325
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

In silico approaches and in vitro assays identify a coumarin derivative as antiviral potential against SARS-CoV-2

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 8978-8991 | Received 23 Aug 2022, Accepted 18 Oct 2022, Published online: 03 Nov 2022

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Albuquerque, S. O., Barros, T. G., Dias, L. R. S., Lima, C. H. d S., Azevedo, P. H., R., d A., Flores-Junior, L., A. P., dos Santos, E. G., Loponte, H. F., Pinheiro, S., Dias, W. B., Muri, E. M. F., & Todeschini, A. R. (2020). Biological evaluation and molecular modeling of peptidomimetic compounds as inhibitors for O-GlcNAc transferase (OGT). European Journal of Pharmaceutical Sciences : Official Journal of the European Federation for Pharmaceutical Sciences, 154(July), 105510. https://doi.org/10.1016/j.ejps.2020.105510
  • Al-Karmalawy, A. A., Dahab, M. A., Metwaly, A. M., Elhady, S. S., Elkaeed, E. B., Eissa, I. H., & Darwish, K. M. (2021, May). Molecular docking and dynamics simulation revealed the potential inhibitory activity of ACEIs against SARS-CoV-2 targeting the hACE2 receptor. Frontiers in Chemistry, 9, 661230. https://doi.org/10.3389/fchem.2021.661230
  • Andrade, A. C. d S. P., Campolina-Silva, G. H., Queiroz-Junior, C. M., de Oliveira, L. C., Lacerda, L. d S. B., Gaggino, J. C. P., de Souza, F. R. O., de Meira Chaves, I., Passos, I. B., Teixeira, D. C., Bittencourt-Silva, P. G., Valadão, P. A. C., Rossi-Oliveira, L., Antunes, M. M., Figueiredo, A. F. A., Wnuk, N. T., Temerozo, J. R., Ferreira, A. C., Cramer, A., … Costa, V. V. (2021). A biosafety level 2 mouse model for studying betacoronavirus-induced acute lung damage and systemic manifestations. Journal of Virology, 95(22), e01276-21. https://doi.org/10.1128/JVI.01276-21
  • Bagchi, S., Chhibber, T., Lahooti, B., Verma, A., Borse, V., & Jayant, R. D. (2019). In-vitro blood-brain barrier models for drug screening and permeation studies: An overview. Drug Design, Development and Therapy, 13, 3591–3605. https://doi.org/10.2147/DDDT.S218708
  • Bain, W., Lee, J. S., Watson, A. M., & Stitt‐Fischer, M. S. (2020). Practical guidelines for collection, manipulation and inactivation of SARS‐CoV‐2 and COVID‐19 clinical specimens. Current Protocols in Cytometry, 93(1), e77. https://doi.org/10.1002/cpcy.77
  • Berendsen, H., J., C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1–3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
  • Berman, H. M., Battistuz, T., Bhat, T. N., Bluhm, W. F., Bourne, P. E., Burkhardt, K., Feng, Z., Gilliland, G. L., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J. D., & Zardecki, C. (2002). The protein data bank. Acta Crystallographica. Section D, Biological Crystallography, 58(6), 899–907. https://doi.org/10.1107/S0907444902003451
  • Bispo, M. d L. F., Gonçalves, R. S. B., Lima, C. H. d S., Cardoso, L. N. d F., Lourenço, M. C. S., & de Souza, M. V. N. (2012). Synthesis and antitubercular evaluation of N -arylpyrazine and N,N′ -alkyl-diylpyrazine-2-carboxamide derivatives. Journal of Heterocyclic Chemistry, 49(6), 1317–1322. https://doi.org/10.1002/jhet.921
  • Brito, T. O., Abreu, L. O., Gomes, K. M., Lourenço, M. C. S., Pereira, P. M. L., Yamada-Ogatta, S. F., de Fátima, Â., Tisher, C. A., Macedo, F., & Bispo, M. L. F. (2020). Benzoylthioureas: Design, synthesis and antimycobacterial evaluation. Medicinal Chemistry (Shariqah (United Arab Emirates)), 16(1), 93–103. https://doi.org/10.2174/1573406415666181208110753
  • Camargo, P. G., Bortoleti, B. T., D. S., Fabris, M., Gonçalves, M. D., Tomiotto-Pellissier, F., Costa, I. N., Conchon-Costa, I., Lima, C. H., D. S., Pavanelli, W. R., Bispo, M. D. L. F., & Macedo, F. (2020). Thiohydantoins as anti-leishmanial agents: N vitro biological evaluation and multi-target investigation by molecular docking studies. Journal of Biomolecular Structure and Dynamics, 40(7), 3213–3222. https://doi.org/10.1080/07391102.2020.1845979
  • Chhatwal, J., & Basu, A. (2022). Cost-effectiveness of remdesivir for COVID-19 Treatment: What are we missing? Value in Health : The Journal of the International Society for Pharmacoeconomics and Outcomes Research, 25(5), 697–698. https://doi.org/10.1016/j.jval.2022.02.002
  • da Silva, T. U., Pougy, K. d C., Albuquerque, M. G., da Silva Lima, C. H., & Machado, S. d P. (2020). Development of parameters compatible with the CHARMM36 force field for [Fe 4 S 4] 2+ clusters and molecular dynamics simulations of adenosine-5’-phosphosulfate reductase in GROMACS 2019. Journal of Biomolecular Structure and Dynamics, 40(8), 3481–3491. https://doi.org/10.1080/07391102.2020.1847687
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(January), 42717–42713. https://doi.org/10.1038/srep42717
  • de Carvalho, P. G. C., Ribeiro, J. M., Garbin, R. P. B., Nakazato, G., Yamada Ogatta, S. F., de Fátima, Â., de Lima Ferreira Bispo, M., & Macedo, F. (2020). Synthesis and antimicrobial activity of thiohydantoins obtained from L-amino acids. Letters in Drug Design & Discovery, 17(1), 94–102. https://doi.org/10.2174/1570180816666181212153011
  • Deshmukh, M. N., Burud, R., Baldino, C., Chan, P., C. M., & Liu, J. (2003). A practical and environmentally friendly preparation of 3-carboxycoumarins. Synthetic Communications, 33(19), 3299–3303. https://doi.org/10.1081/SCC-120023987
  • Eastman, R. T., Roth, J. S., Brimacombe, K. R., Simeonov, A., Shen, M., Patnaik, S., & Hall, M. D. (2020). Remdesivir: A review of its discovery and development leading to emergency use authorization for treatment of COVID-19. ACS Central Science, 6(5), 672–683. https://doi.org/10.1021/acscentsci.0c00489
  • El Hassab, M. A., Shoun, A. A., Al-Rashood, S. T., Al-Warhi, T., & Eldehna, W. M. (2020). Identification of a new potential SARS-COV-2 RNA-dependent RNA polymerase inhibitor via combining fragment-based drug design, docking, molecular dynamics, and MM-PBSA calculations. Frontiers in Chemistry, 8(October), 584894–584811. https://doi.org/10.3389/fchem.2020.584894
  • Estabrook, R. W. (2003). A passion for P450s (remembrances of the early history of research on cytochrome P450). Drug Metabolism and Disposition: The Biological Fate of Chemicals, 31(12), 1461–1473. https://doi.org/10.1124/dmd.31.12.1461
  • Evans, D. A. (2014). History of the Harvard ChemDraw project. Angewandte Chemie (International ed. in English), 53(42), 11140–11145. https://doi.org/10.1002/anie.201405820
  • Ferreira, L., & Andricopulo, A. (2020). Medicamentos e tratamentos para a Covid-19. Estudos Avançados, 34(100), 7–27. ( https://doi.org/10.1590/s0103-4014.2020.34100.002
  • Food and Drug Administration. (2021). FDA Approves First Treatment for COVID-19.
  • Gao, Y., Yan, L., Huang, Y., Liu, F., Zhao, Y., Cao, L., Wang, T., Sun, Q., Ming, Z., Zhang, L., Ge, J., Zheng, L., Zhang, Y., Wang, H., Zhu, Y., Zhu, C., Hu, T., Hua, T., Zhang, B., … Rao, Z. (2020). Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science (New York, N.Y.), 368(6492), 779–782. https://doi.org/10.1126/science.abb7498
  • Ghosh, A. K., Williams, J. N., Ho, R. Y., Simpson, H. M., Hattori, S., Hayashi, H., Agniswamy, J., Wang, Y.-F., Weber, I. T., & Mitsuya, H. (2018). Design and synthesis of potent HIV-1 protease inhibitors containing bicyclic oxazolidinone scaffold as the P2 ligands: Structure–activity studies and biological and X-ray structural studies. Journal of Medicinal Chemistry, 61(21), 9722–9737. https://doi.org/10.1021/acs.jmedchem.8b01227
  • Hevener, K. E., Zhao, W., Ball, D. M., Babaoglu, K., Qi, J., White, S. W., & Lee, R. E. (2009). Validation of molecular docking programs for virtual screening against dihydropteroate synthase. Journal of Chemical Information and Modeling, 49(2), 444–460.
  • Hishiki, T., Kato, F., Tajima, S., Toume, K., Umezaki, M., Takasaki, T., & Miura, T. (2017). Hirsutine, an indole alkaloid of uncaria rhynchophylla, inhibits late step in dengue virus lifecycle. Frontiers in Microbiology, 8, 1674. https://doi.org/10.3389/fmicb.2017.01674
  • Huang, J., & MacKerell, A. D. (2013). CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354
  • Hwu, J. R., Huang, W.-C., Lin, S.-Y., Tan, K.-T., Hu, Y.-C., Shieh, F.-K., Bachurin, S. O., Ustyugov, A., & Tsay, S.-C. (2019). Chikungunya virus inhibition by synthetic coumarin–guanosine conjugates. European Journal of Medicinal Chemistry, 166, 136–143. https://doi.org/10.1016/j.ejmech.2019.01.037
  • Jiang, C., Yang, H., Di, P., Li, W., Tang, Y., & Liu, G. (2019). In silico prediction of chemical reproductive toxicity using machine learning. Journal of Applied Toxicology : JAT, 39(6), 844–854. https://doi.org/10.1002/jat.3772
  • Kato, K., Honma, T., & Fukuzawa, K. (2020, January). Intermolecular interaction among Remdesivir, RNA and RNA- dependent RNA polymerase of SARS-CoV-2 analyzed by fragment molecular orbital calculation. Journal of Molecular Graphics and Modelling, 100, 107695.
  • Körner, R., Majjouti, M., Alcazar, M., & Mahabir, E. (2020). Of mice and men: The coronavirus MHV and mouse models as a translational approach to understand SARS-CoV-2. Viruses, 12(8), 880. https://doi.org/10.3390/v12080880
  • Kumar, T., Shaikh, N., Kumar S, U., Doss C, G. P., & Zayed, H. (2021). Structure-based virtual screening to identify novel potential compound as an alternative to remdesivir to overcome the RdRp protein mutations in SARS-CoV-2. Frontiers in Molecular Biosciences, 8, 645216. https://doi.org/10.3389/fmolb.2021.645216
  • Lee, J., Cheng, X., Swails, J. M., Yeom, M. S., Eastman, P. K., Lemkul, J. A., Wei, S., Buckner, J., Jeong, J. C., Qi, Y., Jo, S., Pande, V. S., Case, D. A., Brooks, C. L., MacKerell, A. D., Klauda, J. B., & Im, W. (2016). CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. Journal of Chemical Theory and Computation, 12(1), 405–413. https://doi.org/10.1021/acs.jctc.5b00935
  • Li, Y., Meng, Q., Yang, M., Liu, D., Hou, X., Tang, L., Wang, X., Lyu, Y., Chen, X., Liu, K., Yu, A.-M., Zuo, Z., & Bi, H. (2019). Current trends in drug metabolism and pharmacokinetics. Acta Pharmaceutica Sinica. B, 9(6), 1113–1144. https://doi.org/10.1016/j.apsb.2019.10.001
  • Lima, C., de Alencastro, R., Kaiser, C., de Souza, M., Rodrigues, C., & Albuquerque, M. (2015). Aqueous molecular dynamics simulations of the M. tuberculosis enoyl-ACP reductase-NADH system and its complex with a substrate mimic or diphenyl ethers inhibitors. International Journal of Molecular Sciences, 16(10), 23695–23722. https://doi.org/10.3390/ijms161023695
  • Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64, 4–17. https://doi.org/10.1016/j.addr.2012.09.019
  • Lüthy, R., Bowie, J. U., & Eisenberg, D. (1992). Assessment of protein models with three-dimensional profiles. Nature, 356(6364), 83–85. https://doi.org/10.1038/356083a0
  • McDonnell, A. M., & Dang, C. H. (2013). Basic review of the cytochrome P450 system. Journal of the Advanced Practitioner in Oncology, 4(4), 263–268. https://doi.org/10.6004/jadpro.2013.4.4.7
  • Menéndez, C. A., Accordino, S. R., Gerbino, D. C., & Appignanesi, G. A. (2016). Hydrogen bond dynamic propensity studies for protein binding and drug design. PloS One, 11(10), e0165767. https://doi.org/10.1371/journal.pone.0165767
  • Mooij, W. T. M., & Verdonk, M. L. (2005). General and targeted statistical potentials for protein-ligand interactions. Proteins, 61(2), 272–287. https://doi.org/10.1002/prot.20588
  • Nishimura, T., Toku, H., & Fukuyasu, H. (1977). Antiviral compounds. XII. Antiviral activity of amidinohydrazones of alkoxyphenyl-substituted carbonyl compounds against influenza virus in eggs and in mice. The Kitasato Archives of Experimental Medicine, 50(1–2), 39–46.
  • Onder, F. C., Durdagi, S., Kahraman, N., Uslu, T. N., Kandemir, H., Atici, E. B., Ozpolat, B., & Ay, M. (2021). Novel inhibitors of eukaryotic elongation factor 2 kinase: In silico, synthesis and in vitro studies. Bioorganic Chemistry, 116, 105296. https://doi.org/10.1016/j.bioorg.2021.105296
  • Pereira, P. M. L., Camargo, P. G., Fernandes, B. T., Flores-Junior, L. A. P., Dias, L. R. S., Lima, C. H. S., Pinge-Filho, P., Lioni, L. M. Y., Yamada-Ogatta, S. F., Bispo, M. L. F., & Macedo, F. (2021). In vitro evaluation of antitrypanosomal activity and molecular docking of benzoylthioureas. Parasitology International, 80(October 2020), 102225. https://doi.org/10.1016/j.parint.2020.102225
  • Picarazzi, F., Vicenti, I., Saladini, F., Zazzi, M., & Mori, M. (2020). Targeting the RdRp of emerging RNA viruses: The structure-based drug design challenge. Molecules, 25(23), 5695. https://doi.org/10.3390/molecules25235695
  • Pilau, M. R., Alves, S. H., Weiblen, R., Arenhart, S., Cueto, A. P., & Lovato, L. T. (2011). Antiviral activity of the Lippia graveolens (Mexican oregano) essential oil and its main compound carvacrol against human and animal viruses. Brazilian Journal of Microbiology : [Publication of the Brazilian Society for Microbiology], 42(4), 1616–1624. https://doi.org/10.1590/S1517-83822011000400049
  • Reed, L. J., & Muench, H. (1938). A simple method of estimating fifty per cent endpoints. American Journal of Epidemiology, 27(3), 493–497. https://doi.org/10.1093/oxfordjournals.aje.a118408
  • Rovozzo, G. C., & Burke, C. N. (1973). A manual of basic virological tecniques. New Jersey: Prentice-Hall.
  • Ruan, Z., Liu, C., Guo, Y., He, Z., Huang, X., Jia, X., & Yang, T. (2021). SARS‐CoV‐2 and SARS‐CoV: Virtual screening of potential inhibitors targeting RNA‐dependent RNA polymerase activity (NSP12). Journal of Medical Virology, 93(1), 389–400. https://doi.org/10.1002/jmv.26222
  • Sander, T., Freyss, J., von Korff, M., Reich, J. R., & Rufener, C. (2009). OSIRIS, an entirely in-house developed drug discovery informatics system. Journal of Chemical Information and Modeling, 49(2), 232–246. https://doi.org/10.1021/ci800305f
  • Santiago-Silva, K. M. D., Taciane, B., Brito, D. O., Costa, I. C., Henrique, C., Jr, F. M., Miranda-Sapla, M. M., Rogério, W., Lima, M. D., Bispo, F., Miranda-Sapla, M. M., Pavanelli, W. R., F., & M., D. L. (2021). Exploring the antileishmanial activity of N, N - disubstituted-benzoylguanidines: Synthesis and molecular modeling studies. Journal of Biomolecular Structure and Dynamics, 1–16. https://doi.org/10.1080/07391102.2021.1959403
  • Santiago-Silva, K. M., de, Camargo, P., Felix da Silva Gomes, G., Sotero, A. P., Orsato, A., Perez, C. C., Nakazato, G., da Silva Lima, C. H., & Bispo, M. (2022). In silico approach identified benzoylguanidines as SARS-CoV-2 main protease (M pro) potential inhibitors. Journal of Biomolecular Structure and Dynamics, 1–14. https://doi.org/10.1080/07391102.2022.2123396
  • Tehrani, M. B., Rezaei, Z., Asadi, M., Behnammanesh, H., Nadri, H., Afsharirad, F., Moradi, A., Larijani, B., Mohammadi‐Khanaposhtani, M., & Mahdavi, M. (2019). Design, synthesis, and cholinesterase inhibition assay of coumarin‐3‐carboxamide‐ N ‐morpholine hybrids as new anti‐Alzheimer agents. Chemistry & Biodiversity, 16(7), e19001. https://doi.org/10.1002/cbdv.201900144
  • Tijsma, A., Thibaut, H. J., Franco, D., Dallmeier, K., & Neyts, J. (2016). Hydantoin: The mechanism of its in vitro anti-enterovirus activity revisited. Antiviral Research, 133, 106–109. https://doi.org/10.1016/j.antiviral.2016.07.023
  • Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Vilar, S., Sobarzo-Sánchez, E., & Uriarte, E. (2019). In silico prediction of P-glycoprotein binding: Insights from molecular docking studies. Current Medicinal Chemistry, 26(10), 1746–1760. https://doi.org/10.2174/0929867325666171129121924
  • Virelizier, J.-L., & Allison, A. C. (1976). Correlation of persistent mouse hepatitis virus (MHV-3) infection with its effect on mouse macrophage cultures. Archives of Virology, 50(4), 279–285. https://doi.org/10.1007/BF01317953
  • World Health Organization. (2021). Coronavirus disease (COVID-19) pandemic.
  • Xu, C., Xin, Y., Chen, M., Ba, M., Guo, Q., Zhu, C., Guo, Y., & Shi, J. (2020). Discovery, synthesis, and optimization of an N-alkoxy indolylacetamide against HIV-1 carrying NNRTI-resistant mutations from the Isatis indigotica root. European Journal of Medicinal Chemistry, 189, 112071. https://doi.org/10.1016/j.ejmech.2020.112071
  • Yang, H., Lou, C., Sun, L., Li, J., Cai, Y., Wang, Z., Li, W., Liu, G., & Tang, Y. (2019). admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics (Oxford, England), 35(6), 1067–1069. https://doi.org/10.1093/bioinformatics/bty707
  • Yin, W., Mao, C., Luan, X., Shen, D.-D., Shen, Q., Su, H., Wang, X., Zhou, F., Zhao, W., Gao, M., Chang, S., Xie, Y.-C., Tian, G., Jiang, H.-W., Tao, S.-C., Shen, J., Jiang, Y., Jiang, H., Xu, Y., … Xu, H. E. (2020). Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science (New York, N.Y.), 368(6498), 1499–1504. https://doi.org/10.1126/science.abc1560
  • Zhang, H., Yang, Y., Li, J., Wang, M., Saravanan, K. M., Wei, J., Tze-Yang Ng, J., Tofazzal Hossain, M., Liu, M., Zhang, H., Ren, X., Pan, Y., Peng, Y., Shi, Y., Wan, X., Liu, Y., & Wei, Y. (2020). A novel virtual screening procedure identifies Pralatrexate as inhibitor of SARS-CoV-2 RdRp and it reduces viral replication in vitro. PLoS Computational Biology, 16(12), e1008489. https://doi.org/10.1371/journal.pcbi.1008489
  • Zhou, S., Chan, E., Li, X., & Huang, M. (2005). Clinical outcomes and management of mechanism-based inhibition of cytochrome P450 3A4. Therapeutics and Clinical Risk Management, 1(1), 3–13. https://doi.org/10.2147/tcrm.1.1.3.53600
  • Zhou, S.-F., Liu, J.-P., & Chowbay, B. (2009). Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metabolism Reviews, 41(2), 89–295. https://doi.org/10.1080/03602530902843483

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.