150
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Antimalarial and Plasmodium falciparum serpentine receptor 12 targeting effect of FDA approved purinergic receptor antagonist

, ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 9462-9475 | Received 11 Jul 2022, Accepted 26 Oct 2022, Published online: 09 Nov 2022

References

  • Abbracchio, M. P., Burnstock, G., Boeynaems, J.-M., Barnard, E. A., Boyer, J. L., Kennedy, C., Knight, G. E., Fumagalli, M., Gachet, C., Jacobson, K. A., & Weisman, G. A. (2006). International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacological Reviews, 58(3), 281–341. https://doi.org/10.1124/pr.58.3.3
  • Al-Amin, R. A., Gallant, C. J., Muthelo, P. M., & Landegren, U. (2021). Sensitive measurement of drug-target engagement by a cellular thermal shift assay with multiplex proximity extension readout. Analytical Chemistry, 93(31), 10999–11009. https://doi.org/10.1021/acs.analchem.1c02225
  • Algaier, I., Jakubowski, J. A., Asai, F., & von Kugelgen, I. (2008). Interaction of the active metabolite of prasugrel, R-138727, with cysteine 97 and cysteine 175 of the human P2Y12 receptor. Journal of Thrombosis and Haemostasis: JTH, 6(11), 1908–1914. https://doi.org/10.1111/j.1538-7836.2008.03136.x
  • Burnstock, G. (2004). Introduction: P2 receptors. Current Topics in Medicinal Chemistry, 4(8), 793–803. https://doi.org/10.2174/1568026043451014
  • Ciulli, A. (2013). Biophysical screening for the discovery of small-molecule ligands. Methods in Molecular Biology (Clifton, N.J.), 1008, 357–388. https://doi.org/10.1007/978-1-62703-398-5_13
  • Cousins, K. R. (2011a). Computer review of ChemDraw Ultra 12.0. Journal of the American Chemical Society, 133(21), 8388. https://doi.org/10.1021/ja204075s
  • Cousins, K. R. (2011b). Computer review of ChemDraw Ultra 12.0. Journal of the American Chemical Society, 133(21), 8388–8388. https://doi.org/10.1021/ja204075s
  • Cruz, L. N., Juliano, M. A., Budu, A., Juliano, L., Holder, A. A., Blackman, M. J., & Garcia, C. R. (2012). Extracellular ATP triggers proteolysis and cytosolic Ca(2)(+) rise in Plasmodium berghei and Plasmodium yoelii malaria parasites. Malaria Journal, 11, 69. https://doi.org/10.1186/1475-2875-11-69
  • Dery, V., Duah, N. O., Ayanful-Torgby, R., Matrevi, S. A., Anto, F., & Quashie, N. B. (2015). An improved SYBR Green-1-based fluorescence method for the routine monitoring of Plasmodium falciparum resistance to anti-malarial drugs. Malaria Journal, 14, 481. https://doi.org/10.1186/s12936-015-1011-x
  • Ellsworth, M. L. (2004). Red blood cell-derived ATP as a regulator of skeletal muscle perfusion. Medicine and Science in Sports and Exercise, 36(1), 35–41. https://doi.org/10.1249/01.MSS.0000106284.80300.B2
  • Fidock, D. A., Rosenthal, P. J., Croft, S. L., Brun, R., & Nwaka, S. (2004). Antimalarial drug discovery: efficacy models for compound screening. Nature Reviews. Drug Discovery, 3(6), 509–520. https://doi.org/10.1038/nrd1416
  • Fleck, S. L., Birdsall, B., Babon, J., Dluzewski, A. R., Martin, S. R., Morgan, W. D., Angov, E., Kettleborough, C. A., Feeney, J., Blackman, M. J., & Holder, A. A. (2003). Suramin and suramin analogues inhibit merozoite surface protein-1 secondary processing and erythrocyte invasion by the malaria parasite Plasmodium falciparum. The Journal of Biological Chemistry, 278(48), 47670–47677. https://doi.org/10.1074/jbc.M306603200
  • Gao, X., Gunalan, K., Yap, S. S., & Preiser, P. R. (2013). Triggers of key calcium signals during erythrocyte invasion by Plasmodium falciparum. Nature Communications, 4, 2862. https://doi.org/10.1038/ncomms3862
  • Gossert, A. D. (2019). Assessing molecular interactions with biophysical methods using the validation cross. Biochemical Society Transactions, 47(1), 63–76. https://doi.org/10.1042/BST20180271
  • Gupta, S., Singh, D., & Singh, S. (2015). In silico characterization of Plasmodium falciparum purinergic receptor: a novel chemotherapeutic target. Systems and Synthetic Biology, 9(Suppl 1), 11–16. https://doi.org/10.1007/s11693-015-9165-y
  • Haldar, K., Bhattacharjee, S., & Safeukui, I. (2018). Drug resistance in plasmodium. Nature Reviews. Microbiology, 16(3), 156–170. https://doi.org/10.1038/nrmicro.2017.161
  • Hashimoto, M., Girardi, E., Eichner, R., & Superti-Furga, G. (2018). Detection of chemical engagement of solute carrier proteins by a cellular thermal shift assay. ACS Chemical Biology, 13(6), 1480–1486. https://doi.org/10.1021/acschembio.8b00270
  • Hotta, C. T., Gazarini, M. L., Beraldo, F. H., Varotti, F. P., Lopes, C., Markus, R. P., Pozzan, T., & Garcia, C. R. (2000). Calcium-dependent modulation by melatonin of the circadian rhythm in malarial parasites. Nature Cell Biology, 2(7), 466–468. https://doi.org/10.1038/35017112
  • Iyer, J. K., Amaladoss, A., Genesan, S., Ganesan, S., & Preiser, P. R. (2007). Variable expression of the 235 kDa rhoptry protein of Plasmodium yoelii mediate host cell adaptation and immune evasion. Molecular Microbiology, 65(2), 333–346. https://doi.org/10.1111/j.1365-2958.2007.05786.x
  • Jacobson, K. A., Costanzi, S., Joshi, B. V., Besada, P., Shin, D. H., Ko, H., Ivanov, A. A., & Mamedova, L. (2006). Agonists and antagonists for P2 receptors. Novartis Foundation Symposium, 276, 58–68. discussion 68-72, 107-112, 275-181. https://doi.org/10.1002/9780470032244.ch6
  • Jensen, J. B. (2002). In vitro culture of Plasmodium parasites. Methods in Molecular Medicine, 72, 477–488. https://doi.org/10.1385/1-59259-271-6:477
  • Johnson, J. D., Dennull, R. A., Gerena, L., Lopez-Sanchez, M., Roncal, N. E., & Waters, N. C. (2007). Assessment and continued validation of the malaria SYBR green I-based fluorescence assay for use in malaria drug screening. Antimicrobial Agents and Chemotherapy, 51(6), 1926–1933. https://doi.org/10.1128/AAC.01607-06
  • Kenakin, T. (2013). New concepts in pharmacological efficacy at 7TM receptors: IUPHAR review 2. British Journal of Pharmacology, 168(3), 554–575. https://doi.org/10.1111/j.1476-5381.2012.02223.x
  • Kesely, K. R., Pantaleo, A., Turrini, F. M., Olupot-Olupot, P., & Low, P. S. (2016). Inhibition of an erythrocyte tyrosine kinase with imatinib prevents Plasmodium falciparum egress and terminates parasitemia. PloS One, 11(10), e0164895. https://doi.org/10.1371/journal.pone.0164895
  • Levano-Garcia, J., Dluzewski, A. R., Markus, R. P., & Garcia, C. R. (2010). Purinergic signalling is involved in the malaria parasite Plasmodium falciparum invasion to red blood cells. Purinergic Signalling, 6(4), 365–372. https://doi.org/10.1007/s11302-010-9202-y
  • Lindner, S. E., Swearingen, K. E., Harupa, A., Vaughan, A. M., Sinnis, P., Moritz, R. L., & Kappe, S. H. I. (2013). Total and putative surface proteomics of malaria parasite salivary gland sporozoites. Molecular & Cellular Proteomics: MCP, 12(5), 1127–1143. https://doi.org/10.1074/mcp.M112.024505
  • Madeira, L., Galante, P. A., Budu, A., Azevedo, M. F., Malnic, B., & Garcia, C. R. (2008). Genome-wide detection of serpentine receptor-like proteins in malaria parasites. PloS One, 3(3), e1889. https://doi.org/10.1371/journal.pone.0001889
  • Moraes, M. S., Budu, A., Singh, M. K., Borges-Pereira, L., Levano-Garcia, J., Currà, C., Picci, L., Pace, T., Ponzi, M., Pozzan, T., & Garcia, C. R. S. (2017). Plasmodium falciparum GPCR-like receptor SR25 mediates extracellular K(+) sensing coupled to Ca(2+) signaling and stress survival. Scientific Reports, 7(1), 9545. https://doi.org/10.1038/s41598-017-09959-8
  • Njila Tchoufack, E. J., Hahnfeld, L., Pitschelatow, G., Bennink, S., & Pradel, G. (2020). The endoplasmic reticulum-resident serpentine receptor SR10 has important functions for asexual and sexual blood stage development of Plasmodium falciparum. Molecular and Biochemical Parasitology, 239, 111315. https://doi.org/10.1016/j.molbiopara.2020.111315
  • Nzila, A., Ma, Z., & Chibale, K. (2011). Drug repositioning in the treatment of malaria and TB. Future Medicinal Chemistry, 3(11), 1413–1426. https://doi.org/10.4155/fmc.11.95
  • Pereira, P. H. S., Brito, G., Moraes, M. S., Kiyan, C. L., Avet, C., & Bouvier, M. (2020). BRET sensors unravel that Plasmodium falciparum serpentine receptor 12 (PfSR12) increases surface expression of mammalian GPCRs in HEK293 cells. bioRxiv, 2020.2004.2017.047217. https://doi.org/10.1101/2020.04.17.047217
  • Racine, J. (2000). The Cygwin tools: a GNU toolkit for windows. Journal of Applied Econometrics, 15(3), 331–341. https://doi.org/10.1002/1099-1255(200005/06)15:3<331::aid-jae558>3.0.co;2-g
  • Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F., & Schroeder, M. (2015). PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Research, 43(W1), W443–447. https://doi.org/10.1093/nar/gkv315
  • Santos, B. M., Dias, B. K. M., Nakabashi, M., & Garcia, C. R. S. (2021). The knockout for G protein-coupled receptor-like PfSR25 increases the susceptibility of malaria parasites to the antimalarials lumefantrine and piperaquine but not to medicine for malaria venture compounds. Frontiers in Microbiology, 12, 638869. https://doi.org/10.3389/fmicb.2021.638869
  • Schwiebert, E. M., & Zsembery, A. (2003). Extracellular ATP as a signaling molecule for epithelial cells. Biochimica et Biophysica Acta, 1615(1-2), 7–32. https://doi.org/10.1016/S0005-2736(03)00210-4
  • Seidel, S. A. I., Dijkman, P. M., Lea, W. A., van den Bogaart, G., Jerabek-Willemsen, M., Lazic, A., Joseph, J. S., Srinivasan, P., Baaske, P., Simeonov, A., Katritch, I., Melo, F. A., Ladbury, J. E., Schreiber, G., Watts, A., Braun, D., & Duhr, S. (2013). Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions. Methods (San Diego, Calif.), 59(3), 301–315. https://doi.org/10.1016/j.ymeth.2012.12.005
  • Singh, S., Alam, M. M., Pal-Bhowmick, I., Brzostowski, J. A., & Chitnis, C. E. (2010). Distinct external signals trigger sequential release of apical organelles during erythrocyte invasion by malaria parasites. PLoS Pathogens, 6(2), e1000746. https://doi.org/10.1371/journal.ppat.1000746
  • Spessard, G. O. (1998). ACD Labs/LogP dB 3.5 and ChemSketch 3.5. Journal of Chemical Information and Computer Sciences, 38(6), 1250–1253. https://doi.org/10.1021/ci980264t
  • Subudhi, A. K., O'Donnell, A. J., Ramaprasad, A., Abkallo, H. M., Kaushik, A., Ansari, H. R., Abdel-Haleem, A. M., Ben Rached, F., Kaneko, O., Culleton, R., Reece, S. E., & Pain, A. (2020). Malaria parasites regulate intra-erythrocytic development duration via serpentine receptor 10 to coordinate with host rhythms. Nature Communications, 11(1), 2763. https://doi.org/10.1038/s41467-020-16593-y
  • Tanneur, V., Duranton, C., Brand, V. B., Sandu, C. D., Akkaya, C., Kasinathan, R. S., Gachet, C., Sluyter, R., Barden, J. A., Wiley, J. S., Lang, F., & Huber, S. M. (2006). Purinoceptors are involved in the induction of an osmolyte permeability in malaria-infected and oxidized human erythrocytes. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 20(1), 133–135. https://doi.org/10.1096/fj.04-3371fje
  • Ullmann, H., Meis, S., Hongwiset, D., Marzian, C., Wiese, M., Nickel, P., Communi, D., Boeynaems, J.-M., Wolf, C., Hausmann, R., Schmalzing, G., & Kassack, M. U. (2005). Synthesis and structure-activity relationships of suramin-derived P2Y11 receptor antagonists with nanomolar potency. Journal of Medicinal Chemistry, 48(22), 7040–7048. https://doi.org/10.1021/jm050301p
  • Wickremsinhe, E. R., Tian, Y., Ruterbories, K. J., Verburg, E. M., Weerakkody, G. J., Kurihara, A., & Farid, N. A. (2007). Stereoselective metabolism of prasugrel in humans using a novel chiral liquid chromatography-tandem mass spectrometry method. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 35(6), 917–921. https://doi.org/10.1124/dmd.106.014530
  • Wienken, C. J., Baaske, P., Rothbauer, U., Braun, D., & Duhr, S. (2010). Protein-binding assays in biological liquids using microscale thermophoresis. Nature Communications, 1, 100. https://doi.org/10.1038/ncomms1093
  • Xu, D., & Zhang, Y. (2011). Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophysical Journal, 101(10), 2525–2534. https://doi.org/10.1016/j.bpj.2011.10.024

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.