162
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Computational identification and experimental validation of anti-filarial lead molecules targeting metal binding/substrate channel residues of Cu/Zn SOD1 from Wuchereria bancrofti

, &
Pages 8715-8728 | Received 05 Aug 2022, Accepted 10 Oct 2022, Published online: 28 Oct 2022

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Banci, L., Bertini, I., Durazo, A., Girotto, S., Gralla, E. B., Martinelli, M., Valentine, J. S., Vieru, M., & Whitelegge, J. P. (2007). Metal-free superoxide dismutase forms soluble oligomers under physiological conditions: A possible general mechanism for familial ALS. Proceedings of the National Academy of Sciences of the United States of America, 104(27), 11263–11267. https://doi.org/10.1073/pnas.0704307104
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., Dinola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Bertini, I., Banci, L., Piccioli, M., & Luchinat, C. (1990). Spectroscopic studies on Cu2Zn2SOD: a continuous advancement of investigation tools. Coordination Chemistry Reviews, 100(C), 67–103. https://doi.org/10.1016/0010-8545(90)85005-D
  • Boissinot, M., Karnas, S., Lepock, J. R., Cabelli, D. E., Tainer, J. A., Getzoff, E. D., & Hallewell, R. A. (1997). Function of the Greek key connection analysed using circular permutants of superoxide dismutase. The EMBO Journal, 16(9), 2171–2178. https://doi.org/10.1093/EMBOJ/16.9.2171
  • Brophy, P. M., & Pritchard, D. I. (1992). Immunity to helminths: Ready to tip the biochemical balance? Parasitology Today (Personal ed.), 8(12), 419–422. https://doi.org/10.1016/0169-4758(92)90195-8
  • Callahan, H. L., Crouch, R. K., & James, E. R. (1988). Helminth anti-oxidant enzymes: a protective mechanism against host oxidants? Parasitology Today (Personal ed.), 4(8), 218–225. https://doi.org/10.1016/0169-4758(88)90162-7
  • Chakraborty, S., Gurusamy, M., Zawieja, D. C., & Muthuchamy, M. (2013). Lymphatic filariasis: Perspectives on lymphatic remodeling and contractile dysfunction in filarial disease pathogenesis. Microcirculation (New York, N.Y.: 1994), 20(5), 349–364. https://doi.org/10.1111/MICC.12031
  • Cobo, F. (2016). Determinants of parasite drug resistance in human lymphatic filariasis. Revista Espanola de Quimioterapia: Publicacion Oficial de La Sociedad Espanola de Quimioterapia, 29(6), 288–295.
  • Daisy, P., Suveena, S., & Cecily Rosemary Latha, R. (2012). Target level analysis of antioxidant activity of costunolide and eremanthin isolated from Costus speciosus. Asian Journal of Pharmaceutical and Clinical Research, 5(4), 32–35.
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Davis, E. L., de Vlas, S. J., Fronterre, C., Hollingsworth, T. D., Kontoroupis, P., Michael, E., Prada, J. M., Smith, M. E., Stolk, W. A., & Touloupou, P. (2019). The roadmap towards elimination of lymphatic filariasis by 2030: Insights from quantitative and mathematical modelling. Gates Open Research, 3, 1–13. https://doi.org/10.12688/gatesopenres.13065.1
  • Djinovic, K., Gatti, G., Coda, A., Antolini, L., Pelosi, G., Desideri, A., Falconi, M., Marmocchi, F., Rotilio, G., & Bolognesi, M. (1992). Crystal structure of yeast Cu, Zn Superoxide dismutase refinement at 2. 5 A resolution. Journal of Molecular Biology, 225(3), 791–809.
  • Dong, X., Zhang, Z., Zhao, J., Lei, J., Chen, Y., Li, X., Chen, H., Tian, J., Zhang, D., Liu, C., & Liu, C. (2016). The rational design of specific SOD1 inhibitors via copper coordination and their application in ROS signaling research. Chemical Science, 7(9), 6251–6262. https://doi.org/10.1039/C6SC01272H
  • Evans, D. B., Gelband, H., & Vlassoff, C. (1993). Social and economic factors and the control of lymphatic filariasis: A review. Acta Tropica, 53(1), 1–26. https://doi.org/10.1016/0001-706X(93)90002-S
  • Fielden, E. M., Roberts, P. B., Bray, R. C., Lowe, D. J., Mautner, G. N., Rotilio, G., & Calabrese, L. (1974). The mechanism of action of superoxide dismutase from pulse radiolysis and electron paramagnetic resonance. Evidence that only half the active sites function in catalysis. The Biochemical Journal, 139(1), 49–60. https://doi.org/10.1042/bj1390049
  • Ferraroni, M., Rypniewski, W., Wilson, K. S., Viezzoli, M. S., Banci, L., Bertini, I., & Mangani, S. (1999). The crystal structure of the monomeric human SOD mutant F50E/G51E/E133Q at atomic resolution. The enzyme mechanism revisited. Journal of Molecular Biology, 288(3), 413–426. https://doi.org/10.1006/jmbi.1999.2681
  • Freedman, D. O. (1998). Immune dynamics in the pathogenesis of human lymphatic filariasis. Parasitology Today (Personal ed.), 14(6), 229–234. https://doi.org/10.1016/S0169-4758(98)01244-7
  • Fridovich, I. (1986). Superoxide dismutases. Advances in Enzymology and Related Areas of Molecular Biology, 58, 61–97. https://doi.org/10.1002/9780470123041.ch2
  • Furukawa, Y., & O'Halloran, T. V. (2005). Amyotrophic lateral sclerosis mutations have the greatest destabilizing effect on the apo- and reduced form of SOD1, leading to unfolding and oxidative aggregation. The Journal of Biological Chemistry, 280(17), 17266–17274. https://doi.org/10.1074/jbc.M500482200
  • Getzoff, E. D., Cabelli, D. E., Fisher, C. L., Parge, H. E., Viezzoli, M. S., Banci, L., & Hallewell, R. A. (1992). Faster superoxide dismutase mutants designed by enhancing electrostatic guidance. Nature, 358(6384), 347–351. https://doi.org/10.1038/358347a0
  • Glide (2020). Schrödinger Release 2020-4. Schrödinger, LLC.
  • Guru Raj, R., Biswal, J., Dhamodharan, P., Kanagarajan, S., & Jeyaraman, J. (2016). Identification of potential inhibitors for AIRS from de novo purine biosynthesis pathway through molecular modeling studies—A computational approach. Journal of Biomolecular Structure & Dynamics, 34(10), 2199–2213.
  • Hart, P. J., Balbirnie, M. M., Ogihara, N. L., Nersissian, A. M., Weiss, M. S., Valentine, J. S., & Eisenberg, D. (1999). A structure-based mechanism for copper-zinc superoxide dismutase. Biochemistry, 38(7), 2167–2178. https://doi.org/10.1021/bi982284u
  • Henkle-Dührsen, K., & Kampkötter, A. (2001). Antioxidant enzyme families in parasitic nematodes. Molecular and Biochemical Parasitology, 114(2), 129–142. https://doi.org/10.1016/S0166-6851(01)00252-3
  • Hess, B. (2008). P-LINCS: A parallel linear constraint solver for molecular simulation. Journal of Chemical Theory and Computation, 4(1), 116–122. https://doi.org/10.1021/ct700200b
  • Hough, M. A., & Hasnain, S. S. (2003). Structure of fully reduced bovine copper zinc superoxide dismutase at 1.15 Å. Structure (London, England: 1993), 11(8), 937–946. https://doi.org/10.1016/S0969-2126(03)00155-2
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • James, E. R. (1994). Superoxide dismutase. Parasitology Today (Personal ed.), 10(12), 481–484. https://doi.org/10.1016/0169-4758(94)90161-9
  • Kanagarajan, S., Mutharasappan, N., Dhamodharan, P., Jeyaraman, M., Ramadas, K., & Jeyaraman, J. (2014). Exploring the structural features of Aspartate Trans Carbamoylase (Tt ATCase) from Thermus thermophilus HB8 through in silico approaches: A potential drug target for inborn error of pyrimidine metabolism. Journal of Biomolecular Structure & Dynamics, 32(4), 591–601. https://doi.org/10.1080/07391102.2013.782825
  • Kiss, R., Sandor, M., & Szalai, F. A. (2012). A public web service for drug discovery. Journal of Cheminformatics, 4(S1), P17. https://doi.org/10.1186/1758-2946-4-S1-P17
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Leinartaite, L., Saraboji, K., Nordlund, A., Logan, D. T., & Oliveberg, M. (2010). Folding catalysis by transient coordination of Zn2+ to the Cu ligands of the ALS-associated enzyme Cu/Zn superoxide dismutase 1. Journal of the American Chemical Society, 132(38), 13495–13504. https://doi.org/10.1021/ja1057136.
  • Li, H. T., Jiao, M., Chen, J., & Liang, Y. (2010). Roles of zinc and copper in modulating the oxidative refolding of bovine copper, zinc superoxide dismutase. Acta Biochimica et Biophysica Sinica, 42(3), 183–194. https://doi.org/10.1093/abbs/gmq005
  • LigPrep. (2020). Schrödinger Release 2020-4. Schrödinger, LLC.
  • Maddah, M., & Karami, L. (2021). An atomistic investigation on the interaction of distamycin A and its derivative with the telomeric G-Quadruplex as anticancer agents by molecular dynamics simulation. Archives of Biochemistry and Biophysics, 701, 108797. https://doi.org/10.1016/J.ABB.2021.108797
  • Madeira, F., Park, Y. M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., Basutkar, P., Tivey, A. R. N., Potter, S. C., Finn, R. D., & Lopez, R. (2019). The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research, 47(W1), W636–W641. https://doi.org/10.1093/nar/gkz268
  • Mathew, N., Karunan, T., Srinivasan, L., & Muthuswamy, K. (2009). Synthesis and screening of substituted 1,4-naphthoquinones (NPQs) as antifilarial agents. Drug Development Research, 71(3), n/a–n/a. https://doi.org/10.1002/ddr.20357
  • Mathew, N., Misra-Bhattacharya, S., Perumal, V., & Muthuswamy, K. (2008). Antifilarial lead molecules isolated from Trachyspermum ammi. Molecules (Basel, Switzerland), 13(9), 2156–2168. https://doi.org/10.3390/MOLECULES13092156
  • Michael, E., & Bundy, D. A. P. (1997). Global mapping of lymphatic filariasis. Parasitology Today (Personal ed.), 13(12), 472–476. https://doi.org/10.1016/S0169-4758(97)01151-4
  • Michael, E., Bundy, D. A. P., & Grenfell, B. T. (1996). Re-assessing the global prevalence and distribution of lymphatic filariasis. Parasitology, 112(4), 409–428. https://doi.org/10.1017/S0031182000066646
  • Misra, S., Singh, L. K., Gupta, J., Misra-Bhattacharya, S., D., Katiyar, & Priyanka. (2015). Synthesis and biological evaluation of 4-oxycoumarin derivatives as a new class of anti-filarial agents. European Journal of Medicinal Chemistry, 94, 211–217., https://doi.org/10.1016/J.EJMECH.2015.02.043
  • Nisha, M., Kalyanasundaram, M., Paily, K. P., Vanamail, P., K. Balaraman., & K. P. P., Abidha. (2007). In vitro screening of medicinal plant extracts for macrofilaricidal activity. Parasitology Research, 100(3), 575–579. https://doi.org/10.1007/S00436-006-0294-9
  • Nordlund, A., & Oliveberg, M. (2006). Folding of Cu/Zn superoxide dismutase suggests structural hotspots for gain of neurotoxic function in ALS: Parallels to precursors in amyloid disease. Proceedings of the National Academy of Sciences of the United States of America, 103(27), 10218–10223. https://doi.org/10.1073/pnas.0601696103.
  • Nordlund, A., & Oliveberg, M. (2008). SOD1‐associated ALS: a promising system for elucidating the origin of protein‐misfolding disease. HFSP Journal, 2(6), 354–364.
  • Nordlund, A., Leinartaite, L., Saraboji, K., Aisenbrey, C., Gröbner, G., Zetterström, P., Danielsson, J., Logan, D. T., & Oliveberg, M. (2009). Functional features cause misfolding of the ALS-provoking enzyme SOD1. Proceedings of the National Academy of Sciences of the United States of America, 106(24), 9667–9672.
  • Oostenbrink, C., Villa, A., Mark, A. E., & van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 25(13), 1656–1676. https://doi.org/10.1002/jcc.20090
  • Ottesen, E. A. (1985). Efficacy of diethylcarbamazine in eradicating infection with lymphatic-dwelling filariae in humans. Reviews of Infectious Diseases, 7(3), 341–356. https://doi.org/10.1093/clinids/7.3.341
  • Ottesen, E. A., Duke, B. O. L., Karam, M., & Behbehani, K. (1997). Strategies and tools for the control/elimination of lymphatic filariasis. Bulletin of the World Health Organization, 75(6), 491–503.
  • Paily, K. P., Hoti, S. L., & Das, P. K. (2009). A review of the complexity of biology of lymphatic filarial parasites. Journal of Parasitic Diseases: Official Organ of the Indian Society for Parasitology, 33(1-2), 3–12. https://doi.org/10.1007/s12639-009-0005-4
  • Parge, H. E., Hallewell, R. A., & Tainer, J. A. (1992). Atomic structures of wild-type and thermostable mutant recombinant human Cu,Zn superoxide dismutase. Proceedings of the National Academy of Sciences of the United States of America, 89(13), 6109–6113. https://doi.org/10.1073/PNAS.89.13.6109
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Perumal, A. N. I., Gunawardene, Y. I. N. S., & Dassanayake, R. S. (2016). Setaria digitata in advancing our knowledge of human lymphatic filariasis. Journal of Helminthology, 90(2), 129–138. https://doi.org/10.1017/S0022149X15000309
  • Prabhu, D., Rajamanikandan, S., Saritha, P., & Jeyakanthan, J. (2020). Evolutionary significance and functional characterization of streptomycin adenylyltransferase from Serratia marcescens. Journal of Biomolecular Structure & Dynamics, 38(15), 4418–4431. https://doi.org/10.1080/07391102.2019.1682046
  • Prabhu, D., Rajamanikandan, S., Sureshan, M., Jeyakanthan, J., & Saraboji, K. (2021). Modelling studies reveal the importance of the C-terminal inter motif loop of NSP1 as a promising target site for drug discovery and screening of potential phytochemicals to combat SARS-CoV-2. Journal of Molecular Graphics & Modelling, 106, 107920. https://doi.org/10.1016/j.jmgm.2021.107920
  • Prime. (2020). Schrödinger Release 2020-4. Schrödinger, LLC.
  • Protein Preparation Wizard. (2020). Epik. Schrödinger, LLC.
  • QikProp. (2020). Schrödinger Release 2020-4. Schrödinger, LLC.
  • Rajamanikandan, S., Soundarya, S., Paramasivam, A., Prabhu, D., Jeyakanthan, J., & Ramasamy, V. (2021). Computational identification of potential lead molecules targeting rho receptor of Neisseria gonorrhoeae. Journal of Biomolecular Structure & Dynamics, 40(14), 6415-6425. https://doi.org/10.1080/07391102.2021.1885491
  • Rajamanikandan, S., & Srinivasan, P. (2017). Exploring the selectivity of auto-inducer complex with LuxR using molecular docking, mutational studies and molecular dynamics simulations. Journal of Molecular Structure, 1131, 281–293. https://doi.org/10.1016/j.molstruc.2016.11.056
  • Ramaiah, K. D., Das, P. K., Michael, E., & Guyatt, H. L. (2000). The economic burden of lymphatic filariasis in India. Parasitology Today (Personal ed.), 16(6), 251–253. https://doi.org/10.1016/S0169-4758(00)01643-4
  • Routh, H. B., & Bhowmik, K. R. (1993). History of elephantiasis. International Journal of Dermatology, 32(12), 913–916. https://doi.org/10.1111/j.1365-4362.1993.tb01418.x
  • Schrödinger Release 2020-4: SiteMap. (2020). Schrödinger, LLC., NY.
  • Schmidlin, T., Kennedy, B. K., & Daggett, V. (2009). Structural changes to monomeric CuZn superoxide dismutase caused by the familial amyotrophic lateral sclerosis-associated mutation A4V. Biophysical Journal, 97(6), 1709–1718. https://doi.org/10.1016/j.bpj.2009.06.043.
  • Schüttelkopf, A. W., & van Aalten, D. M. F. (2004). PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica. Section D, Biological Crystallography, 60(Pt 8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Schwab, A. E., Boakye, D. A., Kyelem, D., & Prichard, R. K. (2005). Detection of benzimidazole resistance-associated mutations in the filarial nematode Wuchereria bancrofti and evidence for selection by albendazole and ivermectin combination treatment. The American Journal of Tropical Medicine and Hygiene, 73(2), 234–238.
  • Selkirk, M. E., Smith, V. P., Thomas, G. R., & Gounaris, K. (1998). Resistance of filarial nematode parasites to oxidative stress. International Journal for Parasitology, 28(9), 1315–1332. https://doi.org/10.1016/S0020-7519(98)00107-6
  • Senanayake, K. S., Söderberg, J., Põlajev, A., Malmberg, M., Karunanayake, E. H., Tennekoon, K. H., Samarakoon, S. R., Bongcam-Rudloff, E., & Niazi, A. (2020). The genome of Setaria digitata: A cattle nematode closely related to human filarial parasites. Genome Biology and Evolution, 12(2), 3971–3976. https://doi.org/10.1093/GBE/EVAA017
  • Senathilake, K. S., Karunanayake, E. H., Samarakoon, S. R., Tennekoon, K. H., de Silva, E. D., & Adhikari, A. (2017). Oleanolic acid from antifilarial triterpene saponins of Dipterocarpus zeylanicus induces oxidative stress and apoptosis in filarial parasite Setaria digitata in vitro. Experimental Parasitology, 177, 13–21. https://doi.org/10.1016/J.EXPPARA.2017.03.007
  • Simonsen, P. E., & Mwakitalu, M. E. (2013). Urban lymphatic filariasis. Parasitology Research, 112(1), 35–44. https://doi.org/10.1007/s00436-012-3226-x
  • Sindhu, T., Venkatesan, T., Prabhu, D., Jeyakanthan, J., Gracy, G. R., Jalali, S. K., & Rai, A. (2018). Insecticide-resistance mechanism of Plutella xylostella (L.) associated with amino acid substitutions in acetylcholinesterase-1: A molecular docking and molecular dynamics investigation. Computational Biology and Chemistry, 77(August), 240–250. https://doi.org/10.1016/j.compbiolchem.2018.09.004
  • Sirangelo, I., & Iannuzzi, C. (2017). The role of metal binding in the amyotrophic lateral sclerosis-related aggregation of copper-zinc superoxide dismutase. Molecules (Basel, Switzerland), 22(9), 1429. https://doi.org/10.3390/molecules22091429
  • Strange, R. W., Antonyuk, S., Hough, M. A., Doucette, P. A., Rodriguez, J. A., Hart, P. J., Hayward, L. J., Valentine, J. S., & Hasnain, S. S. (2003). The structure of holo and metal-deficient wild-type human Cu, Zn superoxide dismutase and its relevance to familial amyotrophic lateral sclerosis. Journal of Molecular Biology, 328(4), 877–891. https://doi.org/10.1016/S0022-2836(03)00355-3
  • Sureshan, M., Prabhu, D., Aruldoss, I., & Saraboji, K. (2022). Potential inhibitors for peroxiredoxin 6 of W. bancrofti: A combined study of modelling, structure-based drug design and MD simulation. Journal of Molecular Graphics & Modelling, 112, 108115. https://doi.org/10.1016/j.jmgm.2021.108115
  • Sureshan, M., Rajamanikandan, S., Srimari, S., Prabhu, D., Jeyakanthan, J., & Saraboji, K. (2022). Designing specific inhibitors against dihydrofolate reductase of W. bancrofti towards drug discovery for lymphatic filariasis. Structural Chemistry, 33(3), 935–947. https://doi.org/10.1007/s11224-022-01896-1
  • Tainer, J. A., Getzoff, E. D., Beem, K. M., Richardson, J. S., & Richardson, D. C. (1982). Determination and analysis of the 2 Å structure of copper, zinc superoxide dismutase. Journal of Molecular Biology, 160(2), 181–217. https://doi.org/10.1016/0022-2836(82)90174-7
  • The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC. (n.d).
  • Tompa, D. R., & Kadhirvel, S. (2018). Molecular dynamics of a far positioned SOD1 mutant V14M reveals pathogenic misfolding behavior. Journal of Biomolecular Structure & Dynamics, 36(15), 4085–4098. https://doi.org/10.1080/07391102.2017.1407675.
  • Tompa, D. R., & Kadhirvel, S. (2020). Changes in hydrophobicity mainly promotes the aggregation tendency of ALS associated SOD1 mutants. International Journal of Biological Macromolecules, 145, 904–913. https://doi.org/10.1016/j.ijbiomac.2019.09.181.
  • Vrahatis, M. N., Androulakis, G. S., Lambrinos, J. N., & Magoulas, G. D. (2000). A class of gradient unconstrained minimization algorithms with adaptive stepsize. Journal of Computational and Applied Mathematics, 114(2), 367–386. https://doi.org/10.1016/S0377-0427(99)00276-9
  • Tiwari, A., Liba, A., Sohn, S. H., Seetharaman, S. V., Bilsel, O., Matthews, C. R., Hart, P. J., Valentine, J. S., & Hayward, L. J. (2009). Metal deficiency increases aberrant hydrophobicity of mutant superoxide dismutases that cause amyotrophic lateral sclerosis. The Journal of Biological Chemistry, 284(40), 27746–27758. https://doi.org/10.1074/JBC.M109.043729

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.