153
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, crystal structure and molecular docking study of novel isoxazole derivatives as CYP450 inhibitors in search of anticancer agents

, &
Pages 9476-9491 | Received 03 Dec 2021, Accepted 27 Oct 2022, Published online: 09 Nov 2022

References

  • Alfarouk, K. O., Stock, C.-M., Taylor, S., Walsh, M., Muddathir, A. K., Verduzco, D., Bashir, A. H. H., Mohammed, O. Y., Elhassan, G. O., Harguindey, S., Reshkin, S. J., Ibrahim, M. E., & Rauch, C. (2015). Resistance to cancer chemotherapy: Failure in drug response from ADME to P-gp. Cancer Cell International, 15, 71. https://doi.org/10.1186/s12935-015-0221-1
  • Banerjee, P., Dunkel, M., Kemmler, E., & Preissner, R. (2020). SuperCYPsPred-a web server for the prediction of cytochrome activity. Nucleic Acids Research, 48(W1), W580–W585. https://doi.org/10.1093/nar/gkaa166
  • Basheer, L., Schultz, K., & Kerem, Z. (2016). Inhibition of cytochrome P4503A by acetoxylated analogues of resveratrol in in vitro and in silico models. Scientific Reports, 6, 31557.
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • BIOVIA. (2020). Dassault Systèmes, [Discovery Studio Visualizer] [v20.1.0.19295], Dassault Systèmes.
  • Brough, P. A., Aherne, W., Barril, X., Borgognoni, J., Boxall, K., Cansfield, J. E., Cheung, K.-M J., Collins, I., Davies, N. G. M., Drysdale, M. J., Dymock, B., Eccles, S. A., Finch, H., Fink, A., Hayes, A., Howes, R., Hubbard, R. E., James, K., Jordan, A. M., … Wright, L. (2008). 4, 5-DiarylisoxazoleHsp 90 chaperone inhibitors: Potential therapeutic agents for the treatment of cancer. Journal of Medicinal Chemistry, 51(2), 196–218. https://doi.org/10.1021/jm701018h
  • Chen, Y., Tang, Y., Chen, S., & Nie, D. (2009). Regulation of drug resistance by human pregnane X receptor in breast cancer. Cancer Biology & Therapy, 8(13), 1265–1272. https://doi.org/10.4161/cbt.8.13.8696
  • CrysAlisPro. (2019) version 1.171.40.68e; Rigaku Oxford Diffraction.
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Methods in Molecular Biology (Clifton, N.J.), 1263, 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19
  • Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., & Puschmann, H. (2009). OLEX2: A complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42(2), 339–341. https://doi.org/10.1107/S0021889808042726
  • Gonzalez, F. J., & Gelboin, H. V. (1994). Role of human cytochromes P450 in the metabolic activation of chemical carcinogens and toxins. Drug Metabolism Reviews, 26(1-2), 165–183. https://doi.org/10.3109/03602539409029789
  • Govindappa, V. K., Prabhashankar, J., Khatoon, B. B. A., Ningappa, M. B., & KariyappaA, K. (2012). Synthesis of 3, 5-diaryl-isoxazole-4-carbonitriles and their efficacy as antimicrobial agents. Pharmacy Chemica, 4, 2283–2287.
  • Guengerich, F. P. (2008). Cytochrome P450 and chemical toxicology. Chemical Research in Toxicology, 21(1), 70–83. https://doi.org/10.1021/tx700079z
  • Guengerich, F. P., & Shimada, T. (1991). Oxidation of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes. Chemical Research in Toxicology, 4(4), 391–407. https://doi.org/10.1021/tx00022a001
  • Hakkola, J., Hukkanen, J., Turpeinen, M., & Pelkonen, O. (2020). Inhibition and induction of CYP enzymes in humans: An update. Archives of Toxicology, 94(11), 3671–3722. https://doi.org/10.1007/s00204-020-02936-7
  • Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 17. https://doi.org/10.1186/1758-2946-4-17
  • Hawash, M., & MandBaytas, S. N. (2018). Antiproliferative activities of some biologically important scaffolds. FABADJournal of Pharmaceutical Sciences, 43, 59–77.
  • Ishiguro, H., & Toi, M. (2012). How to dose cytotoxic chemotherapeutic drugs. Current Topics in Pharmacology, 16, 67–81.
  • Kapucuoglu, N., Coban, T., Raunio, H., Pelkonen, O., Edwards, R. J., Boobis, A. R., & Iscan, M. (2003). Expression of CYP3A4 in human breast tumour and non-tumour tissues. Cancer Letters, 202(1), 17–23. https://doi.org/10.1016/j.canlet.2003.08.015
  • Kumar, C. A., Veeresh, B., & Ramesha, K. (2017). Antidiabetic studies of 1-benzhydryl-piperazine sulfonamide and carboxamide derivatives. Journal of Applied Chemistry, 6, 240.
  • Michaelis, U. R., Falck, J. R., Schmidt, R., Busse, R., & Fleming, I. (2005). Cytochrome P4502C9-derived epoxyeicosatrienoic acids induce the expression of cyclooxygenase-2 in endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 25(2), 321–326. https://doi.org/10.1161/01.ATV.0000151648.58516.eb
  • Mphahlele, M. J., Mmonwa, M. M., Aro, A., McGaw, L. J., & Choong, Y. S. (2018). Synthesis, biological evaluation and molecular docking of novel indole-aminoquinazoline hybrids for anticancer properties. International Journal of Molecular Sciences, 19(8), 2232. https://doi.org/10.3390/ijms19082232
  • Murray, G. I., Taylor, M. C., Burke, M. D., & Melvin, W. T. (1998). Enhanced expression of cytochrome P450 in stomach cancer. British Journal of Cancer, 77(7), 1040–1044. https://doi.org/10.1038/bjc.1998.173
  • Naresh Kumar, R., Jitender Dev, G., Ravikumar, N., Krishna Swaroop, D., Debanjan, B., Bharath, G., Narsaiah, B., Nishant Jain, S., & Gangagni Rao, A. (2016). Synthesis of novel triazole/isoxazole functionalized 7-(trifluoromethyl)pyrido[2,3- _d_] pyrimidine derivatives as promising anticancer and antibacterial agents. Bioorganic & Medicinal Chemistry Letters, 26(12), 2927–2930. https://doi.org/10.1016/j.bmcl.2016.04.038
  • Nebert, D. W., Wikvall, K., & Miller, W. L. (2013). Human cytochromes P450 in health and disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 368, 201204–201231.
  • Oguro, A., Sakamoto, K., Funae, Y., & Imaoka, S. (2011). Overexpression of CYP3A4, but not of CYP2D6, promotes hypoxic response and cell growth of Hep3B cells. Drug Metabolism and Pharmacokinetics, 26(4), 407–415. https://doi.org/10.2133/dmpk.dmpk-11-rg-017
  • Pedada, S. R., Yarla, N. S., Tambade, P. J., Dhananjaya, B. L., Bishayee, A., Arunasree, K. M., Philip, G. H., Dharmapuri, G., Aliev, G., Putta, S., & Rangaiah, G. (2016). Synthesis of new secretory phospholipase A2-inhibitory indole containing isoxazole derivatives as anti-inflammatory and anticancer agents. European Journal of Medicinal Chemistry, 112, 289–297. https://doi.org/10.1016/j.ejmech.2016.02.025
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera–a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pfrunder, A., Gutmann, H., Beglinger, C., & Drewe, J. (2003). Gene expression of CYP3A4, ABC-transporters ¤MDR1 and MRP1- MRP5¥ and hPXR in three different human colon carcinoma cell lines. The Journal of Pharmacy and Pharmacology, 55(1), 59–66. https://doi.org/10.1111/j.2042-7158.2003.tb02434.x
  • Phuong, N. T. T., Kim, J. W., Kim, J. A., Jeon, J. S., Lee, J. Y., Xu, W. J., Yang, J. W., Kim, S. K., & Kang, K. W. (2017). Role of the CYP3A4-mediated 11,12-epoxyeicosatrienoic acid pathway in the development of tamoxifen-resistant breast cancer. Oncotarget, 8(41), 71054–71069. https://doi.org/10.18632/oncotarget.20329
  • Raymond, E., Faivre, S. J., Woynarowski, J. M., & Chaney, S. G. (1998). Oxaliplatin: Mechanism of action and antineoplastic activity. Seminars in Oncology, 25(2 suppl 5), 4–12.
  • Reyes-Habito, C. M., & Roh, E. K. (2014). Cutaneous reactions to chemotherapeutic drugs and targeted therapy for cancer: Part II. Targeted therapy. Journal of the American Academy of Dermatology, 71(2), 217.e1–217.e11. https://doi.org/10.1016/j.jaad.2014.04.013
  • Shahinshavali, S., Sreenivasulu, R., Guttikonda, V., Kolli, D., & Rao, M. (2019). Synthesis and anticancer activity of amide derivatives of 1, 2-isoxazole combined 1, 2, 4-thiadiazole. Russian Journal of General Chemistry, 89(2), 324–329. https://doi.org/10.1134/S1070363219020257
  • Sheldrick, G. M. (2015a). SHELXT—integrated space-group and crystal-structure determination. Acta Crystallographica, A71, 3.
  • Sheldrick, G. M. (2015b). Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 3.
  • Shimada, T. (2006). Xenobiotic-metabolizing enzymes involved in activation and detoxification of carcinogenic polycyclic aromatic hydrocarbons. Drug Metabolism and Pharmacokinetics, 21(4), 257–276. https://doi.org/10.2133/dmpk.21.257
  • Shimada, T., Martin, M. V., Pruess-Schwartz, D., Marnett, L. J., & Guengerich, F. P. (1989). Roles of individual human cytochrome P-450 enzymes in the bioactivation of benzo(a)pyrene, 7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene, and other dihydrodiol derivatives of polycyclic aromatic hydrocarbons. Cancer Research, 49(22), 6304–6312.
  • Sysak, A., & Obmińska-Mrukowicz, B. (2017). Isoxazole ring as a useful scaffold in a search for new therapeutic agents. European Journal of Medicinal Chemistry, 137, 292–309. https://doi.org/10.1016/j.ejmech.2017.06.002
  • Tang, W., & Stearns, R. A. (2001). Heterotrophic cooperativity of cytochrome P4503A4 and potential drug-drug interactions. Current Drug Metabolism, 2(2), 185–198. https://doi.org/10.2174/1389200013338658
  • Tartarone, A., Lazzari, C., Lerose, R., Conteduca, V., Improta, G., Zupa, A., Bulotta, A., Aieta, M., & Gregorc, V. (2013). Mechanisms of resistance to EGFR tyrosine kinase inhibitors gefitinib/erlotinib and to ALK inhibitor crizotinib. Lung Cancer (Amsterdam, Netherlands), 81(3), 328–336. https://doi.org/10.1016/j.lungcan.2013.05.020
  • Wang, G., Liu, W., Huang, Y., Li, Y., & Peng, Z. (2020). Design, synthesis and biological evaluation of isoxazole-naphthalene derivatives as anti-tubulin agents. Arabian Journal of Chemistry, 13(6), 5765–5775. https://doi.org/10.1016/j.arabjc.2020.04.014
  • Yasuda, K., Ranade, A., Venkataramanan, R., Strom, S., Chupka, J., Ekins, S., Schuetz, E., & Bachmann, K. (2008). A comprehensive in vitro and in silico analysis of antibiotics that activate pregnane X receptor and induce CYP3A4 in liver and intestine. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 36(8), 1689–1697. https://doi.org/10.1124/dmd.108.020701
  • Yim, S. K., Kim, K., Chun, S., Oh, T., Jung, W., Jung, K., & Yun, C. H. (2020). Screening of human CYP1A2 and CYP3A4 inhibitors from seaweed in silico and in vitro. Marine Drugs, 18(12), 603. https://doi.org/10.3390/md18120603
  • Yong, J. P., Lu, C. Z., & Wu, X. (2015). Potential anticancer agents. I. Synthesis of isoxazole moiety containing quinazoline derivatives and preliminarily in vitro anticancer activity. Anti-Cancer Agents in Medicinal Chemistry, 15(1), 131–136. https://doi.org/10.2174/1871520614666140812105445
  • Yun, C. H., Lee, H. S., Lee, H. Y., Yim, S. K., Kim, K. H., Kim, E., Yea, S. S., & Guengerich, F. P. (2003). Roles of human liver cytochrome P4503A4 and 1A2 enzymes in the oxidation of myristicin. Toxicology Letters, 137(3), 143–150. https://doi.org/10.1016/S0378-4274(02)00397-1
  • Zhang, J. Y., Wang, Y., & Prakash, C. (2006). Xenobiotic-metabolizing enzymes in human lung. Current Drug Metabolism, 7(8), 939–948. https://doi.org/10.2174/138920006779010575
  • Zhu, J., Mo, J., Lin, H. Z., Chen, Y., & Sun, H. P. (2018). The recent progress of isoxazole in medicinal chemistry. Bioorganic & Medicinal Chemistry, 26(12), 3065–3075. https://doi.org/10.1016/j.bmc.2018.05.013
  • Zhu, Y., Cheng, Y., & Li, A. (2013). Mechanisms of drug resistance to sorafenib in hepatocellular carcinoma. Chinese Pharmacological Bulletin, 6, 752–755.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.