202
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Identification of novel pyrazole containing ɑ-glucosidase inhibitors: insight into pharmacophore, 3D-QSAR, virtual screening, and molecular dynamics study

, , ORCID Icon, ORCID Icon &
Pages 9398-9423 | Received 09 Aug 2022, Accepted 25 Oct 2022, Published online: 14 Nov 2022

References

  • Ambure, P., Gajewicz-Skretna, A., Cordeiro, M., Roy, K. (2019). New workflow for QSAR model development from small data sets: Small dataset curator and small dataset modeler. integration of data curation, exhaustive double cross-validation, and a set of optimal model selection techniques. Journal of Chemical Information and Modeling, 59(10), 4070–4076. https://doi.org/10.1021/acs.jcim.9b00476.
  • Azimi, F., Azizian, H., Najafi, Hassanzadeh, F., Sadeghi-Aliabadi, H., Ghasemi, J. B., Faramarzi, A., M., Mojtabavi, S., Larijani, B., Saghaei, L., & Mahdavi, M. (2021). Design and synthesis of novel quinazolinone-pyrazole derivatives as potential α-glucosidase inhibitors: Structure-activity relationship, molecular modeling and kinetic study. Bioorganic Chemistry, 114, 105127–105127. https://doi.org/10.1016/j.bioorg.2021.105127.
  • Azimi, F., Ghasemi, J., Azizian, H., Najafi, M., Faramarzi, M., Saghaei, L., Sadeghi-Aliabadi, H., Larijani, B., Hassanzadeh, F., & Mahdavi, M. (2021). Design and synthesis of novel pyrazole-phenyl semicarbazone derivatives as potential α-glucosidase inhibitor: Kinetics and molecular dynamics simulation study. International Journal of Biological Macromolecules, 166, 1082–1095. https://doi.org/10.1016/j.ijbiomac.2020.10.263.
  • Bansal, G., Singh, S., Monga, V., Thanikachalam, P. V., & Chawla, P. (2019). Synthesis and biological evaluation of thiazolidine-2,4-dione-pyrazole conjugates as antidiabetic, anti-inflammatory and antioxidant agents. Bioorganic Chemistry, 92, 103271. https://doi.org/10.1016/j.bioorg.2019.103271.
  • Barmak, A., Niknam, K., & Mohebbi, G. (2019). Synthesis, structural studies, and α-glucosidase inhibitory, antidiabetic, and antioxidant activities of 2,3-Dihydroquinazolin-4(1H)-ones derived from Pyrazol-4-carbaldehyde and Anilines. ACS Omega, 4(19), 18087–18099. https://doi.org/10.1021/acsomega.9b01906.
  • Becerra, D., Abonia, R., & Castillo, J. (2022). Recent applications of the multicomponent synthesis for bioactive pyrazole derivatives. Molecules, 27(15), 4723. https://doi.org/10.3390/molecules27154723
  • Bhansali, G. S., & Kulkarni, M. V. (2013). Pharmacophore generation, atom-based 3D-QSAR, docking, and virtual screening studies of p38-α mitogen activated protein kinase inhibitors: Pyridopyridazin-6-Ones (Part 2). Research and Reports in Medicinal Chemistry,2014-4 1–21. https://doi.org/10.2147/RRMC.S50738
  • Bowers, K. J., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D., Salmon, J. K., Shan, Y., & Shaw, D. E. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters. In SC '06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (pp. 43–43). IEEE.
  • Chaudhry, F., Naureen, S., Choudhry, S., Huma, R., Ashraf, M., Al-Rashida, M., Jahan, B., Hyder Khan, M., Iqbal, F., Ali Munawar, M., & Ain Khan, M. (2018). Evaluation of α-glucosidase inhibiting potentials with docking calculations of synthesized arylidene-pyrazolones. Bioorganic Chemistry, 77, 507–514. https://doi.org/10.1016/j.bioorg.2018.02.002.
  • Desmond Molecular Dynamics System, D. E. Shaw Research. (2021). Maestro-desmond interoperability tools. Schrödinger.
  • Diabetes, A. (2022). Facts & figures. Idf.Org. https://idf.org/aboutdiabetes/what-is-diabetes/facts-figures.html.
  • Dixon, S. L., A., Smondyrev, A. M., Knoll, H. E., Rao, N. S., Shaw, E. D., & Friesner, A. R. (2006). PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. methodology and preliminary results. Journal of Computer-Aided Molecular Design, 20(10–11), 647–671. https://doi.org/10.1007/s10822-006-9087-6
  • Ebenezer, O., Shapi, M., & Tuszynski, J. (2022). A review of the recent development in the synthesis and biological evaluations of pyrazole derivatives. Biomedicines, 10(5), 1124. https://doi.org/10.3390/biomedicines10051124
  • Faisal, M., Saeed, A., Hussain, S., Dar, P., & Larik, A. F. (2019). Recent developments in synthetic chemistry and biological activities of pyrazole derivatives. Journal of Chemical Sciences, 131(8), 70. https://doi.org/10.1007/s12039-019-1646-1
  • Ferreira, L., dos Santos, R., Oliva, G., & Andricopulo, A. (2015). Molecular docking and structure-based drug design strategies. Molecules (Basel, Switzerland), 20(7), 13384–13421. https://doi.org/10.3390/molecules200713384.
  • Hildebrand, P., Rose, A., & Tiemann, J. (2019). Bringing molecular dynamics simulation data into view. Trends in Biochemical Sciences, 44(11), 902–913. https://doi.org/10.1016/j.tibs.2019.06.004.
  • Hossain, U., Das, A. K., Ghosh, S., & Sil, P. C. (2020). An overview on the role of bioactive α-glucosidase inhibitors in ameliorating diabetic complications. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association, 145, 111738. https://doi.org/10.1016/j.fct.2020.111738.
  • Ibrahim, M. A. A., Badr, E. A. A., Abdelrahman, H., M., Almansour, N. M., Mekhemer, G. A., Shawky, A. M., Moustafa, M. F., & Atia, M. A. (2022). In silico targeting human multidrug transporter ABCG2 in breast cancer: database screening, molecular docking, and molecular dynamics study. Molecular Informatics, 41(2), e2060039. https://doi.org/10.1002/minf.202060039.
  • Jacobson, M. P., Pincus, D. L., Rapp, C. S., Day, T. J., Honig, B., Shaw, D. E., & Friesner, R. A. (2004). A hierarchical approach to all-atom protein loop prediction. Proteins, 55(2), 351–367. https://doi.org/10.1002/prot.10613.
  • Karrouchi, K., Fettach, S., Anouar, E., Tüzün, B., Radi, S., Alharthi, A., Ghabbour, H., Mabkhot, Y., Faouzi, M., Ansar, M., & Garcia, Y. (2021). Synthesis, crystal structure, DFT, α-glucosidase and α-amylase inhibition and molecular docking studies of (E)-N'-(4-chlorobenzylidene)-5-phenyl-1H-pyrazole-3-carbohydrazide. Journal of Molecular Structure, 1245, 131067. https://doi.org/10.1016/j.molstruc.2021.131067
  • Karrouchi, K., Fettach, S., Tamer, Ö., Avcı, D., Başoğlu, A., Atalay, Y., Radi, S., Ghabbour, H., Mabkhot, Y., Faouzi, M., & Ansar, M. (2022). Experimental and computational interaction studies of (E)-N’-benzylidene-5-methyl-1H-pyrazole-3-carbohydrazide with α-glucosidase and α-amylase enzymes: A detailed structural, spectroscopic, and biophysical study. Polycyclic Aromatic Compounds, 1–21. https://doi.org/10.1080/10406638.2022.2036774
  • Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y., Al-Aizari, F., & Ansar, M. (2018). Synthesis and pharmacological activities of pyrazole derivatives: A review. Molecules, 23(1), 134. https://doi.org/10.3390/molecules23010134
  • Karrouchi, K., Sert, Y., Ansar, M., Radi, S., El Bali, B., Imad, R., Alam, A., Irshad, R., Wajid, S., & Altaf, M. (2022). Synthesis, α-glucosidase inhibition, anticancer, DFT and molecular docking investigations of pyrazole hydrazone derivatives. Polycyclic Aromatic Compounds, 1–20. https://doi.org/10.1080/10406638.2022.2097275
  • Kim, J. H., Kim, H. Y., & Jin, C. H. (2019). Mechanistic investigation of anthocyanidin derivatives as α-glucosidase inhibitors. Bioorganic Chemistry, 87, 803–809. https://doi.org/10.1016/j.bioorg.2019.01.033.
  • Kumar, P., Duhan, M., Sindhu, J., Kadyan, K., Saini, S., & Panihar, N. (2020). Thiazolidine‐4‐one clubbed pyrazoles hybrids: Potent α‐amylase and α‐glucosidase inhibitors with NLO properties. Journal of Heterocyclic Chemistry, 57(4), 1573–1587. https://doi.org/10.1002/jhet.3882
  • Maestro. (2018b). Schrödinger, LLC. https://www.schrodinger.com/products/maestro.
  • Maestro. (2018a). Schrödinger Release 2018-3 Ligprep. Schrödinger, LLC, References – Scientific Research Publishing. Scirp.Org. https://scirp.org/reference/referencespapers.aspx?referenceid=3115697.
  • Manaithiya, A., Alam, O., Sharma, V., Naim, M. J., Mittal, S., & Khan, I. A. (2021). GPR119 agonists: novel therapeutic agents for type 2 diabetes mellitus. Bioorganic Chemistry, 113, 104998. https://doi.org/10.1016/j.bioorg.2021.104998.
  • Naim, M. J., Alam, O., Nawaz, F., Alam, M. J., & Alam, P. (2016). Current status of pyrazole and its biological activities. Journal of Pharmacy & Bioallied Sciences, 8(1), 2–17. https://doi.org/10.4103/0975-7406.171694.
  • Panwar, U., & Singh, K. S. (2021). Atom-based 3D-QSAR, molecular docking, DFT, and simulation studies of acylhydrazone, hydrazine, and diazene derivatives as IN-LEDGF/P75 inhibitors. Structural Chemistry, 32(1), . 37–352.10.1007/s11224-020-01628-3
  • Peytam, F., Adib, M., Shourgeshty, R., Mohammadi-Khanaposhtani, M., Jahani, M., Imanparast, S., Faramarzi, M., Mahdavi, A. K., Moghadamnia, H., Rastegar, B., & Larijani, M. (2020). Design and synthesis of new imidazo [1, 2-b] pyrazole derivatives, in vitro α-glucosidase inhibition, kinetic and docking studies. Molecular Diversity, 24(1), 69–80. https://doi.org/10.1007/s11030-019-09925-8.
  • Pratim Roy, P., Paul, S., Mitra, I., & Roy, K. (2009). On two novel parameters for validation of predictive QSAR models. Molecules (Basel, Switzerland), 14(5), 1660–1701. https://doi.org/10.3390/molecules14051660.
  • QikProp. (2021). Schrödinger, LLC.
  • Rasheed, M., Iqbal, M., Saddick, S., Ali, I., Khan, F., Kanwal, S., Ahmed, D., Ibrahim, M., Afzal, U., & Awais, M. (2021). Identification of lead compounds against Scm (fms10) in Enterococcus faecium using computer aided drug designing. Life, 11(2), 77. https://doi.org/10.3390/life11020077
  • Roy, K., & Mitra, I. (2011). On various metrics used for validation of predictive QSAR models with applications in virtual screening and focused library design. Combinatorial Chemistry & High Throughput Screening, 14(6), 450–474. https://doi.org/10.2174/138620711795767893
  • Sakthivel, S., & Habeeb, S. K. M. (2018). Combined pharmacophore, virtual screening and molecular dynamics studies to identify Bruton’s tyrosine kinase inhibitors. Journal of Biomolecular Structure & Dynamics, 36(16), 4320–4337. https://doi.org/10.1080/07391102.2017.1415821.
  • Shivakumar, D., Harder, E., Damm, W., Friesner, R. A., & Sherman, W. (2012). Improving the prediction of absolute solvation free energies using the next generation OPLS force field. Journal of Chemical Theory and Computation, 8(8), 2553–2558. https://doi.org/10.1021/ct300203w.
  • Shivakumar, D., Williams, J., Wu, Y., Damm, W., Shelley, J., & Sherman, W. (2010). Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. Journal of Chemical Theory and Computation, 6(5), 1509–1519. https://doi.org/10.1021/ct900587b.
  • Singh, P., Mothilal, S., Kerru, N., Singh-Pillay, A., Gummidi, L., Erukainure, O., & Islam, M. (2019). Comparative α-glucosidase and α-amylase inhibition studies of rhodanine–pyrazole conjugates and their simple rhodanine analogues. Medicinal Chemistry Research, 28(2), 143–159. https://doi.org/10.1007/s00044-018-2272-z
  • Sirin, S., Pearlman, D. A., & Sherman, W. (2014). Physics-based enzyme design: predicting binding affinity and catalytic activity. Proteins, Structure, Function, and Bioinformatics, 82(12), 3397–3409. https://doi.org/10.1002/prot.24694.
  • Tagami, T., Yamashita, K., Okuyama, M., Mori, H., Yao, M., & Kimura, A. (2013). Molecular basis for the recognition of long-chain substrates by plant α-glucosidases. The Journal of Biological Chemistry, 288(26), 19296–19303. https://doi.org/10.1074/jbc.M113.465211.
  • Taj, S., Ahmad, M., Alshammari, A., Alghamdi, A., & Ashfaq, A. U. (2022). Exploring the therapeutic potential of benzothiazine-pyrazole hybrid molecules against alpha-glucosidase: Pharmacological and molecular modelling based approach. Saudi Journal of Biological Sciences, 29(3), 1416–1421. https://doi.org/10.1016/j.sjbs.2021.11.033.
  • Yu, A.-Q., Le, J., Huang, W.-T., Li, B., Liang, H.-X., Wang, Q., Liu, Y.-T., Young, C.-A., Zhang, M.-Y., & Qin, S.-L. (2021). The effects of acarbose on non-diabetic overweight and obese patients: a meta-analysis. Advances in Therapy, 38(2), 1275–1289. https://doi.org/10.1007/s12325-020-01602-9.
  • Zeng, Z., Yin, X., Wang, X., Yang, W., Liu, X., & Hong, Y. (2019). Synthesis of water soluble pentacyclic dihydroxyterpene carboxylic acid derivatives coupled amino acids and their inhibition activities on α-glucosidase. Bioorganic Chemistry, 86, 277–287. https://doi.org/10.1016/j.bioorg.2019.02.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.