335
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Computational prediction of B and T-cell epitopes of Kyasanur Forest Disease virus marker proteins towards the development of precise diagnosis and potent subunit vaccine

, , &
Pages 9157-9176 | Received 20 Dec 2021, Accepted 24 Oct 2022, Published online: 06 Nov 2022

References

  • Alam, A., Ali, S., Ahamad, S., Malik, Z. M., & Ishrat, R. (2016). From ZIKV genome to vaccine: In-silico approach for the epitope based vaccine against Zika Virus envelope glycoprotein. Immunology, 149(4), 386–399. https://doi.org/10.1111/imm.12656
  • Andreatta, M., & Nielsen, M. (2016). Gapped sequence alignment using artificial neural networks: Application to the MHC class I system. Bioinformatics (Oxford, England), 32(4), 511–517. https://doi.org/10.1093/bioinformatics/btv639
  • Arumugam, S., & Varamballi, P. (2021). Insilico design of envelope based multi-epitope vaccine candidate against Kyasanur Forest Disease Virus. Scientific Reports, 11(1), 17118. https://doi.org/10.1038/s41598-021-94488-8
  • Awate, P., Yadav, P., Patil, D., Shete, A., Kumar, V., Kore, P., Dolare, J., Deshpande, M., Bagde, S., Sapkal, G., Gurav, Y., & Mourya, D. T. (2016). Outbreak of Kyasanur Forest disease (monkey fever) in Sindhudurg, Maharashtra State, India, 2016. The Journal of Infection, 72(6), 759–761. https://doi.org/10.1016/j.jinf.2016.03.006
  • Backert, L., & Kohlbacher, O. (2015). Immunoinformatics and epitope prediction in the age of genomic medicine. Genome Medicine, 7(119), 119. https://doi.org/10.1186/s13073-015-0245-0
  • Bahrami, A. A., Payandeh, Z., Khalili, S., Zakeri, A., & Bandehpour, M. (2019). Immunoinformatics: In silico approaches and computational design of multi-epitope immunogenic protein. International Reviews of Immunology, 38(6), 307–322. https://doi.org/10.1080/08830185.2019.1657426
  • Barlow, D. J., Edwards, M. S., & Thornton, J. M. (1986). Continuous and discontinuous protein antigenic determinants. Nature, 322(6081), 747–748.
  • Bartholomeusz, A. I., & Wright, P. J. (1993). Synthesis of dengue virus RNA in vitro: Initiation and the involvement of proteins NS3 and NS5. Archives of Virology, 128(1–2), 111–121. https://doi.org/10.1007/BF01309792
  • Best, S. M. (2017). The many faces of the flavivirus NS5protein in antagonism of type I interferon signaling. Journal of Virology, 91(3), e01970–16. https://doi.org/10.1128/JVI.01970-16
  • Blaquez, D. W., & Barret, A. D. (2002). Identification of neutralizing epitopes within structural domain III of the West Nile virus envelope protein. Journal of Virology, 76, 13097–13100.
  • Brinton, M. A. (1986). Replication of flaviviruses. In Schlesinger, S., Schlesinger, M.J. (Eds.), The Togaviridae and Flaviviridae. The Viruses. Boston, MA: Springer. https://doi.org/10.1007/978-1-4757-0785-4_11
  • Bui, H. H., Sidney, J., Dinh, K., Southwood, S., Newman, M. J., & Sette, A. (2006). Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics, 17, 153.
  • Bui, H. H., Sidney, J., Li, W., Fusseder, N., & Sette, A. (2007). Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines. BMC Bioinformatics, 8(1), 361. https://doi.org/10.1186/1471-2105-8-361
  • Calis, J. J. A., Maybeno, M., Greenbaum, J. A., Weiskopf, D., De Silva, A. D., Sette, A., Kesmir, C., & Peters, B. (2013). Properties of MHC class I presented peptides that enhance immunogenicity. PLOS Computational Biology, 8(1), 361.
  • CASe, D. A., Betz, R. M., Cerutti, D. S., T. E., C. I., Darden, T. A., Duke, R. E., Giese, T. J., Gohlke, H., Goetz, A. W., Homeyer, N., Izadi, S., Janowski, P., Kaus, J., Kovalenko, A., Lee, T. S., LeGrand, S., Li, P., C., Lin, Luchko, T., Kollman, P. A. … (2016). Amber 2016. University of California.
  • Chakraborty, S., Chakravorty, R., Ahmed, M., Rahman, A., Waise, Z. T. M., Hassan, F., Rahman, M., & Shamsuzzaman, S. (2010). A computational approach for identification of epitopes in dengue virus envelope protein: A step towards designing a universal dengue vaccine targetting endemic regions. In Silico Biology, 10(5–6), 235–246. https://doi.org/10.3233/ISB-2010-0435
  • Chan, Y. K., & Gack, M. U. (2016). A phosphomimetic-based mechanism of dengue virus to antagonize innate immunity. Nature Immunology, 17(5), 523–530. https://doi.org/10.1038/ni.3393
  • Chen, Z., Ruan, P., Wang, L., Nie, X., Ma, X., & Tan, Y. (2021). T and B cell Epitope analysis of SARS-CoV-2 S protein based on immunoinformatics and experimental research. Journal of Cellular and Molecular Medicine, 25(2), 1274–1289. https://doi.org/10.1111/jcmm.16200
  • Chou, P. Y., & Fasman, G. D. (1978). Prediction of the secondary structure of proteins from their amino acid sequence. Advances in Enzymology and Related Areas of Molecular Biology, 47, 45–148.
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures; Patterns of non-banded atomic interactions. Protein Science, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Combet, C., Blanchet, C., Geourjon, C., & Deléage, G. (2000). NPS@: Network protein sequence analysis. Trends in Biochemical Sciences, 25(3)), 147–150.
  • Corpet, F. (1988). Multiple sequence alignment with hierarchical clustering. Nucleic Acids Research, 16(22), 10881–10890.
  • Cuevas, C. D., & Ross, S. L. (2014). Toll-like receptor 2 mediated innate immune responses against Junin virus in mice lead to antiviral adaptive immune responses during systemic infection and do not affect viral replication in the brain. Journal of Virology, 88(14), 7703–7714. https://doi.org/10.1128/JVI.00050-14
  • Dar, H., Zaheer, T., Rehman, M. T., Ali, A., Javed, A., Khan, G. A., Babar, M. M., & Waheed, Y. (2016). Prediction of promiscuous T-cell epitopes in the Zika virus polyprotein: An in silico approach. Asian Pacific Journal of Tropical Medicine, 9(9), 844–850. https://doi.org/10.1016/j.apjtm.2016.07.004
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Dedhia, L., Gadekar, S., Mehta, S., & Parekh, S. (2015). HLA haplotype diversity in the South Indian population and its relevance. Indian Journal of Transplantation, 9(4), 138–143. https://doi.org/10.1016/j.ijt.2015.10.016
  • Desta, I. T., Porter, K. A., Xia, B., Kozakov, D., & Vajda, S. (2020). Performance and its limits in rigid body protein-protein docking. Structure (London, England : 1993), 28(9), 1071–1081.e3. https://doi.org/10.1016/j.str.2020.06.006
  • Diamond, M. S., Shrestha, B., Marri, A., Mahan, D., & Engle, M. B. (2003). Cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus. Journal of Virology, 77(4), 2578–2586.
  • Dörries, R. (2001). The role of T-cell-mediated mechanisms in virus infections of the nervous system. In G. Gosztonyi (Eds.), The mechanisms of neuronal damage in virus infections of the nervous system. Current topics in microbiology and immunology (Vol. 253). https://doi.org/10.1007/978-3-662-10356-2_11
  • Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumor antigens, and subunit vaccines. BMC Bioinformatics, 8(4) https://doi.org/10.1186/1471-2105-8-4
  • Emini, E. A., Hughes, J. V., Perlow, D. S., & Boger, J. (1985). Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. Journal of Virology, 55(3), 836–839.
  • Ferenczy, G. G. (2015). Computation of drug-binding thermodynamics. In G. M. Keserü & D. C. Swinney (Eds.), Thermodynamics and kinetics of drug binding (pp. 37–61). Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527673025.ch3
  • Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In J. M. Walker (Ed.), The proteomics protocols handbook (pp. 571–607). Humana Press.
  • Gaurav, Y. K., Yadav, P. D., Gokhale, M. D., Chiplunkar, T. R., Vishwanathan, R., Patil, D. Y., & Mourya, D. T. (2018). Kyasanur forest disease prevalence in Western Ghats proven and confirmed by recent outbreak in Maharashtra, India, 2016. Vector-Borne and Zoonotic Diseases, 18(3), 2017–2129.
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Gohlke, H., Kiel, C., & Case, D. A. (2003). Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. Journal of Molecular Biology, 330(4), 891–913. https://doi.org/10.1016/S0022-2836(03)00610-7
  • Hasan, M. A., Khan, M. A., Datta, A., Mazumder, M. H. H., & Hossain, M. U. (2015). A comprehensive immunoinformatics and target site study revealed the corner-stone toward Chikungunya virus treatment. Molecular Immunology, 65(1), 189–204.
  • Holbrook, M. R. (2012). Kyasanur forest disease. Antiviral Research, 96(3), 353–362. https://doi.org/10.1016/j.antiviral.2012.10.005
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51(1), 69–82. https://doi.org/10.1021/ci100275a
  • Jahrling, P. B., Marty, A. M., & Geisbert, T. W. (2007). Chapter 13: Viral hemorrhagic fevers. In Medical aspects of biological warfare (pp. 271–310). Washington, DC, USA: Office of the Surgeon General, United States Army, and Borden Institute, Walter Reed Army Medical Center.
  • Karplus, P. A., & Schulz, G. E. (1985). Prediction of chain flexibility in proteins. Naturwissenschaften, 72(4), 212–213. https://doi.org/10.1007/BF01195768
  • Kasabi, G. S., Murhekar, M. V., Sandhya, V. K., Raghunandan, R., Kiran, S. K., Channabasappa, G. H., & Mehendale, S. M. (2013). Coverage and effectiveness of Kyasanur Forest Disease (KFD) Vaccine in Karnataka, South India, 2005–10. PLoS Neglected Tropical Diseases, 7(1), e2025–16. https://doi.org/10.1371/journal.pntd.0002025
  • Khan, M. K., Zaman, S., Chakraborty, S., Chakravorty, R., Alam, M. M., Bhuiyan, T. R., Rahman, M. J., Fernández, C., Qadri, F., & Seraj, Z. I. (2014). In silico predicted mycobacterial epitope elicits in vitro T-cell responses. Molecular Immunology, 61(1), 16–22.
  • Kiran, S. K., Pasi, A., Kumar, S., Kasabi, G. S., Gujjarappa, P., Shrivastava, A., Mehendale, S., Chauhan, L. S., Laserson, K. F., & Murhekar, M. (2015). Kyasanur Forest disease outbreak and vaccination strategy, Shimoga District, India, 2013–2014. Emerging Infectious Diseases, 21(1), 146–149.
  • Kolaskar, A. S., & Tongaonkar, P. C. (1990). A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Letters, 276(1–2), 172–174.
  • Kozakov, D., Beglov, D., Bohnuud, T., Mottarella, S., Xia, B., Hall, D. R., & Vajda, S. (2013). How good is automated protein docking? Proteins, 81(12), 2159–2166. https://doi.org/10.1002/prot.24403
  • Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The ClusPro web server for protein-protein docking. Nature Protocols, 12(2), 255–278. https://doi.org/10.1038/nprot.2016.169
  • Kurane, I., Okamoto, Y., Dai, L. C., Zeng, L. L., Brinton, M. A., & Ennis, F. A. (1995). Flavivirus-cross-reactive, HLA-DR15-restricted epitope on NS3 recognized by 8 human CD4 + CD8-cytotoxic T lymphocyte clones. Journal of General Virology, 76(9), 2243–2249. https://doi.org/10.1099/0022-1317-76-9-2243
  • Lamiable, A., Thévenet, P., Rey, J., Vavrusa, M., Derreumaux, P., & Tufféry, P. (2016). PEP-FOLD3: Faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Research, 44(W1), W449–54.
  • Larsen, M. V., Lundegaard, C., Lamberth, K., Buus, S., Lund, O., & Nielsen, M. (2007). Large-Scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics, 8, 424.
  • Larsen, J. E., Lund, O., & Nielsen, M. (2006). Improved method for predicting linear B-cell epitopes. Immunome Research, 2(2), 2.
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Laskowski, R. A., & Swindells, M. B. (2011). Ligplot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786.
  • Leung, J. Y., Pijlman, G. P., Kondratieva, N., Hyde, J., Mackenzie, J. M., & Khromykh, A. A. (2008). Role of nonstructural protein NS2A in flavivirus assembly. Journal of Virology, 82(10), 4731–4741. https://doi.org/10.1128/JVI.00002-08
  • Lundegaard, C., Nielsen, M., & Lund, O. (2006). The validity of predicted T-cell epitopes. Trends in Biotechnology, 24(12), 537–538.
  • Lüthy, R., Bowie, J. U., & Eisenberg, D. (1992). Assessment of protein models with three-dimensional profiles. Nature, 356(6364), 83–85.
  • Machado, M. R., & Pantano, S. (2020). Split the charge difference in two! A rule of thumb for adding proper amounts of ions in MD simulations. Journal of Chemical Theory and Computation, 16(3), 1367–1372. https://doi.org/10.1021/acs.jctc.9b00953
  • Mahmud, S., Biswas, S., Kumar Paul, G., Mita, M. A., Afrose, S., Robiul Hasan, M., Sharmin Sultana Shimu, M., Uddin, M. A. R., Salah Uddin, M., Zaman, S., Kaderi Kibria, K. M., Arif Khan, M., Bin Emran, T., & Abu Saleh, M. (2021). Antiviral peptides against the main protease of SARS-CoV-2: A molecular docking and dynamics study. Arabian Journal of Chemistry, 14(9), 103315.
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Majid, M., & Andleeb, S. (2019). Designing a multi-epitope vaccine against the enterotoxigenic Bactreroides fragilis based on immunoinformatics approach. Scientific Reports, 9(1), 19780. https://doi.org/10.1038/s41598-019-55613-w
  • Mirza, M. U., Rafique, S., Ali, A., Munir, M., Ikram, N., Manan, A., Salo-Ahen, O. M. H., & Idrees, M. (2016). Towards peptide vaccines against Zika virus: Immunoinformatics combined with molecular dynamics simulations to predict antigenic epitopes of Zika viral proteins. Scientific Reports, 6, 37313.
  • Mourya, D. T., Yadav, P. D., Mehla, R., Barde, P. V., Yergolkar, P. N., Kumar, S. R., Jyotsna, P., & Mishra, A. C. (2012). Diagnosis of Kyasanur Forest Disease by nested RT-PCR and IgM capture ELISA. Journal of Virological Methods, 186(1–2), 49–54.
  • Muller, D. A., & Young, P. R. (2013). The flavivirus NS1 protein: Molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker. Antiviral Research, 98(2), 192–208. https://doi.org/10.1016/j.antiviral.2013.03.008
  • Nielsen, M., Lundegaard, C., Worning, P., Lauemøller, S. L., Lamberth, K., Buus, S., Brunak, S., & Lund, O. (2003). Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Science : A Publication of the Protein Society, 12(5), 1007–1017.
  • Palanisamy, N., & Lennerstrand, J. (2017). Computational prediction of usutu virus E protein B cell and T cell epitopes for potential vaccine development. Scandinavian Journal of Immunology, 85(5), 350–364. https://doi.org/10.1111/sji.12544
  • Panda, S., & Chandra, G. (2012). Physicochemical characterization and functional analysis of some snake venom toxin proteins and related non-toxin proteins of other chordates. Bioinformation, 8(18), 891–896. https://doi.org/10.6026/97320630008891
  • Parker, J. M., Guo, D., & Hodges, R. S. (1986). New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: Correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry, 25(19), 5425–5432. https://doi.org/10.1021/bi00367a013
  • Patil, D. Y., Yadav, P. D., Shete, A. M., Nuchina, J., Meti, R., Bhattad, D., Someshwar, S., & Mourya, D. T. (2017). Occupational exposure of cashew nut workers to Kyasanur Forest disease in Goa. International Journal of Infectious Diseases : IJID : Official Publication of the International Society for Infectious Diseases, 61, 67–69.
  • Pattnaik, P. (2006). Kyasanur forest disease: An epidemiological view in India. Reviews in Medical Virology, 16(3), 151–165. https://doi.org/10.1002/rmv.495
  • Pattnaik, P., Srivastava, A., Abhyankar, A., Dash, P. K., Parida, M. M., & Lakshmana Rao, P. V. (2006). Fusogenic peptide as diagnostic marker for detection of flaviviruses. Journal of Postgraduate Medicine, 52(3), 174–178.
  • Patwary, N. I. A., Islam, M. S., Sohel, M., Ara, I., Sikder, M. O. F., & Shahik, S. M. (2016). In silico structure analysis and epitope prediction of E3 CR1-beta protein of Human Adenovirus E for vaccine design. Biomedical Journal, 39(6), 382–390.
  • Paul, D., Sharif, I. H., Sayem, A., Ahmed, H., Saleh, A. M., & Mahmud, S. (2021). In silico prediction of a highly immunogenic and conserved epitope against Zika Virus. Informatics in Medicine Unlocked, 24, 100613. https://doi.org/10.1016/j.imu.2021.100613
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCCF Chimera- a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Ponomarenko, J. V., Bui, H., Li, W., Fusseder, N., Bourne, P. E., Sette, A., & Peters, B. (2008). ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics, 9, 514.
  • Prakasan, K. (2015). An investigation on first outbreak of Kyasanur forest disease in Wayanad district of Kerala. Journal of Entomology and Zoology Studies, 3(6), 239–240.
  • Rani, R., Fernandez-Vina, M. A., & Stastny, P. (1998). Associations between HLA class II alleles in a North Indian population. Tissue Antigens, 52(1), 37–43. https://doi.org/10.1111/j.1399-0039.1998.tb03021.x
  • Rastelli, G., Rio, A., Del, Degliesposti, G., & Sgobba, M. (2010). Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA. Journal of Computational Chemistry, 31(4), 797–810. https://doi.org/10.1002/jcc.21372
  • Rastogi, M., Sharma, N., & Singh, S. K. (2016). Flavivirus NS1: A multifaceted enigmatic viral protein. Virology Journal, 13, 131.
  • Reynisson, B., Barra, C., Kaabinejadian, S., Hidlebrand, W. H., Peters, B., & Neilsen, M. (2020). Improved prediction of MHC II antigen presentation through integration and motif deconvolution of mass spectrometry MHC eluted ligand data. Journal of Proteome Research, 19(6), 2304-2315. https://doi.org/10.1021/acs.jproteome.9b00874
  • Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Ryckaert, J. P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Sadanandane, C., Elango, A., Marja, N., Sasidharan, P. V., Raju, K. H. K., & Jambulingam, P. (2017). An outbreak of Kyasanur forest disease in the Wayanad and Malappuram districts of Kerala, India. Ticks and Tick-Borne Diseases, 8(1), 25–30. https://doi.org/10.1016/j.ttbdis.2016.09.010
  • Saha, S., & Raghava, G. P. S. (2006). Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins, 65(1), 40–48. https://doi.org/10.1002/prot.21078
  • Sharma, N., Patiyal, S., Dhall, A., Pande, A., Arora, C., & Raghava, G. P. S. (2021). AlgPred 2.0: An improved method for predicting allergic protein and mapping of IgE epitopes. Briefings in Bioinformatics, 22(4), b294.
  • Sotcheff, S., & Routh, A. (2020). Understanding flavivirus capsid protein functions: The tip of the iceberg. Pathogens, 9(1), 42. (https://doi.org/10.3390/pathogens9010042
  • Taylor, A., Foo, S.-S., Bruzzone, R., Vu Dinh, L., King, N. J. C., & Mahalingam, S. (2015). Fc receptors in antibody-dependent enhancement of viral infections. Immunological Reviews, 268(1), 340–364. https://doi.org/10.1111/imr.12367
  • Thippeswamy, N. B., & Kiran, S. K. (2017). Case report outbreak of Kyasanur Forest Disease in Shivamogga, Karnataka State, India, during 2015. Symbiosis Journal of Veternary Sciences, 3(2), 1–3.
  • Vajda, S., Yueh, C., Beglov, D., Bohnuud, T., Mottarella, S. E., Xia, B., Hall, D. R., & Kozakov, D. (2017). New additions to the ClusPro server motivated by CAPRI. Proteins, 85(3), 435–444. https://doi.org/10.1002/prot.25219
  • Van Regenmortel, M. H. (1996). Mapping epitope structure and activity: From one-dimensional prediction to four-dimensional description of antigenic specificity. Methods, 9(3), 465–472. https://doi.org/10.1006/meth.1996.0054
  • Velumani, S., Ho, H.-T., He, F., Musthaq, S., Prabakaran, M., & Kwang, J. (2011). A novel peptide ELISA for universal detection of antibodies to human H5N1 Influenza viruses. PloS One, 6(6), e20737.
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modeling of protein structures and complexes. Nucleic Acids Research. 46, 296–303.
  • Work, T. H., & Torpedo, H. (1957). Kyasanur Forest Disease, a new disease in India. Indian Journal of Medical Science, 11, 341–345.
  • Xu, D., & Zhang, Y. (2011). Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophysical Journal, 101(10), 2525–2534. https://doi.org/10.1016/j.bpj.2011.10.024
  • Yadav, P. D., Sahay, R. R., & Mourya, D. T. (2018). Detection of Kyasanur Forest Disease in newer areas of Sindhudurg district of Maharashtra state. The Indian Journal of Medical Research, 148(4), 453–455.
  • Zhang, L. (2018). Multi-epitope vaccines: A promising strategy against tumors and viral infections. Cellular & Molecular Immunology, 15(2), 182–184.
  • Zou, J., Xie, X., Wang, Q.-Y., Dong, H., Lee, M. Y., Kang, C., Yuan, Z., & Shi, P.-Y. (2015). Characterization of dengue virus NS4A and NS4B protein interaction. Journal of Virology, 89(7), 3455–3470. https://doi.org/10.1128/JVI.03453-14

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.