328
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

In Silico molecular docking and dynamic analysis of natural compounds against major non-structural proteins of SARS-COV-2

ORCID Icon, ORCID Icon, , , , , & ORCID Icon show all
Pages 9072-9088 | Received 24 May 2022, Accepted 19 Oct 2022, Published online: 03 Nov 2022

References

  • Alazmi, M., & Motwalli, O. (2021). In-silico virtual screening, characterization, docking and molecular dynamics studies of crucial SARS-CoV-2 proteins. Journal of Biomolecular Structure & Dynamics, 39(17), 6761–6771.
  • Anjorin, A. A. (2020). The coronavirus disease 2019 (COVID-19) pandemic: A review and an update on cases in Africa. Asian Pacific Journal of Tropical Medicine, 13(5), 199. https://doi.org/10.4103/1995-7645.281612
  • Badhani, B., Sharma, N., & Kakkar, R. (2015). Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Advances, 5(35), 27540–27557. https://doi.org/10.1039/C5RA01911G
  • Bedows, E., & Hatfield, G. M. (1982). An investigation of the antiviral activity of Podophyllum peltatum. Journal of Natural Products, 45(6), 725–729.
  • Benson, N. C., & Daggett, V. (2012). A comparison of multiscale methods for the analysis of molecular dynamics simulations. The Journal of Physical Chemistry. B, 116(29), 8722–8731. https://doi.org/10.1021/jp302103t
  • Bharadwaj, S., Lee, K. E., Dwivedi, V. D., & Kang, S. G. (2020). Computational insights into tetracyclines as inhibitors against SARS-CoV-2 Mpro via combinatorial molecular simulation calculations. Life Sciences, 257, 118080.
  • Binder, K., Horbach, J., Kob, W., Wolfgang, P., & Fathollah, V. (2004). Molecular dynamics simulations. Journal of Physics: Condensed Matter, 16(5), S429–S453. https://doi.org/10.1088/0953-8984/16/5/006
  • Calixto, J. B. (2019). The role of natural products in modern drug discovery. Anais da Academia Brasileira de Ciências, 91(suppl 3), 1-7. https://doi.org/10.1590/0001-3765201920190105
  • Cazalis, J., Bodet, C., Gagnon, G., & Grenier, D. (2008). Doxycycline reduces lipopolysaccharide‐induced inflammatory mediator secretion in macrophage and ex vivo human whole blood models. Journal of Periodontology, 79(9), 1762–1768.
  • Chen, F., Liu, H., Sun, H., Pan, P., Li, Y., Li, D., & Hou, T. (2016). Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein–protein binding free energies and re-rank binding poses generated by protein–protein docking. Physical Chemistry Chemical Physics : PCCP, 18(32), 22129–22139. https://doi.org/10.1039/c6cp03670h
  • Chen, J., Malone, B., Llewellyn, E., Grasso, M., Shelton, P. M. M., Olinares, P. D. B., Maruthi, K., Eng, E. T., Vatandaslar, H., Chait, B. T., Kapoor, T. M., Darst, S. A., & Campbell, E. A. (2020). Structural basis for helicase-polymerase coupling in the SARS-CoV-2 replication-transcription complex. Cell, 182(6), 1560–1573.e13.
  • Corrada, D., Soshilov, A. A., Denison, M. S., & Bonati, L. (2016). Deciphering dimerization modes of PAS Domains: Computational and experimental analyses of the AhR:ARNT complex reveal new insights into the mechanisms of AhR transformation. PLoS Computational Biology, 12(6), e1004981. https://doi.org/10.1371/journal.pcbi.1004981
  • Cragg, G. M., & Newman, D. J. (2013). Natural products: A continuing source of novel drug leads. Biochimica et Biophysica Acta, 1830(6), 3670–3695. https://doi.org/10.1016/j.bbagen.2013.02.008
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717–42713. https://doi.org/10.1038/srep42717
  • Fife, K. H. (1998). New treatments for genital warts less than ideal. JAMA, 279(24), 2003–2004. https://doi.org/10.1001/jama.279.24.2003
  • Gendrot, M., Andreani, J., Jardot, P., Hutter, S., Delandre, O., Boxberger, M., Mosnier, J., Le Bideau, M., Duflot, I., Fonta, I., Rolland, C., Bogreau, H., La Scola, B., & Pradines, B. (2020). In vitro antiviral activity of doxycycline against SARS-CoV-2. Molecules, 25(21), 5064. https://doi.org/10.3390/molecules25215064
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Gershell, L. J., & Atkins, J. H. (2003). A brief history of novel drug discovery technologies. Nature Reviews. Drug Discovery, 2(4), 321–327.
  • Gordon, C. J., Tchesnokov, E. P., Woolner, E., Perry, J. K., Feng, J. Y., Porter, D. P., & Götte, M. (2020). Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. The Journal of Biological Chemistry, 295(20), 6785–6797.
  • Huang, D., Qi, Y., Song, J., & Zhang, J. Z. (2019). Calculation of hot spots for protein–protein interaction in p53/PMI-MDM2/MDMX complexes. Journal of Computational Chemistry, 40(9), 1045–1056.
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293.
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M., L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Joshi, S., Joshi, M., & Degani, M. S. (2020). Tackling SARS-CoV-2: Proposed targets and repurposed drugs. Future Medicinal Chemistry, 12(17), 1579–1601.
  • Kahkeshani, N., Farzaei, F., Fotouhi, M., Alavi, S. S., Bahramsoltani, R., Naseri, R., Momtaz, S., Abbasabadi, Z., Rahimi, R., Farzaei, M. H., & Bishayee, A. (2019). Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iranian Journal of Basic Medical Sciences, 22(3), 225–237.
  • Kamaz, Z., Al-Jassani, M. J., & Haruna, U. (2020). Screening of common herbal medicines as promising direct inhibitors of Sars-Cov-2 In-silico. Annual Research & Review in Biology, 35(8), 53–67. https://doi.org/10.9734/arrb/2020/v35i830260
  • Keller, T. H., Pichota, A., & Yin, Z. (2006). A practical view of ‘druggability. Current Opinion in Chemical Biology, 10(4), 357–361.
  • Khan, J., Sakib, S. A., Mahmud, S., Khan, Z., Islam, M. N., Sakib, M. A., Emran, T. B., & Simal-Gandara, J. (2021). Identification of potential phytochemicals from Citrus limon against main protease of SARS-CoV-2: Molecular docking, molecular dynamic simulations and quantum computations. Journal of Biomolecular Structure and Dynamics, 39(1), 1–12.
  • Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: Methods and applications. Nature Reviews Drug Discovery, 3(11), 935–949. https://doi.org/10.1038/nrd1549
  • Kocaadam, B., & Şanlier, N. (2017). Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Critical Reviews in Food Science and Nutrition, 57(13), 2889–2895.
  • Lago, K., Telu, K., Tribble, D., Ganesan, A., Kunz, A., Geist, C., Fraser, J., Mitra, I., Lalani, T., & Yun, H. (2020). Impact of doxycycline as malaria prophylaxis on risk of Influenza-like illness among international travelers. The American Journal of Tropical Medicine and Hygiene, 102(4), 821–826.
  • Lee, W. H., Loo, C. Y., Bebawy, M., Luk, F., Mason, R. S., & Rohanizadeh, R. (2013). Curcumin and its derivatives: Their application in neuropharmacology and neuroscience in the 21st century. Current Neuropharmacology, 11(4), 338–378.
  • Li, Y., Wu, Z., Liu, K., Qi, P., Xu, J., Wei, J., Li, B., Shao, D., Shi, Y., Qiu, Y., & Ma, Z. (2017). Doxycycline enhances adsorption and inhibits early-stage replication of porcine reproductive and respiratory syndrome virus in vitro. FEMS Microbiology Letters, 364(17), 1-21. https://doi.org/10.1093/femsle/fnx170
  • Liu, H. J., Xu, Y., & Su, G. Q. (2004). Research progress in Sinopodophyllum emodi. Chinese Traditional and Herbal Drugs, 35(1), 98–99.
  • Liu, K., Watanabe, E., & Kokubo, H. (2017). Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations. Journal of Computer-Aided Molecular Design, 31(2), 201–211. https://doi.org/10.1007/s10822-016-0005-2
  • López-Blanco, J. R., Aliaga, J. I., Quintana-Ortí, E. S., & Chacón, P. (2014). iMODS: internal coordinates normal mode analysis server. Nucleic Acids Research, 42(Web Server issue), W271–W276.
  • MacRae, W. D., Hudson, J. B., & Towers, G. H. N. (1989). The antiviral action of lignans. Planta Medica, 55(6), 531–535.
  • Mahmud, S., Paul, G. K., Afroze, M., Islam, S., Gupt, S. B. R., Razu, M. H., Biswas, S., Zaman, S., Uddin, M. S., Khan, M., Cacciola, N. A., Emran, T. B., Saleh, M. A., Capasso, R., & Simal-Gandara, J. (2021). Efficacy of phytochemicals derived from Avicennia officinalis for the management of COVID-19: A combined In-silico and biochemical study. Molecules, 26(8), 2210. https://doi.org/10.3390/molecules26082210
  • Malek, A. E., Granwehr, B. P., & Kontoyiannis, D. P. (2020). Doxycycline as a potential partner of COVID-19 therapies. IDCases, 21, e00864.
  • Marra, F., McCabe, M., Sharma, P., Zhao, B., Mill, C., Leung, V., & Patrick, D. M. (2017). Utilization of antibiotics in long-term care facilities in British Columbia, Canada. Journal of the American Medical Directors Association, 18(12), 1098–10e1.
  • Martyna, G. J., Klein, M. L., & Tuckerman, M. (1992). Nose-Hoover chains-the canonical ensemble via continuous dynamics. Journal of Chemical Physics, 97(4), 2635–2643. https://doi.org/10.1063/1.463940
  • Martyna, G. J., Tobias, D. J., & Klein, M. L. (1994). Constant pressure molecular dynamics algorithms. Journal of Chemical Physics. 101(5), 4177–4189. https://doi.org/10.1063/1.467468
  • Mazzini, S., Musso, L., Dallavalle, S., & Artali, R. (2020). Putative SARS-CoV-2 Mpro inhibitors from an in-house library of natural and nature-inspired products: A virtual screening and molecular docking study. Molecules, 25(16), 3745. https://doi.org/10.3390/molecules25163745
  • Melvin, L. S., Welling, U., Kandel, Y., Levinson, Z. A., Taoka, H., Stock, H. J., & Demmerle, W. (2022). Applying stochastic simulation to study defect formation in EUV photoresists. Japanese Journal of Applied Physics, 61(SD), SD1030. https://doi.org/10.35848/1347-4065/ac5b22
  • Mitra, K., Ghanta, P., Acharya, S., & Chakrapani, G. (2020). Dual inhibitors of SARSCoV-2 proteases: Pharmacophore and molecular dynamics based drug repositioning and phytochemical leads. Journal of Biomolecular Structure Dynamics, 39, 1–14.
  • Muhammed, Y. (2020). Molecular targets for COVID-19 drug development: Enlightening Nigerians about the pandemic and future treatment. Biosafety and Health, 2(4), 210–216. https://doi.org/10.1016/j.bsheal.2020.07.002
  • Newman, D. J., & Cragg, G. M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770–803. https://doi.org/10.1021/acs.jnatprod.9b01285
  • Osipiuk, J., Azizi, S.-A., Dvorkin, S., Endres, M., Jedrzejczak, R., Jones, K. A., Kang, S., Kathayat, R. S., Kim, Y., Lisnyak, V. G., Maki, S. L., Nicolaescu, V., Taylor, C. A., Tesar, C., Zhang, Y.-A., Zhou, Z., Randall, G., Michalska, K., Snyder, S. A., Dickinson, B. C., & Joachimiak, A. (2021). Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors. Nature Communications, 12(1), 1–9. https://doi.org/10.1038/s41467-021-21060-3
  • Patel, S. S., Acharya, A., Ray, R. S., Agrawal, R., Raghuwanshi, R., & Jain, P. (2020). Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Critical Reviews in Food Science and Nutrition, 60(6), 887–939.
  • Pirolli, D., Sciandra, F., Bozzi, M., Giardina, B., Brancaccio, A., & De Rosa, M. C. (2014). Insights from molecular dynamics simulations: structural basis for the V567D mutation-induced instability of zebrafish alpha-dystroglycan and comparison with the murine model. PLoS One, 9(7), e103866.
  • Plouffe, J. F. (2000). Importance of atypical pathogens of community-acquired pneumonia. Clinical Infectious Diseases, 31(Supplement_2), S35–S39. https://doi.org/10.1086/314058
  • Praditya, D., Kirchhoff, L., Brüning, J., Rachmawati, H., Steinmann, J., & Steinmann, E. (2019). Anti-infective properties of the golden spice curcumin. Frontiers in Microbiology, 10, 912.
  • Qazi, S., Sheikh, K., & Raza, K. (2021). In-silico approach to understand the epigenetic mechanism of SARS-CoV-2 and its impact on the environment. Virusdisease, 32(2), 286–297.
  • Rothan, H. A., Buckle, M. J., Ammar, Y. A., Mohammadjavad, P., Shatrah, O., Noorsaadah, A. R., & Rohana, Y. (2013). Study the antiviral activity of some derivatives of tetracycline and non-steroid anti inflammatory drugs towards dengue virus. Tropical Biomedicine, 30, 681–690.
  • Rothan, H. A., Mohamed, Z., Paydar, M., Rahman, N. A., & Yusof, R. (2014). Inhibitory effect of doxycycline against dengue virus replication in vitro. Archives of Virology, 159(4), 711–718.
  • Rothan, H. A., Bahrani, H., Mohamed, Z., Teoh, T. C., Shankar, E. M., Rahman, N. A., & Yusof, R. (2015). A combination of doxycycline and ribavirin alleviated chikungunya infection. PloS One, 10(5), e0126360.
  • Sachdeva, C., Wadhwa, A., Kumari, A., Hussain, F., Jha, P., & Kaushik, N. K. (2020). In-silico potential of approved antimalarial drugs for repurposing against COVID-19. Omics : a Journal of Integrative Biology, 24(10), 568–580.
  • Salmaso, V., & Moro, S. (2018). Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: An overview. Frontiers in Pharmacology, 9, 923.
  • Schreiner, W., Karch, R., Knapp, B., & Ilieva, N. (2012). Relaxation estimation of RMSD in molecular dynamics immunosimulations. Computational and Mathematical Methods in Medicine, 2012, 173521.
  • Sencanski, M., Perovic, V., Pajovic, S. B., Adzic, M., Paessler, S., & Glisic, S. (2020). Drug repurposing for candidate SARS-CoV-2 main protease inhibitors by a novel In-silico method. Molecules, 25(17), 3830. https://doi.org/10.3390/molecules25173830
  • Shang, J., Ye, G., Shi, K., Wan, Y., Luo, C., Aihara, H., Geng, Q., Auerbach, A., & Li, F. (2020). Structural basis of receptor recognition by SARS-CoV-2. Nature, 581(7807), 221–224.
  • Sudo, K., Konno, K., Shigeta, S., & Yokota, T. (1998). Inhibitory effects of podophyllotoxin derivatives on herpes simplex virus replication. Antiviral Chemistry & Chemotherapy, 9(3), 263–267.
  • Sun, H., Li, Y., Shen, M., Tian, S., Xu, L., Pan, P., Guan, Y., & Hou, T. (2014). Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. Physical Chemistry Chemical Physics : PCCP, 16(40), 22035–22045.
  • Tallei, T. E., Tumilaar, S. G., Niode, N. J., Kepel, B. J., Idroes, R., Effendi, Y., Sakib, S. A., Emran., & T. B., Fatimawali. (2020). Potential of plant bioactive compounds as SARS-CoV-2 main protease (Mpro) and spike (S) glycoprotein inhibitors: A molecular docking study. Scientifica, 2020, 6307457. https://doi.org/10.1155/2020/6307457
  • Toukmaji, A. Y., & Board, J. A. (1996). Ewald summation techniques in perspective: A survey. Computer Physics Communications, 95(2–3), 73–92. https://doi.org/10.1016/0010-4655(96)00016-1
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461.
  • Vistoli, G., Pedretti, A., & Testa, B. (2008). Assessing drug-likeness–what are we missing? Drug Discovery Today, 13(7–8), 285–294.
  • Wang, Z., Wang, X., Li, Y., Lei, T., Wang, E., Li, D., Kang, Y., Zhu, F., & Hou, T. (2019). farPPI: A webserver for accurate prediction of protein–ligand binding structures for small-molecule PPI inhibitors by MM/PB(GB)SA methods. Bioinformatics, 35(10), 1777–1779. https://doi.org/10.1093/bioinformatics/bty879
  • Wu, Z-c., Wang, X., Wei, J-c., Li, B-b., Shao, D-h., Li, Y-m., Liu, K., Shi, Y-y., Zhou, B., Qiu, Y-f., & Ma, Z-y (2015). Antiviral activity of doxycycline against vesicular stomatitis virus in vitro. FEMS Microbiology Letters, 362(22), fnv195. https://doi.org/10.1093/femsle/fnv195
  • Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., Wang, Q., Xu, Y., Li, M., Li, X., Zheng, M., Chen, L., & Li, H. (2020). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica. B, 10(5), 766–788.
  • Xu, L., Li, Y. Y., Li, D., Xu, P., Tian, S., Sun, H. Y., Liu, H., & Hou, T. J. (2015). Exploring the binding mechanisms of MIF to CXCR2 using theoretical approaches. Physical Chemistry Chemical Physics : PCCP, 17(5), 3370–3382.
  • Xu, D., Si, Y. B., & Meroueh, S. O. (2017). A computational investigation of small-molecule engagement of hot spots at protein–protein interaction interfaces. Journal of Chemical Information and Modeling, 57(9), 2250–2272.
  • Yang, X. X., Shao, H., & Zhang, L. Q. (2001). Present situation of studies on resources of podophyllotoxin. Chinese Traditional and Herbal Drugs, 32(11), 1042–1043.
  • Yang, J. M., Chen, Y. F., Tu, Y. Y., Yen, K. R., & Yang, Y. L. (2007). Combinatorial computational approaches to identify tetracycline derivatives as flavivirus inhibitors. PloS One, 2(5), e428.
  • Yang, H., Lou, C., Sun, L., Li, J., Cai, Y., Wang, Z., Li, W., Liu, G., & Tang, Y. (2019). admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics (Oxford, England), 35(6), 1067–1069.
  • Yin, W., Mao, C., Luan, X., Shen, D.-D., Shen, Q., Su, H., Wang, X., Zhou, F., Zhao, W., Gao, M., Chang, S., Xie, Y.-C., Tian, G., Jiang, H.-W., Tao, S.-C., Shen, J., Jiang, Y., Jiang, H., Xu, Y., … Xu, H. E. (2020). Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science (New York, N.Y.), 368(6498), 1499–1504.
  • Yoshimoto, F. K. (2020). The proteins of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2 or n-COV19), the cause of COVID-19. The Protein Journal, 39(3), 198–216. https://doi.org/10.1007/s10930-020-09901-4
  • Yu, X., Che, Z., & Xu, H. (2017). Recent advances in the chemistry and biology of podophyllotoxins. Chemistry (Weinheim an der Bergstrasse, Germany), 23(19), 4467–4526.
  • Zahrani, N. A. A., El-Shishtawy, R. M., & Asiri, A. M. (2020). Recent developments of gallic acid derivatives and their hybrids in medicinal chemistry: A review. European Journal of Medicinal Chemistry, 204, 112609.
  • Ziebuhr, J. (2005). The coronavirus replicase. Current Topics in Microbiology and Immunology, 287, 57–94.
  • Zhao, W., Cong, Y., Li, H.-M., Li, S., Shen, Y., Qi, Q., Zhang, Y., Li, Y.-Z., & Tang, Y.-J. (2021). Challenges and potential for improving the druggability of podophyllotoxin-derived drugs in cancer chemotherapy. Natural Product Reports, 38(3), 470–488.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.