114
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Structural and spectroscopic details of polysaccharide–bile acid composites from molecular dynamics simulations

& ORCID Icon
Pages 8782-8794 | Received 05 Aug 2022, Accepted 11 Oct 2022, Published online: 30 Oct 2022

References

  • Anderson, J. W., Baird, P., Davis, R. H., Ferreri, S., Knudtson, M., Koraym, A., Waters, V., & Williams, C. L. (2009). Health benefits of dietary fiber. Nutrition Reviews, 67(4), 188–205. https://doi.org/10.1111/j.1753-4887.2009.00189.x.
  • Andersson, M., Ellegård, L., & Andersson, H. (2002). Oat bran stimulates bile acid synthesis within 8 h as measured by 7 α-hydroxy-4-cholesten-3-one. American Journal of Clinical Nutrition, 76(5), 1111–1116. https://doi.org/10.1093/ajcn/76.5.1111.
  • Berendsen, H., J., C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1–3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
  • Bonomi, M., Branduardi, D., Bussi, G., Camilloni, C., Provasi, D., Raiteri, P., Donadio, D., Marinelli, F., Pietrucci, F., Broglia, R. A., & Parrinello, M. (2009). PLUMED: A portable plugin for free-energy calculations with molecular dynamics. Computer Physics Communications, 180(10), 1961–1972. https://doi.org/10.1016/j.cpc.2009.05.011
  • Boyer, J. L. (2013). Bile formation and secretion. Comprehensive Physiology, 3(3), 1035–1078. https://doi.org/10.1002/cphy.c120027.
  • Buhman, K. K., Furumoto, E. J., Donkin, S. S., & Story, J. A. (1998). Dietary psyllium increases fecal bile acid excretion, total steroid excretion and bile acid biosynthesis in rats. Journal of Nutrition, 128(7), 1199–1203. https://doi.org/10.1093/jn/128.7.1199.
  • Capuano, E. (2017). The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect. Critical Reviews in Food Science and Nutrition, 57(16), 3543–3564. https://doi.org/10.1080/10408398.2016.1180501.
  • Chahal, V., Nirwan, S., Pathak, M., & Kakkar, R. (2022). Identification of potent human carbonic anhydrase IX inhibitors: A combination of pharmacophore modeling, 3D-QSAR, virtual screening and molecular dynamics simulations. Journal of Biomolecular Structure & Dynamics, 40(10), 4516–4531. https://doi.org/10.1080/07391102.2020.1860132.
  • Christensen, N. J., Hansen, P. I., Larsen, F. H., Folkerman, T., Motawia, M. S., & Engelsen, S. B. (2010). A combined nuclear magnetic resonance and molecular dynamics study of the two structural motifs for mixed-linkage β-glucans: Methyl β-cellobioside and methyl β-laminarabioside. Carbohydrate Research, 345(4), 474–486. https://doi.org/10.1016/j.carres.2009.12.009.
  • Clulow, A. J., Parrow, A., Hawley, A., Khan, J., Pham, A. C., Larsson, P., Bergström, C. A. S., & Boyd, B. J. (2017). Characterization of solubilizing nanoaggregates present in different versions of simulated intestinal fluid. Journal of Physical Chemistry. B, 121(48), 10869–10881. https://doi.org/10.1021/acs.jpcb.7b08622.
  • Ellegård, L., & Andersson, H. (2007). Oat bran rapidly increases bile acid excretion and bile acid synthesis: An ileostomy study. European Journal of Clinical Nutrition, 61(8), 938–945. https://doi.org/10.1038/sj.ejcn.1602607.
  • Elshourbagy, N. A., Meyers, H. V., & Abdel-Meguid, S. S. (2014). Cholesterol: The good, the bad, and the ugly-therapeutic targets for the treatment of dyslipidemia. Medical Principles and Practice, 23(2), 99–111. https://doi.org/10.1159/000356856.
  • Englyst, K. N., Liu, S., & Englyst, H. N. (2007). Nutritional characterization and measurement of dietary carbohydrates. European Journal of Clinical Nutrition, 61(S1), S19–S39. https://doi.org/10.1038/sj.ejcn.1602937
  • Francisco Buitrago, C., S., Bolintineanu, D., E., Seitz, M., L., Opper, K., B., Wagener, K., J., Stevens, M., L., Frischknecht, A., I., & Winey, K. (2015). Direct comparisons of X-ray scattering and atomistic molecular dynamics simulations for precise acid copolymers and ionomers. Macromolecules, 48(4), 1210–1220. https://doi.org/10.1021/ma5022117
  • Gao, J., Lin, L., Sun, B., & Zhao, M. (2017). Comparison study on polysaccharide fractions from Laminaria japonica: Structural characterization and bile acid binding capacity. Journal of Agricultural and Food Chemistry, 65(44), 9790–9798. https://doi.org/10.1021/acs.jafc.7b04033.
  • Golisch, B., Lei, Z., Tamura, K., & Brumer, H. (2021). Configured for the human gut microbiota: Molecular mechanisms of dietary β-glucan utilization. ACS Chemical Biology, 16(11), 2087–2102. https://doi.org/10.1021/acschembio.1c00563.
  • Grant, T. D., Luft, J. R., Carter, L. G., Matsui, T., Weiss, T. M., Martel, A., & Snell, E. H. (2015). The accurate assessment of small-angle X-ray scattering data. Acta Crystallographica Section D: Biological Crystallography, 71(Pt 1), 45–56. https://doi.org/10.1107/S1399004714010876.
  • Grundy, M. M. L., Edwards, C. H., Mackie, A. R., Gidley, M. J., Butterworth, P. J., & Ellis, P. R. (2016). Re-evaluation of the mechanisms of dietary fibre and implications for macronutrient bioaccessibility, digestion and postprandial metabolism. British Journal of Nutrition, 116(5), 816–833. https://doi.org/10.1017/S0007114516002610.
  • Gunness, P., Flanagan, B. M., Mata, J. P., Gilbert, E. P., & Gidley, M. J. (2016). Molecular interactions of a model bile salt and porcine bile with (1,3:1,4)-β-glucans and arabinoxylans probed by 13C NMR and SAXS. Food Chemistry, 197(Pt A), 676–685. https://doi.org/10.1016/j.foodchem.2015.10.104.
  • Guvench, O., Sairam, S., Mallajosyula, E., Prabhu Raman, E., Hatcher, K., Vanommeslaeghe, T. J., Foster, F. W., Jamison, I. I., & Jr, A. D. M. (2011). CHARMM additive all-atom force field for carbohydrate derivatives and its utility in polysaccharide and carbohydrate-protein modeling. Journal of Chemical Theory and Computation, 7(10), 3162–3180. https://doi.org/10.1021/ct200328p.CHARMM.
  • Hamilton, J. P., Xie, G., Raufman, J. P., Hogan, S., Griffin, T. L., Packard, C. A., Chatfield, D. A., Hagey, L. R., Steinbach, J. H., & Hofmann, A. F. (2007). Human cecal bile acids: Concentration and spectrum. The American Journal of Physiology – Gastrointestinal and Liver Physiology, 293(1), 256–263. https://doi.org/10.1152/ajpgi.00027.2007
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations (Vol. 18). John Wiley & Sons, Inc.
  • Hoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical Review. A, General Physics, 31(3), 1695–1697. https://doi.org/10.1103/physreva.31.1695
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Jayachandran, M., Chen, J., Chung, S. S. M., & Xu, B. (2018). A critical review on the impacts of β-glucans on gut microbiota and human health. Journal of Nutritional Biochemistry, 61, 101–110. https://doi.org/10.1016/j.jnutbio.2018.06.010.
  • Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). Software news and updates CHARMM-GUI: A web-based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859–1865. https://doi.org/10.1002/jcc.20945
  • Jójárt, B., Poša, M., Fiser, B., Szőri, M., Farkaš, Z., & Viskolcz, B. (2014). Mixed micelles of sodium cholate and sodium dodecylsulphate 1:1 binary mixture at different temperatures – Experimental and theoretical investigations. PLoS One, 9(7), 1–9. https://doi.org/10.1371/journal.pone.0102114
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Joyce, S. A., Kamil, A., Fleige, L., & Gahan, C. G., M. (2019). The cholesterol-lowering effect of oats and oat beta glucan: Modes of action and potential role of bile acids and the microbiome. Frontiers in Nutrition, 6(November), 171–115. https://doi.org/10.3389/fnut.2019.00171.
  • Kern, N. R. (2019). CHARMM-GUI multicomponent assembler for modeling and simulation of complex heterogeneous biomolecular systems. Biophysical Journal, 116(3), 290a. https://doi.org/10.1016/j.bpj.2018.11.1566
  • Kim, H. J., & White, P. J. (2012). Interactional effects of β-glucan, starch, and protein in heated oat slurries on viscosity and in vitro bile acid binding. Journal of Agricultural and Food Chemistry, 60(24), 6217–6222. https://doi.org/10.1021/jf300786f.
  • Kim, S., Lee, J., Jo, S., Brooks, C. L., Lee, H. S., & Im, W. (2017). CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules. J. Comput. Chem.,38, 1879–1886. https://doi.org/10.1002/jcc.24829
  • Korompokis, K., Nilsson, L., & Zielke, C. (2018). The effect of in vitro gastrointestinal conditions on the structure and conformation of oat β-glucan. Food Hydrocolloids, 77, 659–668. https://doi.org/10.1016/j.foodhyd.2017.11.007
  • Lia, A., Hallmans, G., Sandberg, A.-S., Sundberg, B., Aman, P., & Andersson, H. (1995). Oat-giucan increases bile acid excretion and a fiber-rich barley fraction increases cholesterol excretion in ileostomy. American Journal of Clinical Nutrition, 62(6), 1245–1251. https://doi.org/10.1093/ajcn/62.6.1245.
  • Lovegrove, A., Edwards, C. H., De Noni, I., Patel, H., El, S. N., Grassby, T., Zielke, C., Ulmius, M., Nilsson, L., Butterworth, P. J., Ellis, P. R., & Shewry, P. R. (2017). Role of polysaccharides in food, digestion, and health. Critical Reviews in Food Science and Nutrition, 57(2), 237–253. https://doi.org/10.1080/10408398.2014.939263.
  • Mäkelä, N., Rosa-Sibakov, N., Wang, Y. J., Mattila, O., Nordlund, E., & Sontag-Strohm, T. (2021). Role of β-glucan content, molecular weight and phytate in the bile acid binding of oat β-glucan. Food Chemistry, 358(December 2020), 129917. https://doi.org/10.1016/j.foodchem.2021.129917.
  • Mansfield, M. L., & Klushin, L. I. (1993). Monte Carlo studies of dendrimer macromolecules. Macromolecules, 26(16), 4262–4268. https://doi.org/10.1021/ma00068a029
  • Marasca, E., Boulos, S., & Nyström, L. (2020). Bile acid-retention by native and modified oat and barley β-glucan. Carbohydrate Polymers, 236(August 2019), 116034. https://doi.org/10.1016/j.carbpol.2020.116034.
  • McRorie, J. W., & McKeown, N. M. (2017). Understanding the physics of functional fibers in the gastrointestinal tract: An evidence-based approach to resolving enduring misconceptions about insoluble and soluble fiber. Journal of the Academy of Nutrition and Dietetics, 117(2), 251–264. https://doi.org/10.1016/j.jand.2016.09.021.
  • Mikkelsen, M. S., Cornali, S. B., Jensen, M. G., Nilsson, M., Beeren, S. R., & Meier, S. (2014). Probing interactions between β-glucan and bile salts at atomic detail by 1h-13c nmr assays. Journal of Agricultural and Food Chemistry, 62(47), 11472–11478. https://doi.org/10.1021/jf504352w.
  • Naumann, S., Schweiggert-Weisz, U., Eglmeier, J., Haller, D., & Eisner, P. (2019). In vitro interactions of dietary fibre enriched food ingredients with primary and secondary bile acids. Nutrients, 11(6), 1424. https://doi.org/10.3390/nu11061424
  • Nosé, S. (1984). A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics, 81(1), 511–519. https://doi.org/10.1063/1.447334
  • Park, S. J., Lee, J., Qi, Y., Kern, N. R., Lee, H. S., Jo, S., Joung, I., Joo, K., Lee, J., & Im, W. (2019). CHARMM-GUI glycan modeler for modeling and simulation of carbohydrates and glycoconjugates. Glycobiology, 29(4), 320–331. https://doi.org/10.1093/glycob/cwz003.
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Parrow, A., Larsson, P., Augustijns, P., Bergström, & C. A., S. (2020). Molecular dynamics simulations on interindividual variability of intestinal fluid: Impact on drug solubilization. Molecular Pharmaceutics, 17(10), 3837–3844.
  • Pártay, L. B., Jedlovszky, P., & Sega, M. (2007). Molecular aggregates in aqueous solutions of bile acid salts. molecular dynamics simulation study. Journal of Physical Chemistry. B, 111(33), 9886–9896. https://doi.org/10.1021/jp072974k.
  • Peesapati, S., Sajeevan, K. A., Patel, S. K., & Roy, D. (2021). Relation between glycosidic linkage, structure and dynamics of α- and β-glucans in water. Biopolymers, 112(5), 1–14. https://doi.org/10.1002/bip.23423
  • Pérez, S., Kouwijzer, M., Mazeau, K., & Engelsen, S. B. (1996). Modeling polysaccharides: Present status and challenges. Journal of Molecular Graphics, 14(6), 307–321. https://doi.org/10.1016/S0263-7855(97)00011-8
  • Shi, H., Yu, Y., Lin, D., Zheng, P., Zhang, P., Hu, M., Wang, Q., Pan, W., Yang, X., Hu, T., Li, Q., Tang, R., Zhou, F., Zheng, K., & Huang, X. F. (2020). Β-glucan attenuates cognitive impairment via the gut-brain axis in diet-induced obese mice. Microbiome, 8(1), 1–21. https://doi.org/10.1186/s40168-020-00920-y
  • Singhal, S., Pathak, M., Agrawala, P. K., & Ojha, H. (2020). Design and in silico screening of aryl allyl mercaptan analogs as potential histone deacetylases (HDAC) inhibitors. Heliyon, 6(5), e03517. https://doi.org/10.1016/j.heliyon.2020.e03517.
  • Soliman, G. A. (2018). Dietary cholesterol and the lack of evidence in cardiovascular disease. Nutrients, 10(6), 780. https://doi.org/10.3390/nu10060780
  • Svergun, D. I., & Koch, M. H. J. (2003). Small-angle scattering studies of biological macromolecules in solution. Reports on Progress in Physics, 66(10), 1735–1782. https://doi.org/10.1088/0034-4885/66/10/R05
  • Tanaka, Y., Hara, T., Waki, R., & Nagata, S. (2012). Regional differences in the components of luminal water from rat gastrointestinal tract and comparison with other species. Journal of Pharmacy & Pharmaceutical Sciences, 15(4), 510–518. https://doi.org/10.18433/j3f602
  • Travaglini, L., D'Annibale, A., di Gregorio, M. C., Schillén, K., Olsson, U., Sennato, S., Pavel, N. V., & Galantini, L. (2013). Between peptides and bile acids: Self-assembly of phenylalanine substituted cholic acids. The Journal of Physical Chemistry B, 117(31), 9248–9257. https://doi.org/10.1021/jp405342v.
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, A. D. (2010). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690. https://doi.org/10.1002/jcc.21367.
  • Waasmaier, D., & Kirfel, A. (1995). New analytical scattering-factor functions for free atoms and ions. Acta Crystallographica Section A: Foundations of Crystallography, 51(3), 416–431. https://doi.org/10.1107/S0108767394013292
  • Walters, R. L., Baird, M., Davies, P. S., Hill, M. J., Drasar, B. S., Southgate, D. A. T., Green, J., & Morgan, B. (1975). Effects of two types of dietary fibre on faecal steroid and lipid excretion. British Medical Journal, 2(5970), 536–538. https://doi.org/10.1136/bmj.2.5970.536.
  • Wang, Q., & Ellis, P. R. (2014). Oat β-glucan: Physico-chemical characteristics in relation to its blood-glucose and cholesterol-lowering properties. British Journal of Nutrition, 112(S2), S4–S13. https://doi.org/10.1017/S0007114514002256
  • Wang, Y., Harding, S. V., Thandapilly, S. J., Tosh, S. M., Jones, P. J. H., & Ames, N. P. (2017). Barley β-glucan reduces blood cholesterol levels via interrupting bile acid metabolism. British Journal of Nutrition, 118(10), 822–829. https://doi.org/10.1017/S0007114517002835.
  • Wang, Z., Yang, L., Xue, S., Wang, S., Zhu, L., Ma, T., Liu, H., & Li, R. (2022). Molecular docking and dynamic insights on the adsorption effects of soy hull polysaccharides on bile acids. International Journal of Food Science & Technology, 57(6), 3702–3712. https://doi.org/10.1111/ijfs.15695
  • Whitehead, A., Beck, E. J., Tosh, S., & Wolever, T. M., S. (2014). Cholesterol-lowering effects of oat β-glucan: A meta-analysis of randomized controlled trials1. The American Journal of Clinical Nutrition, 100(6), 1413–1421. https://doi.org/10.3945/ajcn.114.086108.
  • Zhuang, Q., Ye, X., Shen, S., Cheng, J., Shi, Y., Wu, S., Xia, J., Ning, M., Dong, Z., & Wan, X. (2021). Astragalus polysaccharides ameliorate diet-induced gallstone formation by modulating synthesis of bile acids and the gut microbiota. Frontiers in Pharmacology, 12(July), 701003–701012. https://doi.org/10.3389/fphar.2021.701003.
  • Zielke, C., Kosik, O., Ainalem, M. L., Lovegrove, A., Stradner, A., & Nilsson, L. (2017). Characterization of cereal β-glucan extracts from oat and barley and quantification of proteinaceous matter. Plos One, 12(2), e0172034–16. https://doi.org/10.1371/journal.pone.0172034
  • Zielke, C., Lu, Y., Poinsot, R., & Nilsson, L. (2018). Interaction between cereal β-glucan and proteins in solution and at interfaces. Colloids and Surfaces. B, Biointerfaces, 162, 256–264. https://doi.org/10.1016/j.colsurfb.2017.11.059.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.