258
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Computational approaches for innovative anti-viral drug discovery using Orthosiphon aristatus blume miq against dengue virus

, , , , , , , , & show all
Pages 8738-8750 | Received 13 May 2022, Accepted 11 Oct 2022, Published online: 27 Oct 2022

References

  • Adasme, M. F., Linnemann, K. L., Bolz, S. N., Kaiser, F., Salentin, S., Haupt, V. J., & Schroeder, M. (2021). PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Research, 49(W1), W530–W534. https://doi.org/10.1093/nar/gkab294
  • Adawara, S. N., Mamza, P., Gideon, S. A., & Ibrahim, A. (2020). Anti-dengue potential, molecular docking study of some chemical constituents in the leaves of Isatis tinctoria. Chemical Review and Letters, 3(3), 104–109. https://doi.org/10.22034/CRL.2020.228931.1054
  • Al-Keridis, L. A., Abutaha, N., AL-mekhlafi, F. A., Rady, A. M., & Al-Khalifa, M. S. (2022). Larvicidal and antiviral nature of phoenix dactylifera L. natural products by targeting dengue virus and Aedes aegypti L. Proteins through molecular docking. Journal of King Saud University, Science, 34(7), 102274. https://doi.org/10.1016/j.jksus.2022.102274
  • Amaro, R. E., Baudry, J., Chodera, J., Demir, Ö., McCammon, J. A., Miao, Y., & Smith, J. C. (2018). Ensemble docking in drug discovery. Biophysical Journal, 114(10), 2271–2278. https://doi.org/10.1016/j.bpj.2018.02.038
  • Anasir, M. I., Ramanathan, B., & Poh, C. L. (2020). Structure-based design of antivirals against envelope glycoprotein of dengue virus. Viruses, 12(4), 367. https://doi.org/10.3390/v12040367
  • Asea, A. A., & Kaur, P. (Eds.) (2018). Regulation of heat shock protein responses (vol. 13). Springer.
  • Batubara, I., Komariah, K., Sandrawati, A., & Nurcholis, W. (2020). Genotype selection for phytochemical content and pharmacological activities in ethanol extracts of fifteen types of Orthosiphon aristatus (Blume) Miq. leaves using chemometric analysis. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-77991-2
  • Begum, F., Das, S., Mukherjee, D., & Ray, U. (2019). Hijacking the host immune cells by dengue virus: Molecular interplay of receptors and dengue virus envelope. Microorganisms, 7(9), 323. https://doi.org/10.3390/microorganisms7090323
  • Bhatt, P., Sabeena, S. P., Varma, M., & Arunkumar, G. (2021). Current understanding of the pathogenesis of dengue virus infection. Current Microbiology, 78(1), 17–32. https://doi.org/10.1007/s00284-020-02284-w
  • Bitencourt-Ferreira, G., & Azevedo, W. F. D. (2019). Docking with SwissDock. In Docking screens for drug discovery (pp. 189–202). Humana. https://doi.org/10.1007/978-1-4939-9752-7_12
  • Bunker, A., & Róg, T. (2020). Mechanistic understanding from molecular dynamics simulation in pharmaceutical research 1: drug delivery. Frontiers in Molecular Biosciences, 7, 604770. https://doi.org/10.3389/fmolb.2020.604770
  • Chemical Computing Group’s Molecular Operating Environment (MOE). (2019). MOE 2019. 0201. http://www.chemcomp.com/MOEMolecular_Operating_Environment.htm.
  • Chua, L. S., Lau, C. H., Chew, C. Y., Ismail, N. I. M., & Soontorngun, N. (2018). Phytochemical profile of Orthosiphon aristatus extracts after storage: Rosmarinic acid and other caffeic acid derivatives. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 39, 49–55. http://dx.doi.org/10.1016/j.phymed.2017.12.015
  • Di Muzio, E., Toti, D., & Polticelli, F. (2017). DockingApp: a user friendly interface for facilitated docking simulations with AutoDock Vina. Journal of Computer-Aided Molecular Design, 31(2), 213–218. https://doi.org/10.1007/s10822-016-0006-1
  • Dieng, I., Cunha, M. D. P., Diagne, M. M., Sembène, P. M., Zanotto, P. M., de, A., Faye, O., Faye, O., & Sall, A. A. (2021). Origin and spread of the dengue virus type 1, genotype v in Senegal, 2015–2019. Viruses, 13(1), 57–2019. https://doi.org/10.3390/v13010057
  • El Sahili, A., & Lescar, J. (2017). Dengue virus non-structural protein 5. Viruses, 9(4), 91. https://doi.org/10.3390/v9040091
  • Gaulton, A., Hersey, A., Nowotka, M., Bento, A. P., Chambers, J., Mendez, D., Mutowo, P., Atkinson, F., Bellis, L. J., Cibrián-Uhalte, E., Davies, M., Dedman, N., Karlsson, A., Magariños, M. P., Overington, J. P., Papadatos, G., Smit, I., & Leach, A. R. (2017). The ChEMBL database in 2017. Nucleic Acids Research, 45(D1), D945–D954. https://doi.org/10.1093/nar/gkw1074
  • Ghildiyal, R., Prakash, V., Chaudhary, V. K., Gupta, V., Gabrani, R., Ghosh, I., & Talukdar, P. (2020). Phytochemicals as antiviral agents: recent updates. In Plant-derived bioactives (pp. 279–295). Springer. https://doi.org/10.1007/978-981-15-1761-7_12
  • Ghosh, I., & Talukdar, P. (2019). Molecular docking and pharmacokinetics study for selected leaf phytochemicals from Carica papaya Linn. against dengue virus protein, NS2B/NS3 protease. World Scientific News, 124(2), 264–278.
  • Haid, S., Novodomská, A., Gentzsch, J., Grethe, C., Geuenich, S., Bankwitz, D., Chhatwal, P., Jannack, B., Hennebelle, T., Bailleul, F., Keppler, O. T., Poenisch, M., Bartenschlager, R., Hernandez, C., Lemasson, M., Rosenberg, A. R., Wong-Staal, F., Davioud-Charvet, E., & Pietschmann, T. (2012). A plant-derived flavonoid inhibits entry of all HCV genotypes into human hepatocytes. Gastroenterology, 143(1), 213–222.e5. https://doi.org/10.1053/j.gastro.2012.03.036
  • Hasan, M., Mia, M. M., Munna, S. U., Talha, M. M. H., & Das, K. (2022). Seawater fungi-derived compound screening to identify novel small molecules against dengue virus NS5 methyltransferase and NS2B/NS3 protease. Informatics in Medicine Unlocked, 30, 100932. https://doi.org/10.1016/j.imu.2022.100932
  • Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S., & Coleman, R. G. (2012). ZINC: a free tool to discover chemistry for biology. Journal of Chemical Information and Modeling, 52(7), 1757–1768. https://doi.org/10.1021/ci3001277
  • Islam, M. T. (2019). Phytochemical information and pharmacological activities of Okra (Abelmoschus esculentus): A literature‐based review. Phytotherapy Research: PTR, 33(1), 72–80. https://doi.org/10.1002/ptr.6212.
  • Jayaram, B., Singh, T., Mukherjee, G., Mathur, A., Shekhar, S., & Shekhar, V. (2012). Sanjeevini: a freely accessible web-server for target directed lead molecule discovery. In BMC Bioinformatics, 13(S17), 1–13. https://doi.org/10.1186/1471-2105-13-S17-S7
  • Jejurikar, B. L., & Rohane, S. H. (2021). Drug designing in discovery studio. Asian Journal of Research in Chemistry, 14(2), 135–138.
  • Karamese, M., Aydogdu, S., Karamese, S. A., Altoparlak, U., & Gundogdu, C. (2015). Preventive effects of a major component of green tea, epigallocathechin-3-gallate, on hepatitis-B virus DNA replication. Asian Pacific Journal of Cancer Prevention: APJCP, 16(10), 4199–4202. https://doi.org/10.7314/APJCP.2015.16.10.4199.
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2021). PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Research, 49(D1), D1388–D1395. https://doi.org/10.1093/nar/gkaa971
  • Lazo, L. (2020). Dengue virus 4: the ‘black sheep’ of the family? Expert Review of Vaccines, 19(9), 807–815. https://doi.org/10.1080/14760584.2020.1813578
  • Lee, M., Son, M., Ryu, E., Shin, Y. S., Kim, J. G., Kang, B. W., Cho, H., & Kang, H. (2015). Quercetin-induced apoptosis prevents EBV infection. Oncotarget, 6(14), 12603–12624. https://doi.org/10.18632/oncotarget.3687.
  • Lescar, J., Soh, S., Lee, L. T., Vasudevan, S. G., Kang, C., & Lim, S. P. (2018). The dengue virus replication complex: from RNA replication to protein-protein interactions to evasion of innate immunity. In Dengue and Zika: Control and antiviral treatment strategies (pp. 115–129). Springer. https://doi.org/10.1007/978-981-10-8727-1_9
  • Lim, W. Z., Cheng, P. G., Abdulrahman, A. Y., & Teoh, T. C. (2020). The identification of active compounds in Ganoderma lucidum var. antler extract inhibiting dengue virus serine protease and its computational studies. Journal of Biomolecular Structure & Dynamics, 38(14), 4273–4288. https://doi.org/10.1080/07391102.2019.1678523
  • Liu, D., Cao, X., Kong, Y., Mu, T., & Liu, J. (2021). Inhibitory mechanism of sinensetin on α-glucosidase and non-enzymatic glycation: Insights from spectroscopy and molecular docking analyses. International Journal of Biological Macromolecules, 166, 259–267.
  • Mooers, B. H., & Brown, M. E. (2021). Templates for writing PyMOL scripts. Protein Science: A Publication of the Protein Society, 30(1), 262–269. https://doi.org/10.1002/pro.3997
  • Muratov, E. N., Bajorath, J., Sheridan, R. P., Tetko, I. V., Filimonov, D., Poroikov, V., Oprea, T. I., Baskin, I. I., Varnek, A., Roitberg, A., Isayev, O., Curtarolo, S., Fourches, D., Cohen, Y., Aspuru-Guzik, A., Winkler, D. A., Agrafiotis, D., Cherkasov, A., & Tropsha, A. (2020). QSAR without borders. Chemical Society Reviews, 49(11), 3525–3564. https://doi.org/10.1039/D0CS00098A
  • Noorbakhsh, A., Hosseininezhadian Koushki, E., Farshadfar, C., & Ardalan, N. (2021). Designing a natural inhibitor against human kynurenine aminotransferase type II and a comparison with PF-04859989: a computational effort against schizophrenia. Journal of Biomolecular Structure and Dynamics, 23, 1–4. https://doi.org/10.1080/07391102.2021.1893817
  • Norazharuddin, H., & Lai, N. S. (2018). Roles and prospects of dengue virus non-structural proteins as antiviral targets: an easy digest. The Malaysian Journal of Medical Sciences: MJMS, 25(5), 6–15. https://doi.org/10.21315/mjms2018.25.5.2
  • Nouroz, F., Mehboob, M., Mobin, T., & Khan, S. (2021). In silico exploitation of antiviral phytochemicals against dengue. Pakistan Journal of Botany, 53(1), 309–319.
  • Ortega, J. T., Suárez, A. I., Serrano, M. L., Baptista, J., Pujol, F. H., & Rangel, H. R. (2017). The role of the glycosyl moiety of myricetin derivatives in anti-HIV-1 activity in vitro. AIDS Research and Therapy, 14(1), 1–6. https://doi.org/10.1186/s12981-017-0183-6
  • Park, C. J., & Seo, Y. S. (2015). Heat shock proteins: a review of the molecular chaperones for plant immunity. The Plant Pathology Journal, 31(4), 323–333. https://doi.org/10.5423/PPJ.RW.08.2015.0150.
  • Penke, B., Bogár, F., Crul, T., Sántha, M., Tóth, M. E., & Vígh, L. (2018). Heat shock proteins and autophagy pathways in neuroprotection: from molecular bases to pharmacological interventions. International Journal of Molecular Sciences, 19(1), 325. https://doi.org/10.3390/ijms19010325
  • Pontius, J., Richelle, J., & Wodak, S. J. (1996). Deviations from standard atomic volumes as a quality measure for protein crystal structures. Journal of Molecular Biology, 264(1), 121–136. https://doi.org/10.1093/nar/gkab294
  • Porter, K. A., Desta, I., Kozakov, D., & Vajda, S. (2019). What method to use for protein–protein docking? Current Opinion in Structural Biology, 55, 1–7. https://doi.org/10.1016/j.sbi.2018.12.010
  • Pulido, P., & Leister, D. (2018). Novel DNAJ‐related proteins in Arabidopsis thaliana. The New Phytologist, 217(2), 480–490. https://doi.org/10.1111/nph.14827
  • Radons, J. (2016). The human HSP70 family of chaperones: where do we stand? Cell Stress & Chaperones, 21(3), 379–404. https://doi.org/10.1007/s12192-016-0676-6
  • Richard, A. S., Zhang, A., Park, S. J., Farzan, M., Zong, M., & Choe, H. (2015). Virion-associated phosphatidylethanolamine promotes TIM1-mediated infection by Ebola, dengue, and West Nile viruses. Proceedings of the National Academy of Sciences of the United States of America, 112(47), 14682–14687. https://doi.org/10.1073/pnas.1508095112
  • Rothan, H. A., Abdulrahman, A. Y., Sasikumer, P. G., Othman, S., Abd Rahman, N., & Yusof, R. (2012). Protegrin-1 inhibits dengue NS2B-NS3 serine protease and viral replication in MK2 cells. Journal of Biomedicine & Biotechnology, 2012, 251482. https://doi.org/10.1155/2012/251482
  • Rothan, H. A., & Kumar, M. (2019). Role of endoplasmic reticulum-associated proteins in flavivirus replication and assembly complexes. Pathogens, 8(3), 148. https://doi.org/10.3390/pathogens8030148
  • Roy, S. K., & Bhattacharjee, S. (2021). Dengue virus: epidemiology, biology, and disease aetiology. Canadian Journal of Microbiology, 67(10), 687–702. https://doi.org/10.1139/cjm-2020-0572
  • Sang, H., Huang, Y., Tian, Y., Liu, M., Chen, L., Li, L., Liu, S., & Yang, J. (2021). Multiple modes of action of myricetin in influenza A virus infection. Phytotherapy Research, 35(5), 2797–2806. https://doi.org/10.1002/ptr.7025
  • Sundar, P., S., SJ, P., A. G., S., & AK, S. (2021). Drug repurposing of Daclatasvir and Famciclovir as antivirals against dengue virus infection by in silico and in vitro techniques. Indian Journal of Biochemistry and Biophysics (IJBB), 58(6), 557–564.
  • Taguwa, S., Maringer, K., Li, X., Bernal-Rubio, D., Rauch, J. N., Gestwicki, J. E., Andino, R., Fernandez-Sesma, A., & Frydman, J. (2015). Defining Hsp70 subnetworks in dengue virus replication reveals key vulnerability in flavivirus infection. Cell, 163(5), 1108–1123. https://doi.org/10.1016/j.cell.2015.10.046.
  • Troost, B., & Smit, J. M. (2020). Recent advances in antiviral drug development towards dengue virus. Current Opinion in Virology, 43, 9–21. https://doi.org/10.1016/j.coviro.2020.07.009
  • Ulu, C. (2015). Exact analytical inversion of interval type-2 TSK fuzzy logic systems with closed form inference methods. Applied Soft Computing, 37, 60–70. https://doi.org/10.1016/j.asoc.2015.08.013
  • Wahaab, A., Mustafa, B. E., Hameed, M., Stevenson, N. J., Anwar, M. N., Liu, K., Wei, J., Qiu, Y., & Ma, Z. (2021). Potential role of flavivirus NS2B-NS3 proteases in viral pathogenesis and anti-flavivirus drug discovery employing animal cells and models: A review. Viruses, 14(1), 44. https://doi.org/10.3390/v14010044
  • Wang, L.-F., Lin, Y.-S., Huang, N.-C., Yu, C.-Y., Tsai, W.-L., Chen, J.-J., Kubota, T., Matsuoka, M., Chen, S.-R., Yang, C.-S., Lu, R.-W., Lin, Y.-L., & Chang, T.-H. (2015). Hydroxychloroquine-inhibited dengue virus is associated with host defense machinery. Journal of Interferon & Cytokine Research: The Official Journal of the International Society for Interferon and Cytokine Research, 35(3), 143–156. https://doi.org/10.1089/jir.2014.0038
  • Wang, W. H., Urbina, A. N., Chang, M. R., Assavalapsakul, W., Lu, P. L., Chen, Y. H., & Wang, S. F. (2020). Dengue hemorrhagic fever–a systemic literature review of current perspectives on pathogenesis, prevention and control. Journal of Microbiology, Immunology, and Infection = Wei Mian yu Gan Ran za Zhi, 53(6), 963–978. https://doi.org/10.1016/j.jmii.2020.03.007
  • Wei, Z. X., Tang, T. T., & Jiang, S. P. (2020). The antiviral mechanisms, effects, safety and adverse effects of chloroquine. European Review for Medical and Pharmacological Sciences, 24(12), 7164–7172.
  • Wu, W., Li, R., Li, X., He, J., Jiang, S., Liu, S., & Yang, J. (2015). Quercetin as an antiviral agent inhibits influenza A virus (IAV) entry. Viruses, 8(1), 6. https://doi.org/10.3390/v8010006
  • Wu, D-w., Mao, F., Ye, Y., Li, J., Xu, C-l., Luo, X-m., Chen, J., & Shen, X. (2015). Policresulen, a novel NS2B/NS3 protease inhibitor, effectively inhibits the replication of DENV2 virus in BHK-21 cells. Acta Pharmacologica Sinica, 36(9), 1126–1136. https://doi.org/10.1038/aps.2015.56
  • Yang, H., Lou, C., Sun, L., Li, J., Cai, Y., Wang, Z., Li, W., Liu, G., & Tang, Y. (2019). admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics (Oxford, England), 35(6), 1067–1069. https://doi.org/10.1093/bioinformatics/bty707
  • Yang, B., Zhang, R., Sa, Q., & Du, Y. (2022). Rhamnazin ameliorates traumatic brain injury in mice via reduction in apoptosis, oxidative stress, and inflammation. Neuroimmunomodulation, 29(1), 28–35. https://doi.org/10.1159/000516927
  • Yap, S. S., Nguyen-Khuong, T., Rudd, P. M., & Alonso, S. (2017). Dengue virus glycosylation: what do we know? Frontiers in Microbiology, 8, 1415. https://doi.org/10.3389/fmicb.2017.01415
  • Zardecki, C., Dutta, S., Goodsell, D. S., Lowe, R., Voigt, M., & Burley, S. K. (2022). PDB‐101: Educational resources supporting molecular explorations through biology and medicine. Protein Science: A Publication of the Protein Society, 31(1), 129–140. https://doi.org/10.1002/pro.4200
  • Zhang, P., Leu, J. I. J., Murphy, M. E., George, D. L., & Marmorstein, R. (2014). Crystal structure of the stress-inducible human heat shock protein 70 substrate-binding domain in complex with peptide substrate. PloS One, 9(7), e103518. https://doi.org/10.1371/journal.pone.0103518

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.