381
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

In silico characterization, molecular docking, and dynamic simulation of a novel fungal cell-death suppressing effector, MoRlpA as potential cathepsin B-like cysteine protease inhibitor during rice blast infection

, , ORCID Icon & ORCID Icon
Pages 9039-9056 | Received 20 Aug 2022, Accepted 19 Oct 2022, Published online: 08 Nov 2022

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Ahn, N., Kim, S., Choi, W., Im, K.-H., & Lee, Y.-H. (2004). Extracellular matrix protein gene, EMP1, is required for appressorium formation and pathogenicity of the rice blast fungus, Magnaporthe grisea. Molecules and Cells, 17(1), 166–173.
  • Altschul, S. F., Wootton, J. C., Gertz, E. M., Agarwala, R., Morgulis, A., Schäffer, A. A., & Yu, Y. K. (2005). Protein database searches using compositionally adjusted substitution matrices. The FEBS Journal, 272(20), 5101–5109. https://doi.org/10.1111/J.1742-4658.2005.04945.X
  • Arends, S. R., Williams, K., Scott, R. J., Rolong, S., Popham, D. L., & Weiss, D. S. (2010). Discovery and characterization of three new Escherichia coli septal ring proteins that contain a SPOR domain: DamX, DedD, and RlpA. Journal of Bacteriology, 192(1), 242–255. https://doi.org/10.1128/JB.01244-09
  • Armenteros, J. J. A., Salvatore, M., Emanuelsson, O., Winther, O., von Heijne, G., Elofsson, A., & Nielsen, H. (2019). Detecting sequence signals in targeting peptides using deep learning. Life Science Alliance, 2(5), e201900429. https://doi.org/10.26508/lsa.201900429
  • Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G. R., Wang, J., Cong, Q., Kinch, L. N., Dustin Schaeffer, R., Millán, C., Park, H., Adams, C., Glassman, C. R., DeGiovanni, A., Pereira, J. H., Rodrigues, A. v., van Dijk, A. A., EbreCht, A. C., … Baker, D. (2021). Accurate prediction of protein structures and interactions using a three-track neural network. Science (New York, N.Y.), 373(6557), 871–876. https://doi.org/10.1126/SCIENCE.ABJ8754/SUPPL_FILE/ABJ8754_MDAR_REPRODUCIBILITY_CHECKLIST.PDF
  • Balint-Kurti, P. (2019). The plant hypersensitive response: Concepts, control and consequences. Molecular Plant Pathology, 20(8), 1163–1178. https://doi.org/10.1111/MPP.12821
  • Bass, S., Gu, Q., & Christen, A. (1996). Multicopy suppressors of prc mutant Escherichia coli include two HtrA (DegP) protease homologs (HhoAB), DksA, and a truncated R1pA. Journal of Bacteriology, 178(4), 1154–1161. https://doi.org/10.1128/JB.178.4.1154-1161.1996
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, IN., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/NAR/28.1.235
  • Bowie, J. U., Lüthy, R., & Eisenberg, D. (1991). A method to identify protein sequences that fold into a known three-dimensional structure. Science (New York, N.Y.), 253(5016), 164–170. 1979) https://doi.org/10.1126/SCIENCE.1853201
  • Castillo, R. M., Mizuguchi, K., Dhanaraj, V., Albert, A., Blundell, T. L., & Murzin, A. G. (1999). A six-stranded double-psi β barrel is shared by several protein superfamilies. Structure (London, England : 1993), 7(2), 227–236. https://doi.org/10.1016/S0969-2126(99)80028-8
  • Cesari, S., Thilliez, G., Ribot, C., Chalvon, V., Michel, C., Jauneau, A., Rivas, S., Alaux, L., Kanzaki, H., Okuyama, Y., Morel, J. B., Fournier, E., Tharreau, D., Terauchi, R., & Kroj, T. (2013). The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-pia and AVR1-CO39 by direct binding. The Plant Cell, 25(4), 1463–1481. https://doi.org/10.1105/TPC.112.107201
  • Chan, S. J., San Segundo, B., McCormick, M. B., & Steiner, D. F. (1986). Nucleotide and predicted amino acid sequences of cloned human and mouse preprocathepsin B cDNAs. Proceedings of the National Academy of Sciences of the United States of America, 83(20), 7721–7725. https://doi.org/10.1073/PNAS.83.20.7721
  • Charova, S. N., Dölfors, F., Holmquist, L., Moschou, P. N., Dixelius, C., & Tzelepis, G. (2020). The RsRlpA effector is a protease inhibitor promoting Rhizoctonia solani virulence through suppression of the hypersensitive response. International Journal of Molecular Sciences, 21(21), 8070. https://doi.org/10.3390/ijms21218070
  • Chen, S., Songkumarn, P., Venu, R. C., Gowda, M., Bellizzi, M., Hu, J., Liu, W., Ebbole, D., Meyers, B., Mitchel, T., & Wang, G. L. (2013). Identification and characterization of in planta–expressed secreted effector proteins from Magnaporthe oryzae that induce cell death in rice. Molecular Plant-Microbe Interactions : MPMI, 26(2), 191–202. http://dx.doi.org/10.1094/MPMI-05-12-0117-R
  • Chen, M., Zeng, H., Qiu, D., Guo, L., Yang, X., Shi, H., Zhou, T., & Zhao, J. (2012). Purification and characterization of a novel hypersensitive response-inducing elicitor from Magnaporthe oryzae that triggers defense response in rice. PLoS One, 7(5), e37654. https://doi.org/10.1371/JOURNAL.PONE.0037654
  • Chen, M., Zhang, C., Zi, Q., Qiu, D., Liu, W., & Zeng, H. (2014). A novel elicitor identified from Magnaporthe oryzae triggers defense responses in tobacco and rice. Plant Cell Reports, 33(11)2014, 1865–1879. https://doi.org/10.1007/S00299-014-1663-Y
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science : A Publication of the Protein Society, 2(9), 1511–1519. https://doi.org/10.1002/PRO.5560020916
  • de Guillen, K., Ortiz-Vallejo, D., Gracy, J., Fournier, E., Kroj, T., & Padilla, A. (2015). Structure analysis uncovers a highly diverse but structurally conserved effector family in phytopathogenic fungi. PLoS Pathogens, 11(10), e1005228. https://doi.org/10.1371/journal.ppat.1005228
  • Dong, Y., Li, Y., Zhao, M., Jing, M., Liu, X., Liu, M., Guo, X., Zhang, X., Chen, Y., Liu, Y., Liu, Y., Ye, W., Zhang, H., Wang, Y., Zheng, X., Wang, P., & Zhang, Z. (2015). Global genome and transcriptome analyses of Magnaporthe oryzae epidemic isolate 98-06 uncover novel effectors and pathogenicity-related genes, revealing gene gain and lose dynamics in genome evolution. PLoS Pathogens, 11(4), e1004801. https://doi.org/10.1371/JOURNAL.PPAT.1004801
  • Ebbole, D. J. (2007). Magnaporthe as a model for understanding host-pathogen interactions. Annual Review of Phytopathology, 45, 437–456. http://dx.doi.org/10.1146/annurev.phyto.45.062806.094346
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Fang, Y. L., Peng, Y. L., & Fan, J. (2017). The Nep1-like protein family of Magnaporthe oryzae is dispensable for the infection of rice plants. Scientific Reports, 7(1), 1–10. https://doi.org/10.1038/s41598-017-04430-0
  • Fernandez, J., & Orth, K. (2018). Rise of a cereal killer: The biology of Magnaporthe oryzae biotrophic growth. Trends in Microbiology, 26(7), 582–597. https://doi.org/10.1016/J.TIM.2017.12.007
  • Foster, A. J., Ryder, L. S., Kershaw, M. J., & Talbot, N. J. (2017). The role of glycerol in the pathogenic lifestyle of the rice blast fungus Magnaporthe oryzae. Environmental Microbiology, 19(3), 1008–1016. https://doi.org/10.1111/1462-2920.13688
  • Franceschetti, M., Maqbool, A., Jiménez-Dalmaroni, M. J., Pennington, H. G., Kamoun, S., & Banfield, M. J. (2017). Effectors of filamentous plant pathogens: Commonalities amid diversity. Microbiology and Molecular Biology Reviews, 81(2), e00066–16. https://doi.org/10.1128/MMBR.00066-16
  • Fukagawa, N. K., & Ziska, L. H. (2019). Rice: Importance for global nutrition. Journal of Nutritional Science and Vitaminology, 65, S2–S3. https://doi.org/10.3177/JNSV.65.S2
  • Ge, Y., Cai, Y. M., Bonneau, L., Rotari, V., Danon, A., McKenzie, E. A., McLellan, H., MacH, L., & Gallois, P. (2016). Inhibition of cathepsin B by caspase-3 inhibitors blocks programmed cell death in Arabidopsis. Cell Death and Differentiation, 23(9), 1493–1501. https://doi.org/10.1038/cdd.2016.34
  • Gilroy, E. M., Hein, I., van der Hoorn, R., Boevink, P. C., Venter, E., McLellan, H., Kaffarnik, F., Hrubikova, K., Shaw, J., Holeva, M., López, E. C., Borras-Hidalgo, O., Pritchard, L., Loake, G. J., Lacomme, C., & Birch, P. R. J. (2007). Involvement of cathepsin B in the plant disease resistance hypersensitive response. The Plant Journal : For Cell and Molecular Biology, 52(1), 1–13. https://doi.org/10.1111/J.1365-313X.2007.03226.X
  • Giraldo, M. C., & Valent, B. (2013). Filamentous plant pathogen effectors in action. Nature Reviews. Microbiology, 11(11), 800–814. https://doi.org/10.1038/nrmicro3119
  • Gnanamanickam, S. S. (2009). Rice and its importance to human life. In Biological control of rice diseases (pp. 1–11). Dordrecht: Springer. https://doi.org/10.1007/978-90-481-2465-7_1
  • Goodwin, S. B., M'barek, S. B., Dhillon, B., Wittenberg, A. H. J., Crane, C. F., Hane, J. K., Foster, A. J., Van der Lee, T. A. J., Grimwood, J., Aerts, A., Antoniw, J., Bailey, A., Bluhm, B., Bowler, J., Bristow, J., van der Burgt, A., Canto-Canché, B., Churchill, A. C. L., Conde-Ferràez, L., … Kema, G. H. J. (2011). Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLoS Genetics, 7(6), e1002070. https://doi.org/10.1371/journal.pgen.1002070
  • Guo, X., Zhong, D., Xie, W., He, Y., Zheng, Y., Lin, Y., Chen, Z., Han, Y., Tian, D., Liu, W., Wang, F., Wang, Z., & Chen, S. (2019). Functional identification of novel cell death-inducing effector proteins from Magnaporthe oryzae. Rice, 12(1), 1–12. https://doi.org/10.1186/S12284-019-0312-Z/TABLES/1
  • Guruprasad, K., Reddy, B. V. B., & Pandit, M. W. (1990). Correlation between stability of a protein and its dipeptide composition: A novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Engineering, 4(2), 155–161. https://doi.org/10.1093/PROTEIN/4.2.155
  • Guyon, K., Balagué, C., Roby, D. and Raffaele, S. (2014). Secretome analysis reveals effector candidates associated with broad host range necrotrophy in the fungal plant pathogen Sclerotinia sclerotiorum. BMC genomics, 15(1), 1–19.
  • Hamer, J. E., Howard, R. J., Chumley, F. G., & Valent, B. (1988). A mechanism for surface attachment in spores of a plant pathogenic fungus. Science (New York, N.Y.), 239(4837), 288–290. 1979) https://doi.org/10.1126/SCIENCE.239.4837.288
  • Haug, E. J., Arora, J. S., & Matsui, K. (1976). A steepest-descent method for optimization of mechanical systems. Journal of Optimization Theory and Applications, 19(3), 401–424. https://doi.org/10.1007/BF00941484
  • Hong, Y., Yang, Y., Zhang, H., Huang, L., Li, D., & Song, F. (2017). Overexpression of MoSM1, encoding for an immunity-inducing protein from Magnaporthe oryzae, in rice confers broad-spectrum resistance against fungal and bacterial diseases. Scientific Reports, 7, 1–17. https://doi.org/10.1038/srep41037
  • Honorato, R.V., Koukos, P.I., Jiménez-García, B., Tsaregorodtsev, A., Verlato, M., Giachetti, A., Rosato, A. and Bonvin, A.M. (2021). Structural biology in the clouds: the WeNMR-EOSC ecosystem. Frontiers in Molecular Biosciences, 708.
  • Hou, S., Jamieson, P., & He, P. (2018). The cloak, dagger, and shield: Proteases in plant–pathogen interactions. The Biochemical Journal, 475(15), 2491–2509. https://doi.org/10.1042/BCJ20170781
  • Huang, J., & Mackerell, A. D. (2013). CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/JCC.23354
  • Ikai, A. (1980). Thermostability and aliphatic index of globular proteins. The Journal of Biochemistry, 88, 1895–1898. https://doi.org/10.1093/oxfordjournals.jbchem.a133168
  • Irieda, H., Inoue, Y., Mori, M., Yamada, K., Oshikawa, Y., Saitoh, H., Uemura, A., Terauchi, R., Kitakura, S., Kosaka, A., Singkaravanit-Ogawa, S., & Takano, Y. (2019). Conserved fungal effector suppresses PAMP-triggered immunity by targeting plant immune kinases. Proceedings of the National Academy of Sciences of the United States of America, 116(2), 496–505. https://doi.org/10.1073/pnas.1807297116
  • Ismail, I. A., & Able, A. J. (2016). Secretome analysis of virulent Pyrenophora teres f. teres isolates. Proteomics, 16(20), 2625–2636. https://doi.org/10.1002/PMIC.201500498
  • Jashni, M. K., Dols, I. H., Iida, Y., Boeren, S., Beenen, H. G., Mehrabi, R., Collemare, J., & de Wit, P. J. (2015). Synergistic action of a metalloprotease and a serine protease from Fusarium oxysporum f. sp. lycopersici cleaves chitin-binding tomato chitinases, reduces their antifungal activity, and enhances fungal virulence. Molecular Plant-Microbe Interactions : MPMI, 28(9), 996–1008. https://doi.org/10.1094/MPMI-04-15-0074-R
  • Jorgenson, M. A., Chen, Y., Yahashiri, A., Popham, D. L., & Weiss, D. S. (2014). The bacterial septal ring protein RlpA is a lytic transglycosylase that contributes to rod shape and daughter cell separation in Pseudomonas aeruginosa. Molecular Microbiology, 93(1), 113–128. https://doi.org/10.1111/MMI.12643/SUPPINFO
  • Kang, S., Sweigard, J. A., & Valent, B. (1995). The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Molecular Plant-Microbe Interactions : MPMI, 8(6), 939–948. https://doi.org/10.1094/MPMI-8-0939
  • Kaschani, F., Shabab, M., Bozkurt, T., Shindo, T., Schornack, S., Gu, C., Ilyas, M., Win, J., Kamoun, S., & van der Hoorn, R. A. L. (2010). An effector-targeted protease contributes to defense against Phytophthora infestans and is under diversifying selection in natural hosts. Plant Physiology, 154(4), 1794–1804. https://doi.org/10.1104/PP.110.158030
  • Kim, S., Ahn, I. P., Rho, H. S., & Lee, Y. H. (2005). MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Molecular Microbiology, 57(5), 1224–1237. https://doi.org/10.1111/J.1365-2958.2005.04750.X
  • Kim, K. T., Jeon, J., Choi, J., Cheong, K., Song, H., Choi, G., Kang, S., & Lee, Y. H. (2016). Kingdom-wide analysis of fungal small secreted proteins (SSPs) reveals their potential role in host association. Frontiers in Plant Science, 7, 186. 186. https://doi.org/10.3389/FPLS.2016.00186/BIBTEX
  • Kim, S., Kim, C. Y., Park, S. Y., Kim, K. T., Jeon, J., Chung, H., Choi, G., Kwon, S., Choi, J., Jeon, J., Jeon, J. S., Khang, C. H., Kang, S., & Lee, Y. H. (2020). Two nuclear effectors of the rice blast fungus modulate host immunity via transcriptional reprogramming. Nature Communications, 11(1), 1–11. https://doi.org/10.1038/s41467-020-19624-w
  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/MOLBEV/MSY096
  • Kyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157(1), 105–132. https://doi.org/10.1016/0022-2836(82)90515-0
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291., https://doi.org/10.1107/S0021889892009944
  • Lewis, S. D., Johnson, F. A., & Shafer, J. A. (1981). Effect of cysteine-25 on the ionization of histidine-159 in papain as determined by proton nuclear magnetic resonance spectroscopy. Evidence for a histidine-159-cysteine-25 ion pair and its possible role in catalysis. Biochemistry, 20(1), 48–51. https://doi.org/10.1021/BI00504A009/ASSET/BI00504A009.FP.PNG_V03
  • Li, W., Wang, B., Wu, J., Lu, G., Hu, Y., Zhang, X., Zhang, Z., Zhao, Q., Feng, Q., Zhang, H., Wang, Z., Wang, G. L., Han, B., Wang, Z., & Zhou, B. (2009). The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Molecular Plant-Microbe Interactions : MPMI, 22(4), 411–420. http://dx.doi.org/10.1094/MPMI-22-4-0411
  • Liu, W., Liu, J., Ning, Y., Ding, B., Wang, X., Wang, Z., & Wang, G. L. (2013). Recent progress in understanding PAMP- and effector-triggered immunity against the rice blast fungus Magnaporthe oryzae. Molecular Plant, 6(3), 605–620. https://doi.org/10.1093/MP/SST015
  • Liu, T., Luo, S., Libby, P., & Shi, G. P. (2020). Cathepsin L-selective inhibitors: A potentially promising treatment for COVID-19 patients. Pharmacology & Therapeutics, 213, 107587. https://doi.org/10.1016/J.PHARMTHERA.2020.107587
  • Lu, S., & Edwards, M. C. (2016). Genome-wide analysis of small secreted cysteine-rich proteins identifies candidate effector proteins potentially involved in Fusarium graminearum-wheat interactions. Phytopathology, 106(2), 166–176. https://doi.org/10.1094/PHYTO-09-15-0215-R/ASSET/IMAGES/LARGE/PHYTO-09-15-0215-R_F6.JPEG
  • Lu, S., Wang, J., Chitsaz, F., Derbyshire, M. K., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Marchler, G. H., Song, J. S., Thanki, N., Yamashita, R. A., Yang, M., Zhang, D., Zheng, C., Lanczycki, C. J., & Marchler-Bauer, A. (2020). CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Research, 48(D1), D265–D268. https://doi.org/10.1093/NAR/GKZ991
  • Lüthy, R., Bowie, J. U., & Eisenberg, D. (1992). Assessment of protein models with three-dimensional profiles. Nature, 356(6364), 83–85. https://doi.org/10.1038/356083a0
  • Ma, Z., Zhu, L., Song, T., Wang, Y., Zhang, Q., Xia, Y., Qiu, M., Lin, Y., Li, H., Kong, L., Fang, Y., Ye, W., Wang, Y., Dong, S., Zheng, X., Tyler, B. M., & Wang, Y. (2017). A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a host inhibitor. Science (New York, N.Y.), 355(6326), 710–714.
  • Mentlak, T. A., Kombrink, A., Shinya, T., Ryder, L. S., Otomo, I., Saitoh, H., Terauchi, R., Nishizawa, Y., Shibuya, N., Thomma, B., & Talbot, N. J. (2012). Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. The Plant Cell, 24(1), 322–335. https://doi.org/10.1105/TPC.111.092957
  • Misas-Villamil, J. C., & Van Der Hoorn, R. A. L. (2008). Enzyme-inhibitor interactions at the plant-pathogen interface. Current Opinion in Plant Biology, 11(4), 380–388. 10.1016/j.pbi.2008.04.007 18550418
  • Misas-Villamil, J. C., van der Hoorn, R. A. L., & Doehlemann, G. (2016). Papain-like cysteine proteases as hubs in plant immunity. The New Phytologist, 212(4), 902–907. https://doi.org/10.1111/NPH.14117
  • Mogga, V., Delventhal, R., Weidenbach, D., Langer, S., Bertram, P. M., Andresen, K., Thines, E., Kroj, T., & Schaffrath, U. (2016). Magnaporthe oryzae effectors MoHEG13 and MoHEG16 interfere with host infection and MoHEG13 counteracts cell death caused by Magnaporthe-NLPs in tobacco. Plant Cell Reports, 35(5), 1169–1185. https://doi.org/10.1007/S00299-016-1943-9
  • Mosquera, G., Giraldo, M. C., Khang, C. H., Coughlan, S., & Valent, B. (2009). Interaction transcriptome analysis identifies Magnaporthe oryzae BAS1-4 as biotrophy-associated secreted proteins in rice blast disease. The Plant Cell, 21(4), 1273–1290. https://doi.org/10.1105/TPC.107.055228
  • Mueller, A. N., Ziemann, S., Treitschke, S., Aßmann, D., & Doehlemann, G. (2013). Compatibility in the Ustilago maydis–maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2. PLoS Pathogens, 9(2), e1003177. https://doi.org/10.1371/journal.ppat.1003177
  • Nalley, L., Tsiboe, F., Durand-Morat, A., Shew, A., & Thoma, G. (2016). Economic and environmental impact of rice blast pathogen (Magnaporthe oryzae) alleviation in the United States. Plos One, 11(12), e0167295. https://doi.org/10.1371/JOURNAL.PONE.0167295
  • Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3), 443–453. https://doi.org/10.1016/0022-2836(70)90057-4
  • Negi, S. S., & Braun, W. (2007). Statistical analysis of physical-chemical properties and prediction of protein-protein interfaces. Journal of Molecular Modeling, 13(11), 1157–1167. https://doi.org/10.1007/S00894-007-0237-0
  • Negi, S. S., Kolokoltsov, A. A., Schein, C. H., Davey, R. A., & Braun, W. (2006). Determining functionally important amino acid residues of the E1 protein of Venezuelan equine encephalitis virus. Journal of Molecular Modeling, 12(6), 921–929. https://doi.org/10.1007/S00894-006-0101-7/FIGURES/4
  • Negi, S. S., Schein, C. H., Oezguen, N., Power, T. D., & Braun, W. (2007). InterProSurf: A web server for predicting interacting sites on protein surfaces. Bioinformatics (Oxford, England), 23(24), 3397–3399. https://doi.org/10.1093/BIOINFORMATICS/BTM474
  • Newman, M. A., Sundelin, T., Nielsen, J. T., & Erbs, G. (2013). MAMP (microbe-associated molecular pattern) triggered immunity in plants. Frontiers in Plant Science, 4, 139. https://doi.org/10.3389/FPLS.2013.00139/BIBTEX
  • O'Connell, R. J., Thon, M. R., Hacquard, S., Amyotte, S. G., Kleemann, J., Torres, M. F., Damm, U., Buiate, E. A., Epstein, L., Alkan, N., Altmüller, J., Alvarado-Balderrama, L., Bauser, C. A., Becker, C., Birren, B. W., Chen, Z., Choi, J., Crouch, J. A., Duvick, J. P., … Vaillancourt, L. J. (2012). Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nature Genetics, 44(9), 1060–1065.
  • Orbach, M. J., Farrall, L., Sweigard, J. A., Chumley, F. G., & Valent, B. (2000). A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. The Plant Cell, 12(11), 2019–2032. https://doi.org/10.1105/TPC.12.11.2019
  • Paulus, J. K., Kourelis, J., & van der Hoorn, R. A. (2017). Bodyguards: Pathogen-derived decoys that protect virulence factors. Trends in Plant Science, 22(5), 355–357. https://doi.org/10.1016/j.tplants.2017.03.004
  • Pellegrin, C., Morin, E., Martin, F. M., & Veneault-Fourrey, C. (2015). Comparative analysis of secretomes from ectomycorrhizal fungi with an emphasis on small-secreted proteins. Frontiers in Microbiology, 6(NOV), 1278. https://doi.org/10.3389/FMICB.2015.01278/BIBTEX
  • Quiroz-Castaneda, R. E., Martinez-Anaya, C., Cuervo-Soto, L. I., Segovia, L., & Folch-Mallol, J. L. (2011). Loosenin, a novel protein with cellulose-disrupting activity from Bjerkandera adusta. Microbial Cell Factories, 10, 8. https://doi.org/10.1186/1475-2859-10-8
  • Rawlings, N. D., & Barrett, A. J. (1993). Evolutionary families of peptidases. Biochemical Journal, 290(1), 205–218. https://doi.org/10.1042/bj2900205
  • Robert, X., & Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research, 42(W1), W320–W324. https://doi.org/10.1093/NAR/GKU316
  • Saitoh, H., Fujisawa, S., Mitsuoka, C., Ito, A., Hirabuchi, A., Ikeda, K., Irieda, H., Yoshino, K., Yoshida, K., Matsumura, H., Tosa, Y., Win, J., Kamoun, S., Takano, Y., & Terauchi, R. (2012). Large-scale gene disruption in Magnaporthe oryzae Identifies MC69, a secreted protein required for infection by monocot and dicot fungal pathogens. PLoS Pathogens, 8(5), e1002711. https://doi.org/10.1371/journal.ppat.1002711
  • Schröder, E., Phillips, C., Garman, E., Harlos, K., & Crawford, C. (1993). X-ray crystallographic structure of a papain-leupeptin complex. FEBS Letters, 315(1), 38–42. https://doi.org/10.1016/0014-5793(93)81128-M
  • Seong, K., & Krasileva, K. V. (2021). Computational structural genomics unravels common folds and novel families in the secretome of fungal phytopathogen Magnaporthe oryzae. Molecular Plant-Microbe Interactions : MPMI, 34(11), 1267–1280. https://doi.org/10.1094/MPMI-03-21-0071-R
  • Shabab, M., Shindo, T., Gu, C., Kaschani, F., Pansuriya, T., Chintha, R., Harzen, A., Colby, T., Kamoun, S., & van der Hoorn, R. A. L. (2008). Fungal effector protein AVR2 targets diversifying defense-related cys proteases of tomato. The Plant Cell, 20(4), 1169–1183. https://doi.org/10.1105/TPC.107.056325
  • Sharpee, W., Oh, Y., Yi, M., Franck, W., Eyre, A., Okagaki, L. H., Valent, B., & Dean, R. A. (2017). Identification and characterization of suppressors of plant cell death (SPD) effectors from Magnaporthe oryzae. Molecular Plant Pathology, 18(6), 850–863. https://doi.org/10.1111/MPP.12449
  • Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J. D., & Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Molecular Systems Biology, 7, 539. https://doi.org/10.1038/MSB.2011.75
  • Song, J., Win, J., Tian, M., Schornack, S., Kaschani, F., Ilyas, M., van der Hoorn, R. A., & Kamoun, S. (2009). Apoplastic effectors secreted by two unrelated eukaryotic plant pathogens target the tomato defense protease Rcr3. Proceedings of the National Academy of Sciences of the United States of America, 106(5), 1654–1659. https://doi.org/10.1073/pnas.0809201106
  • Sperschneider, J., & Dodds, P. N. (2022). EffectorP 3.0: Prediction of apoplastic and cytoplasmic effectors in fungi and oomycetes. Molecular Plant-Microbe Interactions : MPMI, 35(2), 146–156. https://doi.org/10.1094/MPMI-08-21-0201-R/ASSET/IMAGES/LARGE/MPMI-08-21-0201-RT6.JPEG
  • Sperschneider, J., Dodds, P. N., Singh, K. B., & Taylor, J. M. (2018). ApoplastP: Prediction of effectors and plant proteins in the apoplast using machine learning. The New Phytologist, 217(4), 1764–1778. https://doi.org/10.1111/NPH.14946
  • Sukhwal, A., & Sowdhamini, R. (2013). Oligomerisation status and evolutionary conservation of interfaces of protein structural domain superfamilies. Molecular bioSystems, 9(7), 1652–1661. https://doi.org/10.1039/C3MB25484D
  • Sweigard, J. A., Carroll, A. M., Kang, S., Farrall, L., Chumley, F. G., & Valent, B. (1995). Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. The Plant Cell, 7(8), 1221–1233. https://doi.org/10.1105/TPC.7.8.1221
  • Talbot, N. J. (2003). On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea. Annual Review of Microbiology, 57, 177–202. http://dx.doi.org/10.1146/annurev.micro.57.030502.090957
  • Talbot, N. J., Ebbole, D. J., & Hamer, J. E. (1993). Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. The Plant Cell, 5(11), 1575–1590. https://doi.org/10.1105/TPC.5.11.1575
  • Teufel, F., Almagro Armenteros, J. J., Johansen, A. R., Gíslason, M. H., Pihl, S. I., Tsirigos, K. D., Winther, O., Brunak, S., von Heijne, G., & Nielsen, H. (2022). SignalP 6.0 predicts all five types of signal peptides using protein language models. Nature Biotechnology, 40(7), 1023–1025. https://doi.org/10.1038/s41587-021-01156-3
  • Tian, M., Benedetti, B., & Kamoun, S. (2005). A second Kazal-like protease inhibitor from Phytophthora infestans inhibits and interacts with the apoplastic pathogenesis-related protease P69B of tomato. Plant Physiology, 138(3), 1785–1793. https://doi.org/10.1104/pp.105.061226
  • Tian, M., Huitema, E., Da Cunha, L., Torto-Alalibo, T., & Kamoun, S. (2004). A Kazal-like extracellular serine protease inhibitor from Phytophthora infestans targets the tomato pathogenesis-related protease P69B. The Journal of Biological Chemistry, 279(25), 26370–26377. https://doi.org/10.1074/jbc.M400941200
  • Tokmakov, A. A., Kurotani, A., & Sato, K. I. (2021). Protein pI and intracellular localization. Frontiers in Molecular Biosciences, 8, 1179. https://doi.org/10.3389/FMOLB.2021.775736/BIBTEX
  • Turk, V., Stoka, V., Vasiljeva, O., Renko, M., Sun, T., Turk, B., & Turk, D. (2012). Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochimica et Biophysica Acta, 1824(1), 68–88. https://doi.org/10.1016/J.BBAPAP.2011.10.002
  • van Zundert, G. C. P., Rodrigues, J. P. G., L., M., Trellet, M., Schmitz, C., Kastritis, P. L., Karaca, E., Melquiond, A., S. J., van Dijk, M., de Vries, S. J., Bonvin, A., & M. J., J. (2016). The HADDOCK2.2 web server: User-friendly integrative modeling of biomolecular complexes. Journal of Molecular Biology, 428(4), 720–725. https://doi.org/10.1016/J.JMB.2015.09.014
  • Vangone, A., & Bonvin, A. M. (2015). Contacts-based prediction of binding affinity in protein–protein complexes. eLife, 4 https://doi.org/10.7554/eLife.07454
  • Wang, B., Hua, D. J., Ebbole, Z., & Wang, h (2017). The arms race between Magnaporthe oryzae and rice: Diversity and interaction of Avr and R genes. Journal of Integrative Agriculture, 16(12), 2746–2760. https://doi.org/10.1016/S2095-3119(17)61746-5
  • Wang, C., Liu, Y., Liu, L., Wang, Y., Yan, J., Wang, C., Li, C., & Yang, J. (2019). The biotrophy-associated secreted protein 4 (BAS4) participates in the transition of Magnaporthe oryzae from the biotrophic to the necrotrophic phase. Saudi Journal of Biological Sciences, 26(4), 795–807. https://doi.org/10.1016/J.SJBS.2019.01.003
  • Wang, Y., Wu, J., Kim, S. G., Tsuda, K., Gupta, R., Park, S. Y., Kim, S. T., & Kang, K. Y. (2016). Magnaporthe oryzae-secreted protein MSP1 induces cell death and elicits defense responses in rice. Molecular Plant-Microbe Interactions : MPMI, 29(4), 299–312. https://doi.org/10.1094/MPMI-12-15-0266-R/ASSET/IMAGES/LARGE/MPMI-12-15-0266-R_F10.JPEG
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/NAR/GKY427
  • Williams, C. J., Headd, J. J., Moriarty, N. W., Prisant, M. G., Videau, L. L., Deis, L. N., Verma, V., Keedy, D. A., Hintze, B. J., Chen, V. B., Jain, S., Lewis, S. M., Arendall, W. B., Snoeyink, J., Adams, P. D., Lovell, S. C., Richardson, J. S., & Richardson, D. C. (2018). MolProbity: More and better reference data for improved all-atom structure validation. Protein Science : A Publication of the Protein Society, 27(1), 293–315. https://doi.org/10.1002/PRO.3330
  • Wilson, R. A., & Talbot, N. J. (2009). Under pressure: Investigating the biology of plant infection by Magnaporthe oryzae. Nature Reviews. Microbiology, 7(3), 185–195. https://doi.org/10.1038/nrmicro2032
  • Wu, J., Kou, Y., Bao, J., Li, Y., Tang, M., Zhu, X., Ponaya, A., Xiao, G., Li, J., Li, C., Song, M.-Y., Cumagun, C. J. R., Deng, Q., Lu, G., Jeon, J.-S., Naqvi, N. I., & Zhou, B. (2015). Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice. The New Phytologist, 206(4), 1463–1475. https://doi.org/10.1111/NPH.13310
  • Xu, D., & Zhang, Y. (2011). Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophysical Journal, 101(10), 2525–2534. https://doi.org/10.1016/J.BPJ.2011.10.024/ATTACHMENT/E886F853-75C3-47C0-BA2D-F19069F5B244/MMC1.PDF
  • Xue, L. C., Rodrigues, J. P., Kastritis, P. L., Bonvin, A. M., & Vangone, A. (2016). PRODIGY: A web server for predicting the binding affinity of protein–protein complexes. Bioinformatics (Oxford, England), 32(23), 3676–3678. https://doi.org/10.1093/BIOINFORMATICS/BTW514
  • Yennawar, N. H., Li, A. C., Dudzinski, D. M., Tabuchi, A., & Cosgrove, D. J. (2006). Crystal structure and activities of EXPB1 (Zea m 1), a β-expansin and group-1 pollen allergen from maize. Proceedings of the National Academy of Sciences, 103(40), 14664–14671. https://doi.org/10.1073/PNAS.0605979103/SUPPL_FILE/05979FIG9.PDF
  • Yoshida, K., Saitoh, H., Fujisawa, S., Kanzaki, H., Matsumura, H., Yoshida, K., Tosa, Y., Chuma, I., Takano, Y., Win, J., Kamoun, S., & Terauchi, R. (2009). Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. The Plant Cell, 21(5), 1573–1591. https://doi.org/10.1105/TPC.109.066324
  • Zeigler, R. S., & Barclay, A. (2008). The relevance of rice. Rice, 1(1), 3–10. https://doi.org/10.1007/S12284-008-9001-Z/FIGURES/7
  • Zhang, C., Fang, H., Shi, X., He, F., Wang, R., Fan, J., Bai, P., Wang, J., Park, C.-H., Bellizzi, M., Zhou, X., Wang, G.-L., & Ning, Y. (2020). A fungal effector and a rice NLR protein have antagonistic effects on a Bowman–Birk trypsin inhibitor. Plant Biotechnology Journal, 18(11), 2354–2363. https://doi.org/10.1111/pbi.13400
  • Zhang, S., Wang, L., Wu, W., He, L., Yang, X., & Pan, Q. (2015). Function and evolution of Magnaporthe oryzae avirulence gene AvrPib responding to the rice blast resistance gene Pib. Scientific Reports, 5, 1–10. https://doi.org/10.1038/srep11642
  • Zhang, S., & Xu, J. R. (2014). Effectors and effector delivery in Magnaporthe oryzae. PLoS Pathogens, 10(1), e1003826. https://doi.org/10.1371/JOURNAL.PPAT.1003826
  • Zibaee, A. (2013). Rice: Importance and future. Rice Research: Open Access, 1(2), e102. https://doi.org/10.4172/jrr.1000e102

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.