508
Views
15
CrossRef citations to date
0
Altmetric
Research Articles

Identification of novel peptide inhibitors for the KRas-G12C variant to prevent oncogenic signaling

, , , &
Pages 8866-8875 | Received 05 Jul 2022, Accepted 15 Oct 2022, Published online: 27 Oct 2022

References

  • Agrawal, P., Bhagat, D., Mahalwal, M., Sharma, N., & Raghava, G. P. (2021). Anticp 2.0: An updated model for predicting anticancer peptides. Briefings in Bioinformatics, 22(3), bbaa153. https://doi.org/10.1093/bib/bbaa153
  • Ahmad, S. U., Ali, Y., Jan, Z., Rasheed, S., Nazir, N. U. A., Khan, A., Rukh Abbas, S., Wadood, A., & Rehman, A. U. (2022). Computational screening and analysis of deleterious nssnps in human p14arf (cdkn2a gene) protein using molecular dynamic simulation approach. Journal of Biomolecular Structure and Dynamics, 40, 1–12. https://doi.org/10.1080/07391102.2022.2059570
  • Ahmad, S. U., Hafeez Kiani, B., Abrar, M., Jan, Z., Zafar, I., Ali, Y., Alanazi, A. M., Malik, A., Rather, M. A., Ahmad, A., & Khan, A. A. (2022). A comprehensive genomic study, mutation screening, phylogenetic and statistical analysis of sars-cov-2 and its variant omicron among different countries. Journal of Infection and Public Health, 15(8), 878–891. https://doi.org/10.1016/j.jiph.2022.07.002
  • Ali, Y., Yasin, M., Aziz, A., Khan, A. W., Ur Rahman, S., & Haq, N. U. (2022). In-silico analysis of 2-cysteine peroxiredoxin genes in arabidopsis thaliana with possible role in carbon dioxide fixation through carbonic anhydrase regulation. Pakistan Journal of Biochemistry and Biotechnology, 3(1), 175–189. https://doi.org/10.52700/pjbb.v3i1.126
  • Amadei, A., Linssen, A. B., & Berendsen, H. J. (1993). Essential dynamics of proteins. Proteins, 17(4), 412–425. https://doi.org/10.1002/prot.340170408
  • Bibi, S., & Sakata, K. (2017). An integrated computational approach for plant-based protein tyrosine phosphatase non-receptor type 1 inhibitors. Current Computer-Aided Drug Design, 13(4), 319–335.
  • Cabri, W., Cantelmi, P., Corbisiero, D., Fantoni, T., Ferrazzano, L., Martelli, G., Mattellone, A., & Tolomelli, A. (2021). Therapeutic peptides targeting ppi in clinical development: Overview, mechanism of action and perspectives. Frontiers in Molecular Biosciences, 8, 697586. https://doi.org/10.3389/fmolb.2021.697586
  • Chen, G-f., Xu, T-h., Yan, Y., Zhou, Y-r., Jiang, Y., Melcher, K., & Xu, H. E. (2017). Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacologica Sinica, 38(9), 1205–1235. https://doi.org/10.1038/aps.2017.28
  • Cheng, H., & Planken, S. (2018). Precedence and promise of covalent inhibitors of egfr and kras for patients with non-small-cell lung cancer. ACS Medicinal Chemistry Letters, 9(9), 861–863. https://doi.org/10.1021/acsmedchemlett.8b00311
  • Cox, A. D., & Der, C. J. (2010). Ras history: The saga continues. Small GTPases, 1(1), 2–27. https://doi.org/10.4161/sgtp.1.1.12178
  • Emmanuel, I. A., Olotu, F. A., Agoni, C., & Soliman, M. E. (2019). Deciphering the ‘elixir of life’: Dynamic perspectives into the allosteric modulation of mitochondrial atp synthase by j147, a novel drug in the treatment of alzheimer’s disease. Chemistry & Biodiversity, 16(6), e1900085.
  • Genheden, S., & Ryde, U. (2015). The mm/pbsa and mm/gbsa methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Ghufran, M., Rehman, A. U., Shah, M., Ayaz, M., Ng, H. L., & Wadood, A. (2020). In-silico design of peptide inhibitors of k-ras target in cancer disease. Journal of Biomolecular Structure & Dynamics, 38(18), 5488–5499. https://doi.org/10.1080/07391102.2019.1704880
  • Gotz, A. W., Williamson, M. J., Xu, D., Poole, D., Le Grand, S., & Walker, R. C. (2012). Routine microsecond molecular dynamics simulations with amber on gpus. 1. Generalized born. Journal of Chemical Theory and Computation, 8(5), 1542–1555. https://doi.org/10.1021/ct200909j
  • Gupta, S., Coronado, G. D., Argenbright, K., Brenner, A. T., Castañeda, S. F., Dominitz, J. A., Green, B., Issaka, R. B., Levin, T. R., Reuland, D. S., Richardson, L. C., Robertson, D. J., Singal, A. G., & Pignone, M. (2020). Mailed fecal immunochemical test outreach for colorectal cancer screening: Summary of a centers for disease control and prevention–sponsored summit. CA: a Cancer Journal for Clinicians, 70(4), 283–298. https://doi.org/10.3322/caac.21615
  • Hancock, R. E., & Sahl, H.-G. (2006). Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature Biotechnology, 24(12), 1551–1557. https://doi.org/10.1038/nbt1267
  • Hassanpour, S. H., & Dehghani, M. (2017). Review of cancer from perspective of molecular. Journal of Cancer Research and Practice, 4(4), 127–129. https://doi.org/10.1016/j.jcrpr.2017.07.001
  • Herdeis, L., Gerlach, D., McConnell, D. B., & Kessler, D. (2021). Stopping the beating heart of cancer: Kras reviewed. Current Opinion in Structural Biology, 71, 136–147. https://doi.org/10.1016/j.sbi.2021.06.013
  • Hillig, R. C., Sautier, B., Schroeder, J., Moosmayer, D., Hilpmann, A., Stegmann, C. M., Werbeck, N. D., Briem, H., Boemer, U., Weiske, J., Badock, V., Mastouri, J., Petersen, K., Siemeister, G., Kahmann, J. D., Wegener, D., Böhnke, N., Eis, K., Graham, K., … Bader, B. (2019). Discovery of potent SOS1 inhibitors that block ras activation via disruption of the RAS–SOS1 interaction. Proceedings of the National Academy of Sciences of the United States of America, 116(7), 2551–2560. https://doi.org/10.1073/pnas.1812963116
  • Hobbs, G. A., Wittinghofer, A., & Der, C. J. (2016). Selective targeting of the kras g12c mutant: Kicking kras when it’s down. Cancer Cell, 29(3), 251–253. https://doi.org/10.1016/j.ccell.2016.02.015
  • Holderfield, M. (2018). Efforts to develop kras inhibitors. Cold Spring Harbor Perspectives in Medicine, 8(7), a031864. https://doi.org/10.1101/cshperspect.a031864
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the mm/pbsa and mm/gbsa methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51(1), 69–82. https://doi.org/10.1021/ci100275a
  • Ijaz, A., Shah, K., Aziz, A., Rehman, F. U., Ali, Y., Tareen, A. M., Khan, K., Ayub, M., & Wali, A. (2021). Novel frameshift mutations in xpc gene underlie xeroderma pigmentosum in pakistani families. Indian Journal of Dermatology, 66(2), 220–222. https://doi.org/10.4103/ijd.IJD_63_20
  • Jan, Z., Ahmad, S. U., Amara Qadus, Y. A., Sajjad, W., Rais, F., Tanveer, S., Khan, M. S., & Haq, I. (2021). 19. Insilico structural and functional assessment of hypothetical protein l345_13461 from ophiophagus hannah. Pure and Applied Biology (PAB), 10(4), 1109–1118.
  • Junaid, M., Shah, M., Khan, A., Li, C.-D., Khan, M. T., Kaushik, A. C., Ali, A., Mehmood, A., Nangraj, A. S., Choi, S., & Wei, D.-Q. (2019). Structural-dynamic insights into the h. Pylori cytotoxin-associated gene a (caga) and its abrogation to interact with the tumor suppressor protein aspp2 using decoy peptides. Journal of Biomolecular Structure and Dynamics, 37(15), 4035–4050. https://doi.org/10.1080/07391102.2018.1537895
  • Khan, M. S., Mehmood, B., Yousafi, Q., Bibi, S., Fazal, S., Saleem, S., Sajid, M. W., Ihsan, A., Azhar, M., & Kamal, M. A. (2021). Molecular docking studies reveal rhein from rhubarb (rheum rhabarbarum) as a putative inhibitor of atp-binding cassette super-family g member 2. Medicinal Chemistry (Shariqah (United Arab Emirates)), 17(3), 273–288. https://doi.org/10.2174/1573406416666191219143232
  • Khattak, S., Rauf, M. A., Zaman, Q., Ali, Y., Fatima, S., Muhammad, P., Li, T., Khan, H. A., Khan, A. A., Ngowi, E. E., Wu, D.-D., & Ji, X.-Y. (2021). Genome-wide analysis of codon usage patterns of sars-cov-2 virus reveals global heterogeneity of covid-19. Biomolecules, 11(6), 912. https://doi.org/10.3390/biom11060912
  • Lamiable, A., Thévenet, P., Rey, J., Vavrusa, M., Derreumaux, P., & Tufféry, P. (2016). Pep-fold3: Faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Research, 44(W1), W449–W454. https://doi.org/10.1093/nar/gkw329
  • Lefèvre, F., Rémy, M.-H., & Masson, J.-M. (1997). Alanine-stretch scanning mutagenesis: A simple and efficient method to probe protein structure and function. Nucleic Acids Research, 25(2), 447–448.
  • Li, G., Xia, X., Long, Y., Li, J., Wu, J., & Zhu, Y. (2014). Research progresses and applications of antimicrobial peptides. Chinese Journal of Animal Nutrition, 26(1), 17–25.
  • Liu, J., Kang, R., & Tang, D. (2021). The KRAS-G12C inhibitor: Activity and resistance. Nature Publishing Group, 29, 1–4.
  • Manning, M. C., Chou, D. K., Murphy, B. M., Payne, R. W., & Katayama, D. S. (2010). Stability of protein pharmaceuticals: An update. Pharmaceutical Research, 27(4), 544–575. https://doi.org/10.1007/s11095-009-0045-6
  • Marqus, S., Pirogova, E., & Piva, T. J. (2017). Evaluation of the use of therapeutic peptides for cancer treatment. Journal of Biomedical Science, 24(1), 1–15. https://doi.org/10.1186/s12929-017-0328-x
  • Mathur, D., Prakash, S., Anand, P., Kaur, H., Agrawal, P., Mehta, A., Kumar, R., Singh, S., & Raghava, G. P. (2016). Peplife: A repository of the half-life of peptides. Scientific Reports, 6(1), 36617–36617. https://doi.org/10.1038/srep36617
  • Meacham, C. E., & Morrison, S. J. (2013). Tumour heterogeneity and cancer cell plasticity. Nature, 501(7467), 328–337. https://doi.org/10.1038/nature12624
  • Merz, V., Gaule, M., Zecchetto, C., Cavaliere, A., Casalino, S., Pesoni, C., Contarelli, S., Sabbadini, F., Bertolini, M., Mangiameli, D., Milella, M., Fedele, V., & Melisi, D. (2021). Targeting kras: The elephant in the room of epithelial cancers. Frontiers in Oncology, 11, 638360. https://doi.org/10.3389/fonc.2021.638360
  • Mocanu, C. S., Niculaua, M., Zbancioc, G., Mangalagiu, V., & Drochioiu, G. (2022). Novel design of neuropeptide-based drugs with β-sheet breaking potential in amyloid-beta cascade: Molecular and structural deciphers. International Journal of Molecular Sciences, 23(5), 2857. https://doi.org/10.3390/ijms23052857
  • Ni, D., Song, K., Zhang, J., & Lu, S. (2017). Molecular dynamics simulations and dynamic network analysis reveal the allosteric unbinding of monobody to h-ras triggered by r135k mutation. International Journal of Molecular Sciences, 18(11), 2249. https://doi.org/10.3390/ijms18112249
  • Ostrem, J. M., & Shokat, K. M. (2016). Direct small-molecule inhibitors of kras: From structural insights to mechanism-based design. Nature Reviews. Drug Discovery, 15(11), 771–785. https://doi.org/10.1038/nrd.2016.139
  • Qiao, X., Wang, Y., & Yu, H. (2019). Progress in the mechanisms of anticancer peptides. Sheng wu Gong Cheng Xue Bao = Chinese Journal of Biotechnology, 35(8), 1391–1400.
  • Renaud, S., Seitlinger, J., & Massard, G. (2017). Micrornas: A new tool in the complex biology of kras mutated non-small cell lung cancer? Journal of Thoracic Disease, 9(4), 957–960. https://doi.org/10.21037/jtd.2017.03.56
  • Rose, P. W., Prlić, A., Altunkaya, A., Bi, C., Bradley, A. R., Christie, C. H., Costanzo, L. D., Duarte, J. M., Dutta, S., & Feng, Z. (2016). The RCSB protein data bank: Integrative view of protein, gene and 3D structural information. Nucleic Acids Research, 45, gkw1000.
  • Ryan, M. B., & Corcoran, R. B. (2018). Therapeutic strategies to target ras-mutant cancers. Nature Reviews. Clinical Oncology, 15(11), 709–720. https://doi.org/10.1038/s41571-018-0105-0
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Salomon-Ferrer, R., Case, D. A., & Walker, R. C. (2013). An overview of the amber biomolecular simulation package. Wiley Interdisciplinary Reviews: Computational Molecular Science, 3(2), 198–210.
  • Schaduangrat, N., Nantasenamat, C., Prachayasittikul, V., & Shoombuatong, W. (2019). Acpred: A computational tool for the prediction and analysis of anticancer peptides. Molecules, 24(10), 1973. https://doi.org/10.3390/molecules24101973
  • Shah, A. A., Amjad, M., Hassan, J.-U., Ullah, A., Mahmood, A., Deng, H., Ali, Y., Gul, F., & Xia, K. (2022). Molecular insights into the role of pathogenic nssnps in grin2b gene provoking neurodevelopmental disorders. Genes, 13(8), 1332. https://doi.org/10.3390/genes13081332
  • Stumpf, M. P., Thorne, T., De Silva, E., Stewart, R., An, H. J., Lappe, M., & Wiuf, C. (2008). Estimating the size of the human interactome. Proceedings of the National Academy of Sciences 105(19): 6959–6964.
  • Swaminathan, S., Harte, W., Jr,., & Beveridge, D. L. (1991). Investigation of domain structure in proteins via molecular dynamics simulation: Application to hiv-1 protease dimer. Journal of the American Chemical Society, 113(7), 2717–2721. https://doi.org/10.1021/ja00007a054
  • Thundimadathil, J. (2012). Cancer treatment using peptides: Current therapies and future prospects. Journal of Amino Acids, 2012, 967347. https://doi.org/10.1155/2012/967347 PMID: 23316341.
  • Tsuchida, N., Ryder, T., & Ohtsubo, E. (1982). Nucleotide sequence of the oncogene encoding the p21 transforming protein of Kirsten murine sarcoma virus. Science (New York, N.Y.), 217(4563), 937–939.
  • Tyagi, A., Kapoor, P., Kumar, R., Chaudhary, K., Gautam, A., & Raghava, G. (2013). In silico models for designing and discovering novel anticancer peptides. Scientific Reports, 3(1), 1–8. https://doi.org/10.1038/srep02984
  • Usmani, S. S., Bedi, G., Samuel, J. S., Singh, S., Kalra, S., Kumar, P., Ahuja, A. A., Sharma, M., Gautam, A., & Raghava, G. P. (2017). Thpdb: Database of fda-approved peptide and protein therapeutics. PloS One, 12(7), e0181748.
  • Vlieghe, P., Lisowski, V., Martinez, J., & Khrestchatisky, M. (2010). Synthetic therapeutic peptides: Science and market. Drug Discovery Today, 15(1–2), 40–56.
  • Wadood, A., Riaz, M., Jamal, S. B., Shah, M., & Lodhi, M. A. (2013). Molecular docking study of p4-benzoxaborolesubstituted ligands as inhibitors of hcv ns3/4a protease. Bioinformation, 9(6), 309–314.
  • Wadood, A., Shareef, A., Ur Rehman, A., Muhammad, S., Khurshid, B., Khan, R. S., Shams, S., & Afridi, S. G. (2022). In silico drug designing for ala438 deleted ribosomal protein s1 (rpsa) on the basis of the active compound zrl15. ACS Omega, 7(1), 397–408.
  • Wang, J.-B., Huang, X., & Li, F.-R. (2019). Impaired dendritic cell functions in lung cancer: A review of recent advances and future perspectives. Cancer Communications, 39(1), 43–11. https://doi.org/10.1186/s40880-019-0387-3
  • Winter, J. J. G., Anderson, M., Blades, K., Brassington, C., Breeze, A. L., Chresta, C., Embrey, K., Fairley, G., Faulder, P., Finlay, M. R. V., Kettle, J. G., Nowak, T., Overman, R., Patel, S. J., Perkins, P., Spadola, L., Tart, J., Tucker, J. A., & Wrigley, G. (2015). Small molecule binding sites on the ras: Sos complex can be exploited for inhibition of ras activation. Journal of Medicinal Chemistry, 58(5), 2265–2274.
  • Xu, L-l., Li, C-c., An, L-y., Dai, Z., Chen, X-y., You, Q-d., Hu, C., & Di, B. (2020). Selective apoptosis-inducing activity of synthetic hydrocarbon-stapled SOS1 helix with d-amino acids in h358 cancer cells expressing krasg12c. European Journal of Medicinal Chemistry, 185(111844), 111844.
  • Yue, P., & Moult, J. (2006). Identification and analysis of deleterious human snps. Journal of Molecular Biology, 356(5), 1263–1274.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.