250
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Comprehensive analysis and validation reveal potential MYCN regulatory biomarkers associated with neuroblastoma prognosis

ORCID Icon & ORCID Icon
Pages 8902-8917 | Received 30 May 2022, Accepted 16 Oct 2022, Published online: 27 Oct 2022

References

  • Ambros, P. F., Ambros, I. M., Brodeur, G. M., Haber, M., Khan, J., Nakagawara, A., Schleiermacher, G., Speleman, F., Spitz, R., London, W. B., Cohn, S. L., Pearson, A. D. J., & Maris, J. M. (2009). International consensus for neuroblastoma molecular diagnostics: Report from the International Neuroblastoma Risk Group (INRG) Biology Committee. British Journal of Cancer, 100(9), 1471–1482. https://doi.org/10.1038/sj.bjc.6605014
  • Banh, R. S. (2016). PTP1B controls non-mitochondrial oxygen consumption by regulating RNF213 to promote tumour survival during hypoxia. Nature Cell Biology. 18(7), 803–813. https://doi.org/10.1038/ncb3376
  • Barone, G., Anderson, J., Pearson, A. D. J., Petrie, K., & Chesler, L. (2013). New strategies in neuroblastoma: Therapeutic targeting of MYCN and ALK. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 19(21), 5814–5821. https://doi.org/10.1158/1078-0432.CCR-13-0680
  • Berko, E. R. (2017). De novo missense variants in HECW2 are associated with neurodevelopmental delay and hypotonia. Journal of Medical Genetics. 54(2), 84–86. https://doi.org/10.1136/jmedgenet-2016-103943
  • Bhardwaj, V. K., Oakley, A., & Purohit, R. (2022). Mechanistic behavior and subtle key events during DNA clamp opening and closing in T4 bacteriophage. International Journal of Biological Macromolecules, 208, 11–19. https://doi.org/10.1016/j.ijbiomac.2022.03.021
  • Boboila, S., Lopez, G., Yu, J., Banerjee, D., Kadenhe-Chiweshe, A., Connolly, E. P., Kandel, J. J., Rajbhandari, P., Silva, J. M., Califano, A., & Yamashiro, D. J. (2018). Transcription factor activating protein 4 is synthetically lethal and a master regulator of MYCN-amplified neuroblastoma. Oncogene, 37(40), 5451–5465. https://doi.org/10.1038/s41388-018-0326-9
  • Bourdeaut, F., Janoueix-Lerosey, I., Lucchesi, C., Paris, R., Ribeiro, A., de Pontual, L., Amiel, J., Lyonnet, S., Pierron, G., Michon, J., Peuchmaur, M., & Delattre, O. (2009). Cholinergic switch associated with morphological differentiation in neuroblastoma. The Journal of Pathology, 219(4), 463–472. https://doi.org/10.1002/path.2614
  • Brodeur, G. M., & Bagatell, R. (2014). Mechanisms of neuroblastoma regression. Nature Reviews. Clinical Oncology, 11(12), 704–713. https://doi.org/10.1038/nrclinonc.2014.168
  • Chen, B., Hua, Z., Gong, B., Tan, X., Zhang, S., Li, Q., Chen, Y., Zhang, J., & Li, Z. (2020). Downregulation of PIF1, a potential new target of MYCN, induces apoptosis and inhibits cell migration in neuroblastoma cells. Life Sciences, 256, 117820. https://doi.org/10.1016/j.lfs.2020.117820
  • Chen, B., Hua, Z., Qin, X., & Li, Z. (2021). Integrated microarray to identify the hub miRNAs and constructed miRNA-mRNA network in neuroblastoma via bioinformatics analysis. Neurochemical Research, 46(2), 197–212. https://doi.org/10.1007/s11064-020-03155-3
  • Dennis, G., Sherman, B. T., Hosack, D. A., Yang, J., Gao, W., Lane, H. C., & Lempicki, R. A. (2003). DAVID: Database for annotation, visualization, and integrated discovery. Genome Biology, 4(5), P3. https://doi.org/10.1186/gb-2003-4-5-p3
  • Ebadfardzadeh, J., Kazemi, M., Aghazadeh, A., Rezaei, M., Shirvaliloo, M., & Sheervalilou, R. (2021). Employing bioinformatics analysis to identify hub genes and microRNAs involved in colorectal cancer. Medical Oncology (Northwood, London, England), 38(9), 114. https://doi.org/10.1007/s12032-021-01543-5
  • Edgar, R., & Barrett, T. (2006). NCBI GEO standards and services for microarray data. Nature Biotechnology, 24(12), 1471–1472. https://doi.org/10.1038/nbt1206-1471
  • Evan, G. I., & Vousden, K. H. (2001). Proliferation, cell cycle and apoptosis in cancer. Nature, 411(6835), 342–348. https://doi.org/10.1038/35077213
  • Fletcher, J. I., Ziegler, D. S., Trahair, T. N., Marshall, G. M., Haber, M., & Norris, M. D. (2018). Too many targets, not enough patients: Rethinking neuroblastoma clinical trials. Nature Reviews. Cancer, 18(6), 389–400. https://doi.org/10.1038/s41568-018-0003-x
  • Gao, Y., Huo, W., Zhang, L., Lian, J., Tao, W., Song, C., Tang, J., Shi, S., & Gao, Y. (2019). Multiplex measurement of twelve tumor markers using a GMR multi-biomarker immunoassay biosensor. Biosensors & Bioelectronics, 123, 204–210. https://doi.org/10.1016/j.bios.2018.08.060
  • Gordan, J. D., Thompson, C. B., & Simon, M. C. (2007). HIF and c-Myc: Sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell, 12(2), 108–113. https://doi.org/10.1016/j.ccr.2007.07.006
  • Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013
  • He, J. (2020). BTB/POZ zinc finger protein ZBTB16 inhibits breast cancer proliferation and metastasis through upregulating ZBTB28 and antagonizing BCL6/ZBTB27. Clin Epigenetics, 12(1), 82. https://doi.org/10.1186/s13148-020-00867-9
  • Henrich, K.-O., Bender, S., Saadati, M., Dreidax, D., Gartlgruber, M., Shao, C., Herrmann, C., Wiesenfarth, M., Parzonka, M., Wehrmann, L., Fischer, M., Duffy, D. J., Bell, E., Torkov, A., Schmezer, P., Plass, C., Höfer, T., Benner, A., Pfister, S. M., & Westermann, F. (2016). Integrative genome-scale analysis identifies epigenetic mechanisms of transcriptional deregulation in unfavorable neuroblastomas. Cancer Research, 76(18), 5523–5537. https://doi.org/10.1158/0008-5472.CAN-15-2507
  • Hoehner, J. C., Gestblom, C., Hedborg, F., Sandstedt, B., Olsen, L., & Påhlman, S. (1996). A developmental model of neuroblastoma: Differentiating stroma-poor tumors’ progress along an extra-adrenal chromaffin lineage. Laboratory Investigation; a Journal of Technical Methods and Pathology, 75(5), 659–675.
  • Hong, M., He, J., Li, D., Chu, Y., Pu, J., Tong, Q., Joshi, H. C., Tang, S., & Li, S. (2020). Runt-related transcription factor 1 promotes apoptosis and inhibits neuroblastoma progression in vitro and in vivo. Journal of Experimental & Clinical Cancer Research: CR, 39(1), 52. https://doi.org/10.1186/s13046-020-01558-2
  • Hynes-Smith, R. W., Swenson, S. A., Vahle, H., Wittorf, K. J., Caplan, M., Amador, C., & Buckley, S. M. (2019). Loss of FBXO9 enhances proteasome activity and promotes aggressiveness in acute myeloid leukemia. Cancers (Basel, 11(11), 1717. https://doi.org/10.3390/cancers11111717
  • Janoueix-Lerosey, I., Lequin, D., Brugières, L., Ribeiro, A., de Pontual, L., Combaret, V., Raynal, V., Puisieux, A., Schleiermacher, G., Pierron, G., Valteau-Couanet, D., Frebourg, T., Michon, J., Lyonnet, S., Amiel, J., & Delattre, O. (2008). Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature, 455(7215), 967–970. https://doi.org/10.1038/nature07398
  • Kehl, T., Kern, F., Backes, C., Fehlmann, T., Stöckel, D., Meese, E., Lenhof, H.-P., & Keller, A. (2020). miRPathDB 2.0: A novel release of the miRNA pathway dictionary database. Nucleic Acids Research, 48(D1), D142–D147. https://doi.org/10.1093/nar/gkz1022
  • Kholodenko, I. V., Kalinovsky, D. V., Doronin, I. I., Deyev, S. M., & Kholodenko, R. V. (2018). Neuroblastoma origin and therapeutic targets for immunotherapy. Journal of Immunology Research, 2018, 7394268.
  • Kumar, S., Bhardwaj, V. K., Singh, R., Das, P., & Purohit, R. (2022). Identification of acridinedione scaffolds as potential inhibitor of DENV-2 C protein: An in silico strategy to combat dengue. Journal of Cellular Biochemistry, 123(5), 935–946. https://doi.org/10.1002/jcb.30237
  • Kundu, A., Bag, S., Ramaiah, S., & Anbarasu, A. (2013). Leucine to proline substitution by SNP at position 197 in Caspase-9 gene expression leads to neuroblastoma: A bioinformatics analysis. 3 Biotech, 3(3), 225–234. https://doi.org/10.1007/s13205-012-0088-y
  • Lampis, S., Raieli, S., Montemurro, L., Bartolucci, D., Amadesi, C., Bortolotti, S., Angelucci, S., Scardovi, A. L., Nieddu, G., Cerisoli, L., Paganelli, F., Valente, S., Fischer, M., Martelli, A. M., Pasquinelli, G., Pession, A., Hrelia, P., & Tonelli, R. (2022). The MYCN inhibitor BGA002 restores the retinoic acid response leading to differentiation or apoptosis by the mTOR block in MYCN-amplified neuroblastoma. Journal of Experimental & Clinical Cancer Research: CR, 41(1), 160. https://doi.org/10.1186/s13046-022-02367-5
  • Lastowska, M. (2007). Identification of candidate genes involved in neuroblastoma progression by combining genomic and expression microarrays with survival data. Oncogene, 26(53), 7432–7444.
  • Lawrence, G. W., Zurawski, T. H., Dong, X., & Dolly, J. O. (2021). Population Coding of Capsaicin Concentration by Sensory Neurons Revealed Using Ca(2+) Imaging of Dorsal Root Ganglia Explants from Adult pirt-GCaMP3 Mouse. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 55(4), 428–448. https://doi.org/10.33594/000000394
  • Li, X. (2020). Mib2 deficiency inhibits microglial activation and alleviates ischemia-induced brain injury. Aging Dis, 11(3), 523–535. https://doi.org/10.14336/AD.2019.0807
  • Liang, C. (2018). TRIM36, a novel androgen-responsive gene, enhances anti-androgen efficacy against prostate cancer by inhibiting MAPK/ERK signaling pathways. Cell Death and Disease, 9(2), 155. https://doi.org/10.1038/s41419-017-0197-y
  • Liu, J. A. (2020). Fbxo9 functions downstream of Sox10 to determine neuron-glial fate choice in the dorsal root ganglia through Neurog2 destabilization. Proceedings of the National Academy of Sciences of the United States of America, 117(8), 4199–4210. https://doi.org/10.1073/pnas.1916164117
  • Maris, J., M. (2010). Recent advances in neuroblastoma. The New England Journal of Medicine, 362(23), 2202–2211. https://doi.org/10.1056/NEJMra0804577
  • Marshall, G. M., Carter, D. R., Cheung, B. B., Liu, T., Mateos, M. K., Meyerowitz, J. G., & Weiss, W. A. (2014). The prenatal origins of cancer. Nature Reviews. Cancer, 14(4), 277–289. https://doi.org/10.1038/nrc3679
  • Martins-Neves, S. R., Paiva-Oliveira, D. I., Wijers-Koster, P. M., Abrunhosa, A. J., Fontes-Ribeiro, C., Bovée, J. V. M. G., Cleton-Jansen, A.-M., & Gomes, C. M. F. (2016). Chemotherapy induces stemness in osteosarcoma cells through activation of Wnt/beta-catenin signaling. Cancer Letters, 370(2), 286–295. https://doi.org/10.1016/j.canlet.2015.11.013
  • Masso-Valles, D., Beaulieu, M. E., & Soucek, L. (2020). MYC, MYCL, and MYCN as therapeutic targets in lung cancer. Expert Opinion on Therapeutic Targets, 24(2), 101–114. https://doi.org/10.1080/14728222.2020.1723548
  • Matthay, K. K., Maris, J. M., Schleiermacher, G., Nakagawara, A., Mackall, C. L., Diller, L., & Weiss, W. A. (2016). Neuroblastoma. Nature Reviews. Disease Primers, 2, 16078. https://doi.org/10.1038/nrdp.2016.78
  • Montemurro, L., Raieli, S., Angelucci, S., Bartolucci, D., Amadesi, C., Lampis, S., Scardovi, A. L., Venturelli, L., Nieddu, G., Cerisoli, L., Fischer, M., Teti, G., Falconi, M., Pession, A., Hrelia, P., & Tonelli, R. (2019). A novel MYCN-specific antigene oligonucleotide deregulates mitochondria and inhibits tumor growth in MYCN-amplified neuroblastoma. Cancer Research, 79(24), 6166–6177. https://doi.org/10.1158/0008-5472.CAN-19-0008
  • Mus, L. M., Lambertz, I., Claeys, S., Kumps, C., Van Loocke, W., Van Neste, C., Umapathy, G., Vaapil, M., Bartenhagen, C., Laureys, G., De Wever, O., Bexell, D., Fischer, M., Hallberg, B., Schulte, J., De Wilde, B., Durinck, K., Denecker, G., De Preter, K., & Speleman, F. (2020). The ETS transcription factor ETV5 is a target of activated ALK in neuroblastoma contributing to increased tumour aggressiveness. Scientific Reports, 10(1), 218. https://doi.org/10.1038/s41598-019-57076-5
  • Nolan, J. C., Salvucci, M., Carberry, S., Barat, A., Segura, M. F., Fenn, J., Prehn, J. H. M., Stallings, R. L., & Piskareva, O. (2020). A context-dependent role for MiR-124-3p on cell phenotype, viability and chemosensitivity in neuroblastoma in vitro. Frontiers in Cell and Developmental Biology, 8, 559553. https://doi.org/10.3389/fcell.2020.559553
  • Ohtaki, M., Otani, K., Hiyama, K., Kamei, N., Satoh, K., & Hiyama, E. (2010). A robust method for estimating gene expression states using Affymetrix microarray probe level data. BMC Bioinformatics, 11, 183.
  • Otte, J., Dyberg, C., Pepich, A., & Johnsen, J. I. (2020). MYCN function in neuroblastoma development. Frontiers in Oncology, 10, 624079.
  • Panachan, J., Rojsirikulchai, N., Pongsakul, N., Khowawisetsut, L., Pongphitcha, P., Siriboonpiputtana, T., Chareonsirisuthigul, T., Phornsarayuth, P., Klinkulab, N., Jinawath, N., Chiangjong, W., Anurathapan, U., Pattanapanyasat, K., Hongeng, S., & Chutipongtanate, S. (2022). Extracellular vesicle-based method for detecting MYCN amplification status of pediatric neuroblastoma. Cancers, 14(11), 2627. https://doi.org/10.3390/cancers14112627
  • Piccolo, P. (2017). MIB2 variants altering NOTCH signalling result in left ventricle hypertrabeculation/non-compaction and are associated with Menetrier-like gastropathy. Human Molecular Genetics, 26(1), 33–43. https://doi.org/10.1093/hmg/ddw365
  • Pinto, N. R., Applebaum, M. A., Volchenboum, S. L., Matthay, K. K., London, W. B., Ambros, P. F., Nakagawara, A., Berthold, F., Schleiermacher, G., Park, J. R., Valteau-Couanet, D., Pearson, A. D. J., & Cohn, S. L. (2015). Advances in risk classification and treatment strategies for neuroblastoma. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 33(27), 3008–3017. https://doi.org/10.1200/JCO.2014.59.4648
  • Ponzoni, M., Bachetti, T., Corrias, M. V., Brignole, C., Pastorino, F., Calarco, E., Bensa, V., Giusto, E., Ceccherini, I., & Perri, P. (2022). Recent advances in the developmental origin of neuroblastoma: An overview. Journal of Experimental & Clinical Cancer Research: CR, 41(1), 92. https://doi.org/10.1186/s13046-022-02281-w
  • Pottoo, F. H., Barkat, M. A., Ansari, M. A., Javed, M. N., Sajid Jamal, Q. M., Kamal., & M. A., Harshita. (2021). Nanotechnological based miRNA intervention in the therapeutic management of neuroblastoma. Seminars in Cancer Biology, 69, 100–108. https://doi.org/10.1016/j.semcancer.2019.09.017
  • Qu, H., Zheng, L., Pu, J., Mei, H., Xiang, X., Zhao, X., Li, D., Li, S., Mao, L., Huang, K., & Tong, Q. (2015). miRNA-558 promotes tumorigenesis and aggressiveness of neuroblastoma cells through activating the transcription of heparanase. Human Molecular Genetics, 24(9), 2539–2551. https://doi.org/10.1093/hmg/ddv018
  • Rickman, D. S., Schulte, J. H., & Eilers, M. (2018). The expanding world of N-MYC-driven tumors. Cancer Discovery, 8(2), 150–163. https://doi.org/10.1158/2159-8290.CD-17-0273
  • Roth, M., Goerke, P., Holtmann, C., Frings, A., MacKenzie, C. R., & Geerling, G. (2022). Spectrum and resistance in bacterial infections of the ocular surface in a German tertiary referral center 2009-2019. Graefe’s Archive for Clinical and Experimental Ophthalmology, https://doi.org/10.1007/s00417-022-05721-7
  • Saletta, F., Seng, M. S., & Lau, L. M. (2014). Advances in paediatric cancer treatment. Translational Pediatrics, 3(2), 156–182.
  • Salmi, A., Quacquarelli, F., Chauveau, C., Clabaut, A., & Broux, O. (2022). An integrative bioinformatics approach to decipher adipocyte-induced transdifferentiation of osteoblast. Genomics, 114(4), 110422. https://doi.org/10.1016/j.ygeno.2022.110422
  • Schmittgen, T. D. (2019). Exosomal miRNA cargo as mediator of immune escape mechanisms in neuroblastoma. Cancer Research, 79(7), 1293–1294. https://doi.org/10.1158/0008-5472.CAN-19-0021
  • Schulpen, M., Visser, O., Reedijk, A. M. J., Kremer, L. C. M., Zwaan, C. M., Eggermont, A. M. M., Coebergh, J. W., Pieters, R., & Karim-Kos, H. E. (2021). Significant improvement in survival of advanced stage childhood and young adolescent cancer in the Netherlands since the 1990s. European Journal of Cancer (Oxford, England: 1990), 157, 81–93. https://doi.org/10.1016/j.ejca.2021.08.001
  • Schulte, J. H., Kirfel, J., Lim, S., Schramm, A., Friedrichs, N., Deubzer, H. E., Witt, O., Eggert, A., & Buettner, R. (2008). Transcription factor AP2alpha (TFAP2a) regulates differentiation and proliferation of neuroblastoma cells. Cancer Letters, 271(1), 56–63. https://doi.org/10.1016/j.canlet.2008.05.039
  • Seier, J. A., Reinhardt, J., Saraf, K., Ng, S. S., Layer, J. P., Corvino, D., Althoff, K., Giordano, F. A., Schramm, A., Fischer, M., & Hölzel, M. (2021). Druggable epigenetic suppression of interferon-induced chemokine expression linked to MYCN amplification in neuroblastoma. Journal for ImmunoTherapy of Cancer, 9(5), e001335. https://doi.org/10.1136/jitc-2020-001335
  • Seok, J. (2021). Multi-omics analysis of SOX4, SOX11, and SOX12 expression and the associated pathways in human cancers. Journal of Personalized Medicine, 11(8), 823. https://doi.org/10.3390/jpm11080823.
  • Shohet, J. M. (2012). Redefining functional MYCN gene signatures in neuroblastoma. Proceedings of the National Academy of Sciences of the United States of America, 109(47), 19041–19042. https://doi.org/10.1073/pnas.1217598109
  • Singh, R., Bhardwaj, V. K., & Purohit, R. (2022). Computational targeting of allosteric site of MEK1 by quinoline-based molecules. Cell Biochemistry and Function, 40(5), 481-490. https://doi.org/10.1002/cbf.3709.
  • Singh, R., Bhardwaj, V. K., Das, P., & Purohit, R. (2022). Identification of 11beta-HSD1 inhibitors through enhanced sampling methods. Chemical Communications (Cambridge, England), 58(32), 5005–5008. https://doi.org/10.1039/d1cc06894f
  • Takasawa, S. (2022). Intermittent hypoxia increased the expression of DBH and PNMT in neuroblastoma cells via MICRORNA-375-mediated mechanism. International Journal of Molecular Sciences, 23(11). 5868. https://doi.org/10.3390/ijms23115868.
  • Tao, L., Mohammad, M. A., Milazzo, G., Moreno-Smith, M., Patel, T. D., Zorman, B., Badachhape, A., Hernandez, B. E., Wolf, A. B., Zeng, Z., Foster, J. H., Aloisi, S., Sumazin, P., Zu, Y., Hicks, J., Ghaghada, K. B., Putluri, N., Perini, G., Coarfa, C., & Barbieri, E. (2022). MYCN-driven fatty acid uptake is a metabolic vulnerability in neuroblastoma. Nature Communications, 13(1), 3728. https://doi.org/10.1038/s41467-022-31331-2
  • Wang, X. (2020). RNF213 suppresses carcinogenesis in glioblastoma by affecting MAPK/JNK signaling pathway. Clinical and Translational Oncology, 22(9), 1506–1516. https://doi.org/10.1007/s12094-020-02286-x
  • Westermark, U. K., Wilhelm, M., Frenzel, A., & Henriksson, M. A. (2011). The MYCN oncogene and differentiation in neuroblastoma. Seminars in Cancer Biology, 21(4), 256–266. https://doi.org/10.1016/j.semcancer.2011.08.001
  • Xia, J., Benner, M. J., & Hancock, R. E. (2014). NetworkAnalyst–integrative approaches for protein-protein interaction network analysis and visual exploration. Nucleic Acids Research, 42(Web Server issue), W167–74. https://doi.org/10.1093/nar/gku443
  • Xia, M., Liu, D., Liu, H., Peng, L., Yang, D., Tang, C., Chen, G., Liu, Y., & Liu, H. (2022). Identification of hub genes and therapeutic agents for IgA nephropathy through bioinformatics analysis and experimental validation. Frontiers in Medicine, 9, 881322.),
  • Xiao, G.-Q., Priemer, D. S., Wei, C., Aron, M., Yang, Q., & Idrees, M. T. (2017). ZBTB16 is a sensitive and specific marker in detection of metastatic and extragonadal yolk sac tumour. Histopathology, 71(4), 562–569. https://doi.org/10.1111/his.13276
  • Yang, L. (2018). Engagement of circular RNA HECW2 in the nonautophagic role of ATG5 implicated in the endothelial-mesenchymal transition. Autophagy, 14(3), 404–418. https://doi.org/10.1080/15548627.2017.1414755
  • Yang, Y., Zhao, J., Zhang, Y., Feng, T., Yv, B., Wang, J., Gao, Y., Yin, M., Tang, J., & Li, Y. (2022). MYCN protein stability is a better prognostic indicator in neuroblastoma. BMC Pediatrics, 22(1), 404. https://doi.org/10.1186/s12887-022-03449-1
  • Zhang, D., Li, B., Guo, R., Wu, J., Yang, C., Jiang, X., Zhang, C., Yan, H., Zhao, Q., Wang, Z., Wang, Q., Huang, R., Zhang, Z., Hu, X., & Gao, L. (2021). RAB5C, SYNJ1, and RNF19B promote male ankylosing spondylitis by regulating immune cell infiltration. Annals of Translational Medicine, 9(12), 1011. https://doi.org/10.21037/atm-21-2721
  • Zhou, S., Lu, H., & Xiong, M. (2021). Identifying immune cell infiltration and effective diagnostic biomarkers in rheumatoid arthritis by. Frontiers in Immunology, 12, 726747.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.