1038/90761
  • Hu, F., Jiang, J., & Yin, P. (2020). Prediction of potential commercially inhibitors against SARS-CoV-2 by multi-task deep model. arXiv Preprint, arXiv:200300728.
  • Hu, P.-W., Chan, K. C., & You, Z.-H. (Eds.). (2016). Large-scale prediction of drug-target interactions from deep representations. In 2016 International Joint Conference on Neural Networks (IJCNN). IEEE. https://doi.org/10.1109/IJCNN.2016.7727339
  • Hughes, T. B., & Swamidass, S. J. (2017). Deep learning to predict the formation of quinone species in drug metabolism. Chemical Research in Toxicology, 30(2), 642–656. https://doi.org/10.1021/acs.chemrestox.6b00385
  • Ignacz, G., & Szekely, G. (2022). Deep learning meets quantitative structure–activity relationship (QSAR) for leveraging structure-based prediction of solute rejection in organic solvent nanofiltration. Journal of Membrane Science, 646, 120268. https://doi.org/10.1016/j.memsci.2022.120268
  • Ishikawa, M., & Hashimoto, Y. (2011). Improvement in aqueous solubility in small molecule drug discovery programs by disruption of molecular planarity and symmetry. Journal of Medicinal Chemistry, 54(6), 1539–1554. https://doi.org/10.1021/jm101356p
  • Iwata, H., Matsuo, T., Mamada, H., Motomura, T., Matsushita, M., Fujiwara, T., Kazuya, M., & Handa, K. (2021). Prediction of total drug clearance in humans using animal data: Proposal of a multimodal learning method based on deep learning. Journal of Pharmaceutical Sciences, 110(4), 1834–1841. https://doi.org/10.1016/j.xphs.2021.01.020
  • Jain, T., & Jayaram, B. (2005). An all atom energy based computational protocol for predicting binding affinities of protein–ligand complexes. FEBS Letters, 579(29), 6659–6666. https://doi.org/10.1016/j.febslet.2005.10.031
  • Jamshidi, M. B., Lalbakhsh, A., Talla, J., Peroutka, Z., Hadjilooei, F., Lalbakhsh, P., Jamshidi, M., Spada, L. L., Mirmozafari, M., Dehghani, M., Sabet, A., Roshani, S., Roshani, S., Bayat-Makou, N., Mohamadzade, B., Malek, Z., Jamshidi, A., Kiani, S., Hashemi-Dezaki, H., & Mohyuddin, W. (2020). Artificial intelligence and COVID-19: Deep learning approaches for diagnosis and treatment. IEEE Access: Practical Innovations, Open Solutions, 8, 109581–109595. https://doi.org/10.1109/ACCESS.2020.3001973
  • Jiang, D., Lei, T., Wang, Z., Shen, C., Cao, D., & Hou, T. (2020). ADMET evaluation in drug discovery. 20. Prediction of breast cancer resistance protein inhibition through machine learning. Journal of Cheminformatics, 12(1), 1–26. https://doi.org/10.1186/s13321-020-00421-y
  • Jimenez-Carretero, D., Abrishami, V., Fernández-de-Manuel, L., Palacios, I., Quílez-Álvarez, A., Díez-Sánchez, A., Del Pozo, M. A., & Montoya, M. C. (2018). Tox_ (R) CNN: Deep learning-based nuclei profiling tool for drug toxicity screening. PLoS Computational Biology, 14(11), e1006238. https://doi.org/10.1371/journal.pcbi.1006238
  • Jing, Y., Bian, Y., Hu, Z., Wang, L., & Xie, X.-Q. S. (2018). Deep learning for drug design: An artificial intelligence paradigm for drug discovery in the big data era. The AAPS Journal, 20(3), 58. https://doi.org/10.1208/s12248-018-0210-0
  • Johnson, K. W., Torres Soto, J., Glicksberg, B. S., Shameer, K., Miotto, R., Ali, M., Ashley, E., & Dudley, J. T. (2018). Artificial intelligence in cardiology. Journal of the American College of Cardiology, 71(23), 2668–2679. https://doi.org/10.1016/j.jacc.2018.03.521
  • Joshi, T., Pundir, H., & Chandra, S. (2021). Deep-learning based repurposing of FDA-approved drugs against Candida albicans dihydrofolate reductase and molecular dynamics study. Journal of Biomolecular Structure and Dynamics, 40(18), 1–17. https://doi.org/10.1080/07391102.2021.1911851
  • Joshi, T., Sharma, P., Joshi, T., Mathpal, S., Pande, V., & Chandra, S. (2022). Repurposing of FDA approved drugs against Salmonella enteric serovar Typhi by targeting dihydrofolate reductase: An in silico study. Journal of Biomolecular Structure & Dynamics, 40(8), 3731–3744. https://doi.org/10.1080/07391102.2020.1850356
  • Kairys, V., Baranauskiene, L., Kazlauskiene, M., Matulis, D., & Kazlauskas, E. (2019). Binding affinity in drug design: Experimental and computational techniques. Expert Opinion on Drug Discovery, 14(8), 755–768. https://doi.org/10.1080/17460441.2019.1623202
  • Kearnes, S., Goldman, B., & Pande, V. (2016). Modeling industrial admet data with multitask networks. arXiv Preprint, arXiv:160608793.
  • Kola, I., & Landis, J. (2004). Can the pharmaceutical industry reduce attrition rates? Nature Reviews. Drug Discovery, 3(8), 711–715. https://doi.org/10.1038/nrd1470
  • Krishnan, S. R., Bung, N., Bulusu, G., & Roy, A. (2021). Accelerating de novo drug design against novel proteins using deep learning. Journal of Chemical Information and Modeling, 61(2), 621–630. https://doi.org/10.1021/acs.jcim.0c01060
  • Ku, M. S. (2008). Use of the biopharmaceutical classification system in early drug development. The AAPS Journal, 10(1), 208–212. https://doi.org/10.1208/s12248-008-9020-0
  • Lee, K., & Kim, D. (2019). In-silico molecular binding prediction for human drug targets using deep neural multi-task learning. Genes, 10(11), 906. https://doi.org/10.3390/genes10110906
  • Li, H., Yu, L., Tian, S., Li, L., Wang, M., & Lu, X. (2017). Deep learning in pharmacy: The prediction of aqueous solubility based on deep belief network. Automatic Control and Computer Sciences, 51(2), 97–107. https://doi.org/10.3103/S0146411617020043
  • Li, J. S. (2020). International clinical practice guideline of Chinese medicine: Chronic obstructive pulmonary disease. World Journal of Traditional Chinese Medicine, 6(1), 39–50. https://doi.org/10.4103/wjtcm.wjtcm_9_20
  • Li, Y., Pei, J., & Lai, L. (2021). Structure-based de novo drug design using 3D deep generative models. Chemical Science, 12(41), 13664–13675. https://doi.org/10.1039/d1sc04444c
  • Liu, L. T., Zhao, C. Y., Wu, T., Yu, Z. Y., Sun, Y., & Li, J. (2020). Study on medication rules of modern Chinese herbal medicine in the treatment of non-small cell lung cancer based on data mining. World Journal of Traditional Chinese Medicine, 6(1), 83–96. https://doi.org/10.4103/wjtcm.wjtcm_36_19
  • Liu, X., & Wang, X.-J. (2020). Potential inhibitors against 2019-nCoV coronavirus M protease from clinically approved medicines. Journal of Genetics and Genomics = Yi Chuan Xue Bao, 47(2), 119–121. https://doi.org/10.1016/j.jgg.2020.02.001
  • Lopez, A. R., Giro-i-Nieto, X., Burdick, J., & Marques, O. (Eds.). (2017). Skin lesion classification from dermoscopic images using deep learning techniques. In 2017 13th IASTED international conference on biomedical engineering (BioMed). IEEE.
  • Lui, R., Guan, D., & Matthews, S. (2020). A comparison of molecular representations for lipophilicity quantitative structure–property relationships with results from the SAMPL6 logP Prediction Challenge. Journal of Computer-Aided Molecular Design, 34(5), 523–534. https://doi.org/10.1007/s10822-020-00279-0
  • Lusci, A., Pollastri, G., & Baldi, P. (2013). Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules. Journal of Chemical Information and Modeling, 53(7), 1563–1575. https://doi.org/10.1021/ci400187y
  • Mamada, H., Nomura, Y., & Uesawa, Y. (2022). Novel QSAR approach for a regression model of clearance that combines deepsnap-deep learning and conventional machine learning. ACS Omega, 7(20), 17055–17062. https://doi.org/10.1021/acsomega.2c00261
  • Mamoshina, P., Vieira, A., Putin, E., & Zhavoronkov, A. (2016). Applications of deep learning in biomedicine. Molecular Pharmaceutics, 13(5), 1445–1454. https://doi.org/10.1021/acs.molpharmaceut.5b00982
  • Mansouri, K., Cariello, N. F., Korotcov, A., Tkachenko, V., Grulke, C. M., Sprankle, C. S., Allen, D., Casey, W. M., Kleinstreuer, N. C., & Williams, A. J. (2019). Open-source QSAR models for pKa prediction using multiple machine learning approaches. Journal of Cheminformatics, 11(1), 60. https://doi.org/10.1186/s13321-019-0384-1
  • Mayr, F., Wieder, M., Wieder, O., & Langer, T. (2022). Improving small molecule pKa prediction using transfer learning with graph neural networks. BioRxiv.
  • McDonagh, J. L., Nath, N., De Ferrari, L., Van Mourik, T., & Mitchell, J. B. (2014). Uniting cheminformatics and chemical theory to predict the intrinsic aqueous solubility of crystalline druglike molecules. Journal of Chemical Information and Modeling, 54(3), 844–856. https://doi.org/10.1021/ci4005805
  • Meyer-Almes, F.-J. (2020). Repurposing approved drugs as potential inhibitors of 3CL-protease of SARS-CoV-2: Virtual screening and structure based drug design. Computational Biology and Chemistry, 88, 107351. https://doi.org/10.1016/j.compbiolchem.2020.107351
  • Mirjalili, S. (2019). Genetic algorithm. In Evolutionary algorithms and neural networks (pp. 43–55). Springer.
  • Montanari, F., Kuhnke, L., Ter Laak, A., & Clevert, D.-A. (2019). Modeling physico-chemical admet endpoints with multitask graph convolutional networks. Molecules, 25(1), 44. https://doi.org/10.3390/molecules25010044
  • Munteanu, C. R., Fernández-Blanco, E., Seoane, J. A., Izquierdo-Novo, P., Rodríguez-Fernández, J. A., Prieto-González, J. M., Rabuñal, J. R., & Pazos, A. (2010). Drug discovery and design for complex diseases through QSAR computational methods. Current Pharmaceutical Design, 16(24), 2640–2655. https://doi.org/10.2174/138161210792389252
  • Nagendran, M., Chen, Y., Lovejoy, C. A., Gordon, A. C., Komorowski, M., Harvey, H., Topol, E. J., Ioannidis, J. P. A., Collins, G. S., & Maruthappu, M. (2020). Artificial intelligence versus clinicians: Systematic review of design, reporting standards, and claims of deep learning studies. BMJ, 368, m689. https://doi.org/10.1136/bmj.m689
  • Neves, B. J., Braga, R. C., Melo-Filho, C. C., Moreira-Filho, J. T., Muratov, E. N., & Andrade, C. H. (2018). QSAR-based virtual screening: Advances and applications in drug discovery. Frontiers in Pharmacology, 9, 1275. https://doi.org/10.3389/fphar.2018.01275
  • Patankar, S. (2020). Deep learning-based computational drug discovery to inhibit the RNA Dependent RNA Polymerase: Application to SARS-CoV and COVID-19 (pp. 1-17). Berlin, Germany: Science Open.
  • Popova, M., Isayev, O., & Tropsha, A. (2018). Deep reinforcement learning for de novo drug design. Science Advances, 4(7), eaap7885. https://doi.org/10.1126/sciadv.aap7885
  • Prasad, S., & Brooks, B. R. (2020). A deep learning approach for the blind logP prediction in SAMPL6 challenge. Journal of Computer-Aided Molecular Design, 34(5), 535–542. https://doi.org/10.1007/s10822-020-00292-3
  • Ragoza, M., Hochuli, J., Idrobo, E., Sunseri, J., & Koes, D. R. (2017). Protein–ligand scoring with convolutional neural networks. Journal of Chemical Information and Modeling, 57(4), 942–957. https://doi.org/10.1021/acs.jcim.6b00740
  • Rawat, W., & Wang, Z. (2017). Deep convolutional neural networks for image classification: A comprehensive review. Neural Computation, 29(9), 2352–2449. https://doi.org/10.1162/NECO_a_00990
  • Rudrapal, M., & Chetia, D. (2020). Virtual screening, molecular docking and QSAR studies in drug discovery and development programme. Journal of Drug Delivery and Therapeutics, 10(4), 225–233. https://doi.org/10.22270/jddt.v10i4.4218
  • Segler, M. H., Kogej, T., Tyrchan, C., & Waller, M. P. (2018). Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Central Science, 4(1), 120–131. https://doi.org/10.1021/acscentsci.7b00512
  • Shaker, N., Abou-Zleikha, M., AlAmri, M., & Mehellou, Y. (2020). A generative deep learning approach for the discovery of SARS CoV2 protease inhibitors.
  • Shi, T., Yang, Y., Huang, S., Chen, L., Kuang, Z., Heng, Y., & Mei, H. (2019). Molecular image-based convolutional neural network for the prediction of ADMET properties. Chemometrics and Intelligent Laboratory Systems, 194, 103853. https://doi.org/10.1016/j.chemolab.2019.103853
  • Shin, M., Jang, D., Nam, H., Lee, K. H., & Lee, D. (2018). Predicting the absorption potential of chemical compounds through a deep learning approach. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 15(2), 432–440. https://doi.org/10.1109/TCBB.2016.2535233
  • Simoes, R. S., Maltarollo, V. G., Oliveira, P. R., & Honorio, K. M. (2018). Transfer and multi-task learning in QSAR modeling: Advances and challenges. Frontiers in Pharmacology, 9, 74. https://doi.org/10.3389/fphar.2018.00074
  • Skalic, M., Jiménez, J., Sabbadin, D., & De Fabritiis, G. (2019). Shape-based generative modeling for de novo drug design. Journal of Chemical Information and Modeling, 59(3), 1205–1214. https://doi.org/10.1021/acs.jcim.8b00706
  • Soliman, K., Grimm, F., Wurm, C. A., & Egner, A. (2021). Predicting the membrane permeability of organic fluorescent probes by the deep neural network based lipophilicity descriptor DeepFl-LogP. Scientific Reports, 11(1), 1–9. https://doi.org/10.1038/s41598-021-86460-3
  • Ståhl, N., Falkman, G., Karlsson, A., Mathiason, G., & Bostrom, J. (2019). Deep reinforcement learning for multiparameter optimization in de novo drug design. Journal of Chemical Information and Modeling, 59(7), 3166–3176. https://doi.org/10.1021/acs.jcim.9b00325
  • Stepniewska-Dziubinska, M. M., Zielenkiewicz, P., & Siedlecki, P. (2018). Development and evaluation of a deep learning model for protein–ligand binding affinity prediction. Bioinformatics (Oxford, England), 34(21), 3666–3674. https://doi.org/10.1093/bioinformatics/bty374
  • Sukumar, N., Prabhu, G., & Saha, P. (2014). Applications of genetic algorithms in QSAR/QSPR modeling (pp. 315–324). Springer.
  • Tang, B., He, F., Liu, D., Fang, M., Wu, Z., & Xu, D. (2020). AI-aided design of novel targeted covalent inhibitors against SARS-CoV-2. BioRxiv.
  • Tang, B., Kramer, S. T., Fang, M., Qiu, Y., Wu, Z., & Xu, D. (2020). A self-attention based message passing neural network for predicting molecular lipophilicity and aqueous solubility. Journal of Cheminformatics, 12(1), 1–9. https://doi.org/10.1186/s13321-020-0414-z
  • Tang, W., Chen, J., Wang, Z., Xie, H., & Hong, H. (2018). Deep learning for predicting toxicity of chemicals: A mini review. Journal of Environmental Science and Health Part C: Environmental Carcinogenesis & Ecotoxicology Reviews, 36(4), 252–271. https://doi.org/10.1080/10590501.2018.1537563
  • Tian, K., Shao, M., Wang, Y., Guan, J., & Zhou, S. (2016). Boosting compound-protein interaction prediction by deep learning. Methods (San Diego, Calif.), 110, 64–72. https://doi.org/10.1016/j.ymeth.2016.06.024
  • Ton, A. T., Gentile, F., Hsing, M., Ban, F., & Cherkasov, A. (2020). Rapid identification of potential inhibitors of SARS-CoV-2 main protease by deep docking of 1.3 billion compounds. Molecular Informatics, 39(8), e2000028.
  • Uesawa, Y. (2018). Quantitative structure–activity relationship analysis using deep learning based on a novel molecular image input technique. Bioorganic & Medicinal Chemistry Letters, 28(20), 3400–3403. https://doi.org/10.1016/j.bmcl.2018.08.032
  • Unterthiner, T., Mayr, A., Klambauer, G., & Hochreiter, S. (2015). Toxicity prediction using deep learning. arXiv Preprint, arXiv:150301445.
  • Wahid-Uz-Zaman, M. G. M. (2019). Bracing artificial intelligence for socio-economic development: Opportunities, implications and challenges for Bangladesh. Ndc E-Journal, 18(1), 1–22.
  • Wallach, I., Dzamba, M., & Heifets, A. ( 2015). AtomNet: A deep convolutional neural network for bioactivity prediction in structure-based drug discovery. arXiv preprint, arXiv:151002855.
  • Wang, S., Peng, J., Ma, J., & Xu, J. (2016). Protein secondary structure prediction using deep convolutional neural fields. Scientific Reports, 6(1), 18962–18911. https://doi.org/10.1038/srep18962
  • Wang, Z., Su, Y., Shen, W., Jin, S., Clark, J. H., Ren, J., & Zhang, X. (2019). Predictive deep learning models for environmental properties: The direct calculation of octanol–water partition coefficients from molecular graphs. Green Chemistry, 21(16), 4555–4565. https://doi.org/10.1039/C9GC01968E
  • Wieder, O., Kuenemann, M., Wieder, M., Seidel, T., Meyer, C., Bryant, S. D., & Langer, T. (2021). Improved lipophilicity and aqueous solubility prediction with composite graph neural networks. Molecules, 26(20), 6185. https://doi.org/10.3390/molecules26206185
  • Winkler, D. A., & Le, T. C. (2017). Corrigendum: Performance of deep and shallow neural networks, the universal approximation theorem activity cliffs, and QSAR. Molecular Informatics, 36(11), 1781141. https://doi.org/10.1002/minf.201781141
  • Wu, J., Zhang, Q., Wu, W., Pang, T., Hu, H., Chan, W. K. B., Ke, X., & Zhang, Y. (2018). WDL-RF: Predicting bioactivities of ligand molecules acting with G protein-coupled receptors by combining weighted deep learning and random forest. Bioinformatics (Oxford, England), 34(13), 2271–2282. https://doi.org/10.1093/bioinformatics/bty070
  • Xu, X., Jiang, X., Ma, C., Du, P., Li, X., Lv, S., Yu, L., Ni, Q., Chen, Y., Su, J., Lang, G., Li, Y., Zhao, H., Liu, J., Xu, K., Ruan, L., Sheng, J., Qiu, Y., Wu, W., … Li, L. (2020). A deep learning system to screen novel coronavirus disease 2019 pneumonia. Engineering (Beijing, China), 6(10), 1122–1129. https://doi.org/10.1016/j.eng.2020.04.010
  • Xu, Y., Pei, J., & Lai, L. (2017). Deep learning based regression and multiclass models for acute oral toxicity prediction with automatic chemical feature extraction. Journal of Chemical Information and Modeling, 57(11), 2672–2685. https://doi.org/10.1021/acs.jcim.7b00244
  • Zeng, M., Kumar, J. N., Zeng, Z., Savitha, R., Chandrasekhar, V. R., & Hippalgaonkar, K. (2018). Graph convolutional neural networks for polymers property prediction. arXiv Preprint, arXiv:181106231.
  • Zhang, J., Li, J., & Huang, J. Q. (2020). Network meta-analysis of four Chinese patent medicines combined with angiotensin converting enzyme inhibitors or angiotensin receptor blockers in early diabetic nephropathy treatment. World Journal of Traditional Chinese Medicine, 6(1), 51–60. https://doi.org/10.4103/wjtcm.wjtcm_41_19
  • Zhang, L., Tan, J., Han, D., & Zhu, H. (2017). From machine learning to deep learning: Progress in machine intelligence for rational drug discovery. Drug Discovery Today, 22(11), 1680–1685. https://doi.org/10.1016/j.drudis.2017.08.010
  • Zhavoronkov, A., Ivanenkov, Y. A., Aliper, A., Veselov, M. S., Aladinskiy, V. A., Aladinskaya, A. V., Terentiev, V. A., Polykovskiy, D. A., Kuznetsov, M. D., Asadulaev, A., Volkov, Y., Zholus, A., Shayakhmetov, R. R., Zhebrak, A., Minaeva, L. I., Zagribelnyy, B. A., Lee, L. H., Soll, R., Madge, D., … Aspuru-Guzik, A. (2019). Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nature Biotechnology, 37(9), 1038–1040. https://doi.org/10.1038/s41587-019-0224-x
  • Zhavoronkov, A., Zagribelnyy, B., Zhebrak, A., Aladinskiy, V., Terentiev, V., & Vanhaelen, Q. (2020). Potential non-covalent SARS-CoV-2 3C-like protease inhibitors designed using generative deep learning approaches and reviewed by human medicinal chemist in virtual reality. ChemRxiv, 1–18. https://doi.org/10.13140/RG.2.2.29899.54569

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.