196
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

In silico designed microtubule-stabilizer drugs against tauopathy in Alzheimer’s disease

&
Pages 8992-9012 | Received 12 Jul 2022, Accepted 19 Oct 2022, Published online: 04 Nov 2022

References

  • Alonso, A. D., Cohen, L. S., Corbo, C., Morozova, V., ElIdrissi, A., Phillips, G., & Kleiman, F. E. (2018). Hyperphosphorylation of Tau associates with changes in its function beyond microtubule stability. Frontiers in Cellular Neuroscience, 12, 338. https://doi.org/10.3389/fncel.2018.00338
  • Alonso, A. C., Zaidi, T., Grundke-Iqbal, I., & Iqbal, K. (1994). Grundke-Iqbal, I.; Iqbal, K. role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 91(12), 5562–5566. https://doi.org/10.1073/pnas.91.12.5562.
  • Altmann, K. H. (2001). Microtubule-stabilizing agents: A growing class of important anticancer drugs. Current Opinion in Chemical Biology, 5(4), 424–431. https://doi.org/10.1016/S1367-5931(00)00225-8
  • Altmann, K. H., Wartmann, M., & O’Reilly, T. (2000). Epothilones and related structures - a new class of microtubule inhibitors with potent in vivo antitumor activity. Biochimica et Biophysica Acta (BBA)/Reviews on Cancer, 1470(3), M79-91. https://doi.org/10.1016/S0304-419X(00)00009-3
  • Andreadis, A., Brown, W. M., & Kosik, K. S. (1992). Structure and novel exons of the human τ gene. Biochemistry, 31(43), 10626–10633. https://doi.org/10.1021/bi00158a027.
  • Ballatore, C., Brunden, K. R., Huryn, D. M., Trojanowski, J. Q., Lee, V. M. Y., & Smith, A. B. (2012). Microtubule stabilizing agents as potential treatment for Alzheimers disease and related neurodegenerative tauopathies. Journal of Medicinal Chemistry, 55(21), 8979–8996. https://doi.org/10.1021/jm301079z
  • Bancher, C., Brunner, C., Lassmann, H., Budka, H., Jellinger, K., Wiche, G., Seitelberger, F., Grundke-Iqbal, I., Iqbal, K., & Wisniewski, H. M. (1989). Accumulation of abnormally phosphorylated τ precedes the formation of neurofibrillary tangles in Alzheimer’s disease. Brain Research, 477(1–2), 90–99. https://doi.org/10.1016/0006-8993(89)91396-6
  • Barbier, P., Zejneli, O., Martinho, M., Lasorsa, A., Belle, V., Smet-Nocca, C., Tsvetkov, P. O., Devred, F., & Landrieu, I. (2019). Role of tau as a microtubule-associated protein: Structural and functional aspects. Frontiers in Aging Neuroscience, 11, 204. https://doi.org/10.3389/fnagi.2019.00204
  • Berendsen, H. J. C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications. 91(1–3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
  • Biernat, J., Gustke, N., Drewes, G., Mandelkow, E., & Mandelkow, E. (1993). Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: Distinction between PHF-like immunoreactivity and microtubule binding. Neuron, 11(1), 153–163. https://doi.org/10.1016/0896-6273(93)90279-Z
  • Bollag, D. M., McQueney, P. A., Zhu, J., Hensens, O., Koupal, L., Liesch, J., Goetz, M., Lazarides, E., & Woods, C. M. (1995). Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Research, 55(11), 2325–2333.
  • Bramblett, G. T., Goedert, M., Jakes, R., Merrick, S. E., Trojanowski, J. Q., & Lee, V. M. Y. (1993). Abnormal tau phosphorylation at Ser396 in Alzheimer’s disease recapitulates development and contributes to reduced microtubule binding. Neuron, 10(6), 1089–1099. https://doi.org/10.1016/0896-6273(93)90057-X
  • Brunden, K. R., Trojanowski, J. Q., & Lee, V. M. Y. (2009). Advances in Tau-focused drug discovery for Alzheimer’s disease and related tauopathies. Nature Reviews. Drug Discovery, 8(10), 783–793. https://doi.org/10.1038/nrd2959.
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. Journal of Chemical Physics, 126(1), 014101. https://doi.org/10.1063/1.2408420
  • Ccgi, M. (2016). Molecular operating environment (MOE), 2013.08. Chemical Computing Group Inc.
  • Chan, S. L., & Labute, P. (2010). Training a scoring function for the alignment of small molecules. Journal of Chemical Information and Modeling, 50(9), 1724–1735. https://doi.org/10.1021/ci100227h.
  • Cleveland, D. W., Hwo, S. Y., & Kirschner, M. W. (1977a). Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. Journal of Molecular Biology, 116(2), 227–247. https://doi.org/10.1016/0022-2836(77)90214-5
  • Cleveland, D. W., Hwo, S. Y., & Kirschner, M. W. (1977b). Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. Journal of Molecular Biology, 116(2), 207–225. https://doi.org/10.1016/0022-2836(77)90213-3
  • Dadparvar, M., Wagner, S., Wien, S., Kufleitner, J., Worek, F., von Briesen, H., & Kreuter, J. (2011). HI 6 human serum albumin nanoparticles-development and transport over an in vitro blood-brain barrier model. Toxicology Letters, 206(1), 60–66. https://doi.org/10.1016/j.toxlet.2011.06.027.
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh ewald: An N·log(N) method for ewald sums in large systems. Journal of Chemical Physics. 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Del, C., Alonso, A., Grundke-Iqbal, I., & Iqbal, K. (1996). Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nature Medicine, 2(7), 783–787. https://doi.org/10.1038/nm0796-783.
  • Drubin, D. G., & Kirschner, M. W. (1986). Tau protein function in living cells. The Journal of Cell Biology, 103(6), 2739–2746. https://doi.org/10.1083/jcb.103.6.2739.
  • Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., & Olson, A. J. (2016). Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nature Protocols, 11(5), 905–919. https://doi.org/10.1038/nprot.2016.051.
  • Garcia, M. L., & Cleveland, D. W. (2001). Going new places using an old MAP: Tau, microtubules and human neurodegenerative disease. Current Opinion in Cell Biology, 13(1), 41–48. https://doi.org/10.1016/S0955-0674(00)00172-1
  • Goedert, M., Spillantini, M. G., Jakes, R., Rutherford, D., & Crowther, R. A. (1989). Multiple isoforms of human microtubule-associated protein Tau: Sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron, 3(4), 519–526. https://doi.org/10.1016/0896-6273(89)90210-9
  • Gustke, N., Steiner, B., Mandelkow, E. M., Biernat, J., Meyer, H. E., Goedert, M., & Mandelkow, E. (1992). The Alzheimer-like phosphorylation of tau protein reduces microtubule binding and involves Ser-Pro and Thr-Pro Motifs. FEBS Letters, 307(2), 199–205. https://doi.org/10.1016/0014-5793(92)80767-B
  • Hamel, E. (1996). Antimitotic natural products and their interactions with tubulin. Medicinal Research Reviews, 16(2), 207–231. https://doi.org/10.1002/(SICI)1098-1128(199603)16:2 < 207::AID-MED4 > 3.0.CO;2-4
  • Hamel, E., Sackett, D. L., Vourloumis, D., & Nicolaou, K. C. (1999). The coral-derived natural products eleutherobin and sarcodictyins A and B: Effects on the assembly of purified tubulin with and without microtubule- associated proteins and binding at the polymer taxoid site. Biochemistry, 38(17), 5490–5498. https://doi.org/10.1021/bi983023n.
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12 < 1463::AID-JCC4 > 3.0.CO;2-H
  • Hung, D. T., Chen, J., & Schreiber, S. L. (1996). (+)-Discodermolide binds to microtubules in stoichiometric ratio to tubulin dimers, blocks taxol binding and results in mitotic arrest. Chemistry & Biology, 3(4), 287–293. https://doi.org/10.1016/S1074-5521(96)90108-8
  • Hung, S. Y., & Fu, W. M. (2017). Drug candidates in clinical trials for Alzheimer’s disease. Journal of Biomedical Science, 24(1), 47. https://doi.org/10.1186/s12929-017-0355-7
  • Jones, G., Willett, P., Glen, R. C., Leach, A. R., & Taylor, R. (1997). Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology, 267(3), 727–748. https://doi.org/10.1006/jmbi.1996.0897.
  • Kadavath, H., Hofele, R. V., Biernat, J., Kumar, S., Tepper, K., Urlaub, H., Mandelkow, E., & Zweckstetter, M. (2015). Tau stabilizes microtubules by binding at the interface between tubulin heterodimers. Proceedings of the National Academy of Sciences of the United States of America, 112(24), 7501–7506. https://doi.org/10.1073/pnas.1504081112.
  • Kellogg, E. H., Hejab, N. M. A., Poepsel, S., Downing, K. H., DiMaio, F., & Nogales, E. (2018). Near-atomic model of microtubule-Tau interactions. Science (New York, N.Y.), 360(6394), 1242–1246. https://doi.org/10.1126/science.aat1780.
  • Kowalski, R. J., Giannakakou, P., Gunasekera, S. P., Longley, R. E., Day, B. W., & Hamel, E. (1997). The microtubule-stabilizing agent discodermolide competitively inhibits the binding of paclitaxel (Taxol) to tubulin polymers, enhances tubulin nucleation reactions more potently than paclitaxel, and inhibits the growth of paclitaxel-resistant cells. Molecular Pharmacology, 52(4), 613–622. https://doi.org/10.1124/mol.52.4.613
  • Kowalski, R. J., Giannakakou, P., & Hamel, E. (1997). Activities of the microtubule-stabilizing agents epothilones A and B with purified tubulin and in cells resistant to paclitaxel (Taxol®). The Journal of Biological Chemistry, 272(4), 2534–2541. https://doi.org/10.1074/jbc.272.4.2534.
  • Lee Virginia, M. Y., Zhukareva, V., Vogelsberg-Ragaglia, V., Wszolek, Z., Reed, L., Miller, B. I., Geschwind, D. H., Bird, T. D., McKeel, D., Coate, A., Morris, J. C., Wilhelmsen, K. C., Schellenberg, G. D., Trojanowski, J. Q., & Lee, V. M. Y. (1998). Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science, 282(5395), 1914–1917. https://doi.org/10.1126/science.282.5395.1914
  • Lindahl, E., Hess, B., Kutzner, C., & van der Spoel, D. (2008). Gromacs 4.0: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation. 4, 435–447.
  • Lindahl, E., Hess, B., & van der Spoel, D. (2001). GROMACS 3.0: A package for molecular simulation and trajectory analysis. Journal of Molecular Modeling, 7(8), 306–317. https://doi.org/10.1007/s008940100045
  • Lindwall, G., & Cole, R. D. (1984). Phosphorylation affects the ability of tau protein to promote microtubule assembly. The Journal of Biological Chemistry, 259(8), 5301–5305. https://doi.org/10.1016/S0021-9258(17)42989-9
  • Lobanov, M. Y., Bogatyreva, N. S., & Galzitskaya, O. V. (2008). Radius of gyration as an indicator of protein structure compactness. Molecular Biology, 42(4), 623–628. https://doi.org/10.1134/S0026893308040195
  • Long, B. H., Carboni, J. M., Wasserman, A. J., Cornell, L. A., Casazza, A. M., Jensen, P. R., Lindel, T., Fenical, W., & Fairchild, C. R. (1998). Eleutherobin, a novel cytotoxic agent that induces tubulin polymerization, is similar to paclitaxel (Taxol®). Cancer Res, 58(6), 1111–1115.
  • Mandelkow, E., & Mandelkow, E. M. (1995). Microtubules and microtubule-associated proteins. Current Opinion in Cell Biology, 7(1), 72–81. https://doi.org/10.1016/0955-0674(95)80047-6
  • Mangialasche, F., Solomon, A., Winblad, B., Mecocci, P., & Kivipelto, M. (2010). Alzheimer’s disease: Clinical trials and drug development. The Lancet. Neurology, 9(7), 702–716. https://doi.org/10.1016/S1474-4422(10)70119-8
  • Margreitter, C., Petrov, D., & Zagrovic, B. (2013). Vienna-PTM web server: A toolkit for MD simulations of protein post-translational modifications. Nucleic Acids Research. 41(W1), W422–W426. https://doi.org/10.1093/nar/gkt416
  • Margreitter, C., Reif, M. M., & Oostenbrink, C. (2017). Update on phosphate and charged post-translationally modified amino acid parameters in the GROMOS force field. Journal of Computational Chemistry, 38(10), 714–720. https://doi.org/10.1002/jcc.24733
  • McDaid, H. M., Bhattacharya, S. K., Chen, X. T., He, L., Shen, H. J., Gutteridge, C. E., Horwitz, S. B., & Danishefsky, S. J. (1999). Structure-activity profiles of eleutherobin analogs and their cross- resistance in taxol-resistant cell lines. Cancer Chemotherapy and Pharmacology, 44(2), 131–137. https://doi.org/10.1007/s002800050957.
  • Mooberry, S. L., Tien, G., Hernandez, A. H., Plubrukarn, A., & Davidson, B. S. (1999). Laulimalide and isolaulimalide, new paclitaxel-like microtubule- stabilizing agents. Cancer Research, 59(3), 653–660.
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S.,. … Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256.AutoDock4.
  • Nicolaou, K. C., Winssinger, N., Vourloumis, D., Ohshima, T., Kim, S., Pfefferkorn, J., Xu, J. Y., & Li, T. (1998). Solid and solution phase synthesis and biological evaluation of combinatorial sarcodictyin libraries. Journal of the American Chemical Society, 120(42), 10814–10826. https://doi.org/10.1021/ja9823870
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics. 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084.
  • Roccatano, D., Sarukhanyan, E., & Zangi, R. (2017). Adsorption mechanism of an antimicrobial peptide on carbonaceous surfaces: A molecular dynamics study. The Journal of Chemical Physics, 146(7), 074703. https://doi.org/10.1063/1.4975689. PMID: 28228017.
  • Sarukhanyan, E., Milano, G., & Roccatano, D. (2015). Cosolvent, ions, and temperature effects on the structural properties of cecropin A-Magainin 2 hybrid peptide in solutions. Biopolymers, 103(1), 1–14. https://doi.org/10.1002/bip.22529.
  • Sato, B., Muramatsu, H., Miyauchi, M., Hori, Y., Takase, S., Hino, M., Hashimoto, S., & Terano, H. (2000). A new antimitotic substance, FR182877. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activities. The Journal of Antibiotics, 53(2), 123–130. https://doi.org/10.7164/antibiotics.53.123.
  • Sato, B., Nakajima, H., Hori, Y., Hino, M., Hashimoto, S., & Terano, H. (2000). A new antimitotic substance, FR182877. II. The mechanism of action. The Journal of Antibiotics, 53(2), 204–206. https://doi.org/10.7164/antibiotics.53.204.
  • Schiff, P. B., Fant, J., & Horwitz, S. B. (1979). Promotion of microtubule assembly in vitro by Taxol. Nature, 277(5698), 665–667. https://doi.org/10.1038/277665a0.
  • Schmid, N., Eichenberger, A. P., Choutko, A., Riniker, S., Winger, M., Mark, A. E., & Van Gunsteren, W. F. (2011). Definition and testing of the GROMOS force-field versions 54A7 and 54B7. European Biophysics Journal: EBJ, 40(7), 843–856. https://doi.org/10.1007/s00249-011-0700-9.
  • Schüttelkopf, A. W., & Van Aalten, D. M. F. (2004). PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica. Section D, Biological Crystallography, 60(Pt 8), 1355–1363. https://doi.org/10.1107/S0907444904011679.
  • Sergeant, N., Delacourte, A., & Buée, L. (2005). Tau protein as a differential biomarker of tauopathies. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1739(2–3), 179–197. https://doi.org/10.1016/j.bbadis.2004.06.020
  • Tamai, I., & Tsuji, A. (1996). Drug delivery through the blood-brain barrier. Advanced Drug Delivery Reviews, 19(3), 401–424. https://doi.org/10.1016/0169-409X(96)00011-7
  • Ter Haar, E., Kowalski, R. J., Hamel, E., Lin, C. M., Longley, R. E., Gunasekera, S. P., Rosenkranz, H. S., & Day, B. W. (1996). Discodermolide, a cytotoxic marine agent that stabilizes microtubules more potently than Taxol. Biochemistry, 35(1), 243–250. https://doi.org/10.1021/bi9515127.
  • Vitvitsky, V. M., Garg, S. K., Keep, R. F., Albin, R. L., & Banerjee, R. (2012). Na + and K + ion imbalances in Alzheimer’s disease. Biochimica et Biophysica Acta, 1822(11), 1671–1681. https://doi.org/10.1016/j.bbadis.2012.07.004.
  • Weingarten, M. D., Lockwood, A. H., Hwo, S. Y., & Kirschner, M. W. (1975). A protein factor essential for microtubule assembly. Proceedings of the National Academy of Sciences of the United States of America, 72(5), 1858–1862. https://doi.org/10.1073/pnas.72.5.1858.
  • Yan, Y., Wang, X., Chaput, D., Shin, M. K., Koh, Y., Gan, L., Pieper, A. A., Woo, J. A., & Kang, D. E. (2022). X-linked ubiquitin-specific peptidase 11 increases tauopathy vulnerability in women. Cell, 185(21), 3913–3930. https://doi.org/10.1016/j.cell.2022.09.002
  • Yoshimura, S., Sato, B., Kinoshita, T., Takase, S., & Terano, H. (2000). A new antimitotic substance, FR182877. III. Structure determination. The Journal of Antibiotics, 53(6), 615–622. https://doi.org/10.7164/antibiotics.53.615.
  • Zagrovic, B., Jayachandran, G., Millett, I. S., Doniach, S., & Pande, V. S. (2005). How large is an α-helix? Studies of the radii of gyration of helical peptides by small-angle X-ray scattering and molecular dynamics. Journal of Molecular Biology, 353(2), 232–241. https://doi.org/10.1016/j.jmb.2005.08.053.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.