581
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Insights into molecular docking and dynamics to reveal therapeutic potential of natural compounds against P53 protein

, ORCID Icon, , , , & ORCID Icon show all
Pages 8762-8781 | Received 04 Jul 2022, Accepted 11 Oct 2022, Published online: 25 Oct 2022

References

  • Agupitan, A. D., Neeson, P., Williams, S., Howitt, J., Haupt, S., & Haupt, Y. (2020). P53: A guardian of immunity becomes its saboteur through mutation. International Journal of Molecular Sciences, 21(10), 3452. https://doi.org/10.3390/ijms21103452
  • Allouche, A. R. (2011). Gabedit—A graphical user interface for computational chemistry softwares. Journal of Computational Chemistry, 32(1), 174–182. https://doi.org/10.1002/jcc.21600
  • ben Sghaier, M., Pagano, A., Mousslim, M., Ammari, Y., Kovacic, H., & Luis, J. (2016). Rutin inhibits proliferation, attenuates superoxide production and decreases adhesion and migration of human cancerous cells. Biomedicine & Pharmacotherapy = Biomedecine & pharmacotherapie, 84, 1972–1978. https://doi.org/10.1016/j.biopha.2016.11.001
  • Bienert, S., Waterhouse, A., de Beer, T. A., Tauriello, G., Studer, G., Bordoli, L., & Schwede, T. (2017). The SWISS-MODEL repository—New features and functionality. Nucleic Acids Research, 45(D1), D313–D319.
  • Borse, V., Konwar, A. N., & Buragohain, P. (2020). Oral cancer diagnosis and perspectives in India. Sensors International, 1, 100046.
  • Brown, C. J., Cheok, C. F., Verma, C. S., & Lane, D. P. (2011). Reactivation of p53: From peptides to small molecules. Trends in Pharmacological Sciences, 32(1), 53–62.
  • Budzynska, B., Faggio, C., Kruk-Slomka, M., Samec, D., Nabavi, S. F., Sureda, A., Devi, K. P., & Nabavi, S. M. (2019). Rutin as neuroprotective agent: From bench to bedside. Current Medicinal Chemistry, 26(27), 5152–5164.
  • Caglayan, C., Kandemir, F. M., Yildirim, S., Kucukler, S., & Eser, G. (2019). Rutin protects mercuric chloride‐induced nephrotoxicity via targeting of aquaporin 1 level, oxidative stress, apoptosis and inflammation in rats. Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements (GMS), 54, 69–78.
  • Chen, F., Liu, H., Sun, H., Pan, P., Li, Y., Li, D., & Hou, T. (2016). Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein–protein binding free energies and rerank binding poses generated by protein–protein docking. Physical Chemistry Chemical Physics, 18(32), 22129–22139. https://doi.org/10.1039/C6CP03670H
  • del Sol, A., Fujihashi, H., Amoros, D., & Nussinov, R. (2006). Residues crucial for maintaining short paths in network communication mediate signaling in proteins. Molecular Systems Biology, 2(1), 2006. https://doi.org/10.1038/msb4100063
  • Deshmukh, A. V., Gupta, A., Chaudhari, A. G., & Gangane, N. M. (2020). Correlation of p53 expression with clinical presentation and prognosis of oral squamous cell carcinoma patients: A pilot study. Indian Journal of Otolaryngology and Head & Neck Surgery, 72, 1–5.
  • Du, X., Li, Y., Xia, Y. L., Ai, S. M., Liang, J., Sang, P., Ji, X. L., & Liu, S. Q. (2016). Insights into protein–ligand interactions: Mechanisms, models, and methods. International Journal of Molecular Sciences, 17(2), 144. https://doi.org/10.3390/ijms17020144
  • Duffy, M. J., Synnott, N. C., & Crown, J. (2017). Mutant p53 as a target for cancer treatment. European Journal of Cancer (Oxford, England: 1990), 83, 258–265.
  • Enogieru, A. B., Haylett, W., Hiss, D. C., Bardien, S., & Ekpo, O. E. (2018). Rutin as a potent antioxidant: Implications for neurodegenerative disorders. Oxidative Medicine and Cellular Longevity, 2018, 6241017. https://doi.org/10.1155/2018/6241017
  • Fife, K. H. (1998). New treatments for genital warts less than ideal. JAMA, 279(24), 2003–2004. https://doi.org/10.1001/jama.279.24.2003
  • Friedman, P. N., Chen, X., Bargonetti, J., & Prives, C. (1993). The p53 protein is an unusually shaped tetramer that binds directly to DNA. Proceedings of the National Academy of Sciences of the United States of America, 90(8), 3319–3323. https://doi.org/10.1073/pnas.90.8.3319
  • Ganeshpurkar, A., & Saluja, A. K. (2017). The pharmacological potential of rutin. Saudi Pharmaceutical Journal: The Official Publication of the Saudi Pharmaceutical Society, 25(2), 149–164.
  • Garcia, P. V., Seiva, F. R. F., Carniato, A. P., de Mello Júnior, W., Duran, N., Macedo, A. M., de Oliveira, A. G., Romih, R., Nunes, I. d S., Nunes, O. d S., & Fávaro, W. J. (2016). Increased toll-like receptors and p53 levels regulate apoptosis and angiogenesis in non-muscle invasive bladder cancer: mechanism of action of P-MAPA biological response modifier. BMC Cancer, 16(1), 1–18. https://doi.org/10.1186/s12885-016-2474-z
  • Gautam, R., Singh, M., Gautam, S., Rawat, J. K., Saraf, S. A., & Kaithwas, G. (2016). Rutin attenuates intestinal toxicity induced by Methotrexate linked with anti-oxidative and anti-inflammatory effects. BMC Complementary and Alternative Medicine, 16(1), 1–6. https://doi.org/10.1186/s12906-016-1069-1
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Gershell, L. J., & Atkins, J. H. (2003). A brief history of novel drug discovery technologies. Nature Reviews. Drug Discovery, 2(4), 321–327.
  • Ghorbani, A. (2017). Mechanisms of antidiabetic effects of flavonoid rutin. Biomedicine & Pharmacotherapy = Biomedecine & pharmacotherapie, 96, 305–312. https://doi.org/10.1016/j.biopha.2017.10.001
  • Hientz, K., Mohr, A., Bhakta-Guha, D., & Efferth, T. (2017). The role of p53 in cancer drug resistance and targeted chemotherapy. Oncotarget, 8(5), 8921–8946.
  • Kairys, V., Baranauskiene, L., Kazlauskiene, M., Matulis, D., & Kazlauskas, E. (2019). Binding affinity in drug design: Experimental and computational techniques. Expert Opinion on Drug Discovery, 14(8), 755–768.
  • Keller, T. H., Pichota, A., & Yin, Z. (2006). A practical view of ‘druggability’. Current Opinion in Chemical Biology, 10(4), 357–361.
  • Khajevand-Khazaei, M. R., Mohseni-Moghaddam, P., Hosseini, M., Gholami, L., Baluchnejadmojarad, T., & Roghani, M. (2018). Rutin, a quercetin glycoside, alleviates acute endotoxemic kidney injury in C57BL/6 mice via suppression of inflammation and up-regulation of antioxidants and SIRT1. European Journal of Pharmacology, 833, 307–313. https://doi.org/10.1016/j.ejphar.2018.06.019
  • Khan, J., Sakib, S. A., Mahmud, S., Khan, Z., Islam, M. N., Sakib, M. A., … Simal-Gandara, J. (2021). Identification of potential phytochemicals from Citrus limon against main protease of SARS-CoV-2: Molecular docking, molecular dynamic simulations and quantum computations. Journal of Biomolecular Structure and Dynamics, 39, 1–12.
  • Kleywegt, G. J., & Jones, T. A. (1996). Phi/psi-chology: Ramachandran revisited. Structure (London, England: 1993), 4(12), 1395–1400.
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Lauria, A., Tutone, M., Ippolito, M., Pantano, L., & Almerico, A. M. (2010). Molecular modeling approaches in the discovery of new drugs for anti-cancer therapy: The investigation of p53-MDM2 interaction and its inhibition by small molecules. Current Medicinal Chemistry, 17(28), 3142–3154.
  • Lindemann, A., Takahashi, H., Patel, A. A., Osman, A. A., & Myers, J. N. (2018). Targeting the DNA damage response in OSCC with TP 53 mutations. Journal of Dental Research, 97(6), 635–644. https://doi.org/10.1177/0022034518759068
  • Lipinski, C. A. (2004). Lead-and drug-like compounds: The rule-of-five revolution. Drug Discovery Today Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Liu, Q., Pan, R., Ding, L., Zhang, F., Hu, L., Ding, B., Zhu, L., Xia, Y., & Dou, X. (2017). Rutin exhibits hepatoprotective effects in a mouse model of non-alcoholic fatty liver disease by reducing hepatic lipid levels and mitigating lipid-induced oxidative injuries. International Immunopharmacology, 49, 132–141. https://doi.org/10.1016/j.intimp.2017.05.026
  • Liu, Y., & Gu, W. (2021). The complexity of p53-mediated metabolic regulation in tumor suppression. Seminars in Cancer Biology.S1044-579X(21)00060-2. https://doi.org/10.1016/j.semcancer.2021.03.010.
  • Mahmud, S., Paul, G. K., Afroze, M., Islam, S., Gupt, S. B. R., Razu, M. H., Biswas, S., Zaman, S., Uddin, M. S., Khan, M., Cacciola, N. A., Emran, T. B., Saleh, M. A., Capasso, R., & Simal-Gandara, J. (2021). Efficacy of phytochemicals derived from Avicennia officinalis for the management of COVID-19: A combined in silico and biochemical study. Molecules, 26(8), 2210. https://doi.org/10.3390/molecules26082210
  • Martins, C. P., Brown-Swigart, L., & Evan, G. I. (2006). Modeling the therapeutic efficacy of p53 restoration in tumors. Cell, 127(7), 1323–1334. https://doi.org/10.1016/j.cell.2006.12.007
  • Melvin, L. S., Welling, U., Kandel, Y., Levinson, Z. A., Taoka, H., Stock, H. J., & Demmerle, W. (2022). Applying stochastic simulation to study defect formation in EUV photoresists. Japanese Journal of Applied Physics, 61(SD), SD1030. https://doi.org/10.35848/1347-4065/ac5b22
  • Ofran, Y., & Rost, B. (2003). Predicted protein–protein interaction sites from local sequence information. FEBS Letters, 544(1–3), 236–239.
  • Ozaki, T., & Nakagawara, A. (2011). Role of p53 in cell death and human cancers. Cancers, 3(1), 994–1013. https://doi.org/10.3390/cancers3010994
  • Parrales, A., & Iwakuma, T. (2015). Targeting oncogenic mutant p53 for cancer therapy. Frontiers in Oncology, 5, 288. https://doi.org/10.3389/fonc.2015.00288
  • Pedamallu, C. S., & Posfai, J. (2010). Open source tool for prediction of genome wide protein–protein interaction network based on ortholog information. Source Code for Biology and Medicine, 5(1), 8–6.
  • Perk, A. A., Shatynska-Mytsyk, I., Gerçek, Y. C., Boztaş, K., Yazgan, M., Fayyaz, S., & Farooqi, A. A. (2014). Rutin mediated targeting of signaling machinery in cancer cells. Cancer Cell International, 14(1), 1–5. https://doi.org/10.1186/s12935-014-0124-6
  • Pirolli, D., Sciandra, F., Bozzi, M., Giardina, B., Brancaccio, A., & De Rosa, M. C. (2014). Insights from molecular dynamics simulations: Structural basis for the V567D mutation-induced instability of zebrafish alpha-dystroglycan and comparison with the murine model. PloS One, 9(7), e103866. https://doi.org/10.1371/journal.pone.0103866
  • Prasad, R., & Prasad, S. B. (2019). A review on the chemistry and biological properties of Rutin, a promising nutraceutical agent. Asian Journal of Pharmacy and Pharmacology, 5(S1), 1–20. https://doi.org/10.31024/ajpp.2019.5.s1.1
  • Puteri, A., & Meizarini, A. (2020). p53: The guardian of genome against OSCC progression. European Journal of Molecular & Clinical Medicine, 7, 1071–1079.
  • Qu, S., Dai, C., Lang, F., Hu, L., Tang, Q., Wang, H., Zhang, Y., & Hao, Z. (2019). Rutin attenuates vancomycin-induced nephrotoxicity by ameliorating oxidative stress, apoptosis, and inflammation in rats. Antimicrobial Agents and Chemotherapy, 63(1). https://doi.org/10.1128/AAC.01545-18
  • Quiroga, R., & Villarreal, M. A. (2016). Vinardo: A scoring function based on Autodock Vina improves scoring, docking, and virtual screening. PloS One, 11(5), e0155183.
  • Radwan, R. R., & Fattah, S. M. A. (2017). Mechanisms involved in the possible nephroprotective effect of rutin and low dose γ irradiation against cisplatin-induced nephropathy in rats. Journal of Photochemistry and Photobiology B: Biology, 169, 56–62. https://doi.org/10.1016/j.jphotobiol.2017.02.022
  • Rastelli, G., & Pinzi, L. (2019). Refinement and rescoring of virtual screening results. Frontiers in Chemistry, 7, 498.
  • Rastelli, G., Del Rio, A., Degliesposti, G., & Sgobba, M. (2010). Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA. Journal of Computational Chemistry, 31(4), 797–810.
  • Saeed, M., Alshammari, F. D., Alam, M. J., Sarim, K. M., Ahmad, K., Hussain, T., Khan, M., Kamal, M. A., Kausar, M. A., Alkreathy, H. M., Faisal, S. M., & Ashraf, G. M. (2018). A synopsis on the role of human papilloma virus infection in cervical cancer. Current Drug Metabolism, 19(9), 798–805. https://doi.org/10.2174/1389200219666180302160317
  • Salsbury, F. R. (2010). Molecular dynamics simulations of protein dynamics and their relevance to drug discovery. Current Opinion in Pharmacology, 10(6), 738–744.
  • Satari, A., Amini, S. A., Raeisi, E., Lemoigne, Y., & Heidarian, E. (2019). Synergetic impact of combined 5-fluorouracil and rutin on apoptosis in pc3 cancer cells through the modulation of p53 gene expression. Advanced Pharmaceutical Bulletin, 9(3), 462–469.
  • Schreiner, W., Karch, R., Knapp, B., & Ilieva, N. (2012). Relaxation estimation of RMSD in molecular dynamics immunosimulations. Computational and Mathematical Methods in Medicine, 2012, 173521.
  • Schrodinger, L. L. C. (2010). The PyMOL molecular graphics system, version 1.5.0.4.
  • Sheu, J. R., Hsiao, G., Chou, P. H., Shen, M. Y., & Chou, D. S. (2004). Mechanisms involved in the antiplatelet activity of rutin, a glycoside of the flavonol quercetin, in human platelets. Journal of Agricultural and Food Chemistry, 52(14), 4414–4418.
  • Song, H. L., Zhang, X., Wang, W. Z., Liu, R. H., Zhao, K., Liu, M. Y., … Ning, B. (2018). Neuroprotective mechanisms of rutin for spinal cord injury through anti-oxidation and anti-inflammation and inhibition of p38 mitogen activated protein kinase pathway. Neural Regeneration Research, 13(1), 128.
  • Sudo, K., Konno, K., Shigeta, S., & Yokota, T. (1998). Inhibitory effects of podophyllotoxin derivatives on herpes simplex virus replication. Antiviral Chemistry & Chemotherapy, 9(3), 263–267.
  • Sun, H., Li, Y., Shen, M., Tian, S., Xu, L., Pan, P., Guan, Y., & Hou, T. (2014). Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. Physical Chemistry Chemical Physics, 16(40), 22035–22045. https://doi.org/10.1039/c4cp03179b
  • Toledo, F., & Wahl, G. M. (2006). Regulating the p53 pathway: In vitro hypotheses, in vivo veritas. Nature Reviews. Cancer, 6(12), 909–923.
  • Uehara, K., Ikehara, F., Shibuya, R., Nakazato, I., Oshiro, M., Kiyuna, M., Tanabe, Y., Toyoda, Z., Kurima, K., Kina, S., Hisaoka, M., & Kinjo, T. (2018). Molecular signature of tumors with monoallelic 13q14 deletion: A case series of spindle cell lipoma and genetically-related tumors demonstrating a link between FOXO1 status and p38 MAPK pathway. Pathology Oncology Research : POR, 24(4), 861–869. https://doi.org/10.1007/s12253-017-0303-6
  • Umamaheswari, M., Aji, C. S., Asokkumar, K., Sivashanmugam, T., Subhadradevi, V., Jagannath, P., & Madeswaran, A. (2012). Docking studies: In sillico aldose reductase inhibitory activity of commercially available flavonoids. ///Bangladesh Journal of Pharmacology///, 7(2), 108–113.
  • Ventura, A., Kirsch, D. G., McLaughlin, M. E., Tuveson, D. A., Grimm, J., Lintault, L., Newman, J., Reczek, E. E., Weissleder, R., & Jacks, T. (2007). Restoration of p53 function leads to tumour regression in vivo. Nature, 445(7128), 661–665.
  • Vishveshwara, S., Ghosh, A., & Hansia, P. (2009). Intra and inter-molecular communications through protein structure network. Current Protein & Peptide Science, 10(2), 146–160.
  • Vistoli, G., Pedretti, A., & Testa, B. (2008). Assessing drug-likeness–What are we missing? Drug Discovery Today, 13(7-8), 285–294.
  • Vogelstein, B., Lane, D., & Levine, A. J. (2000). Surfing the p53 network. Nature, 408(6810), 307–310.
  • Vuignier, K., Schappler, J., Veuthey, J. L., Carrupt, P. A., & Martel, S. (2010). Drug-protein binding: A critical review of analytical tools. Analytical and Bioanalytical Chemistry, 398(1), 53–66.
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055
  • Wang, P., Reed, M., Wang, Y., Mayr, G., Stenger, J. E., Anderson, M. E., Schwedes, J. F., & Tegtmeyer, P. (1994). p53 domains: Structure, oligomerization, and transformation. Molecular and Cellular Biology, 14(8), 5182–5191. https://doi.org/10.1128/mcb.14.8.5182-5191.1994
  • Wang, S., Zhao, Y., Aguilar, A., Bernard, D., & Yang, C. Y. (2017). Targeting the MDM2–p53 protein–protein interaction for new cancer therapy: Progress and challenges. Cold Spring Harbor Perspectives in Medicine, 7(5), a026245. https://doi.org/10.1101/cshperspect.a026245
  • Wang, Y., Xing, J., Xu, Y., Zhou, N., Peng, J., Xiong, Z., Liu, X., Luo, X., Luo, C., Chen, K., Zheng, M., & Jiang, H. (2015). In silico ADME/T modelling for rational drug design. Quarterly Reviews of Biophysics, 48(4), 488–515.
  • Wang, Z., Wang, X., Li, Y., Lei, T., Wang, E., Li, D., Kang, Y., Zhu, F., & Hou, T. (2019). farPPI: A webserver for accurate prediction of protein–ligand binding structures for small-molecule PPI inhibitors by MM/PB(GB)SA methods. Bioinformatics, 35(10), 1777–1779. https://doi.org/10.1093/bioinformatics/bty879
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303.
  • Webster, G. A., & Perkins, N. D. (1999). Transcriptional cross talk between NF-κB and p53. Molecular and Cellular Biology, 19(5), 3485–3495. https://doi.org/10.1128/MCB.19.5.3485
  • Weng, G., Wang, E., Wang, Z., Liu, H., Zhu, F., Li, D., & Hou, T. (2019). HawkDock: A web server to predict and analyze the protein–protein complex based on computational docking and MM/GBSA. Nucleic Acids Research, 47(W1), W322–W330.
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server), W407–W410. https://doi.org/10.1093/nar/gkm290
  • Wiman, K. G. (2010). Pharmacological reactivation of mutant p53: From protein structure to the cancer patient. Oncogene, 29(30), 4245–4252. https://doi.org/10.1038/onc.2010.188
  • Wu, J., Maoqiang, L., Fan, H., Zhenyu, B., Qifang, H., Xuepeng, W., & Liulong, Z. (2016). Rutin attenuates neuroinflammation in spinal cord injury rats. The Journal of Surgical Research, 203(2), 331–337.
  • Xue, W., Zender, L., Miething, C., Dickins, R. A., Hernando, E., Krizhanovsky, V., Cordon-Cardo, C., & Lowe, S. W. (2007). Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature, 445(7128), 656–660.
  • Yan, Y., Tao, H., He, J., & Huang, S. Y. (2020). The HDOCK server for integrated protein–protein docking. Nature Protocols, 15(5), 1829–1852. https://doi.org/10.1038/s41596-020-0312-x
  • Yan, Y., Zhang, D., Zhou, P., Li, B., & Huang, S. Y. (2017). HDOCK: A web server for protein–protein and protein–DNA/RNA docking based on a hybrid strategy. Nucleic Acids Research, 45(W1), W365–W373.
  • Yang, C.-Y., Hsiu, S.-L., Wen, K.-C., Lin, S.-P., Tsai, S.-Y., Hou, Y.-C., & Chao, P.-D. L. (2005). Bioavailability and metabolic pharmacokinetics of rutin and quercetin in rats. Journal of Food and Drug Analysis, 13(3), 244-250. https://doi.org/10.38212/2224-6614.2517
  • Yendo, A. C., de Costa, F., Gosmann, G., & Fett-Neto, A. G. (2010). Production of plant bioactive triterpenoid saponins: Elicitation strategies and target genes to improve yields. Molecular Biotechnology, 46(1), 94–104.
  • Zanaruddin, S. N. S., Yee, P. S., Hor, S. Y., Kong, Y. H., Ghani, W. M. N. W. A., Mustafa, W. M. W., Zain, R. B., Prime, S. S., Rahman, Z. A. A., & Cheong, S.-C. (2013). Common oncogenic mutations are infrequent in oral squamous cell carcinoma of Asian origin. PloS One, 8(11), e80229.
  • Zhang, X., Perez-Sanchez, H., C., & Lightstone, F. (2017). A comprehensive docking and MM/GBSA rescoring study of ligand recognition upon binding antithrombin. Current Topics in Medicinal Chemistry, 17(14), 1631–1639.
  • Zhao, W., Cong, Y., Li, H.-M., Li, S., Shen, Y., Qi, Q., Zhang, Y., Li, Y.-Z., & Tang, Y.-J. (2021). Challenges and potential for improving the druggability of podophyllotoxin-derived drugs in cancer chemotherapy. Natural Product Reports, 38(3), 470–488.
  • Zheng, Y., Zhao, Z., Fan, L., Meng, S., Song, C., Qiu, L., Xu, P., & Chen, J. (2017). Dietary supplementation with rutin has pro-/anti-inflammatory effects in the liver of juvenile GIFT tilapia. Fish & Shellfish Immunology, 64, 49–55.
  • Zhou, G., Liu, Z., & Myers, J. N. (2016). TP53 mutations in head and neck squamous cell carcinoma and their impact on disease progression and treatment response. Journal of Cellular Biochemistry, 117(12), 2682–2692.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.