286
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Analyzing the potential of selected plant extracts and their structurally diverse secondary metabolites for α-glucosidase inhibitory activity: in vitro and in silico approach

, &
Pages 9523-9538 | Received 18 Jul 2022, Accepted 27 Oct 2022, Published online: 08 Nov 2022

References

  • Abbas, Q., Hassan, M., Raza, H., Kim, S. J., Chung, K. W., Kim, G. H., & Seo, S. Y. (2017). In vitro, in vivo and in silico anti-hyperglycemic inhibition by sinigrin. Asian Pacific Journal of Tropical Medicine, 10(4), 372–379.
  • Abraham, M. J., & Gready, J. E. (2011). Optimization of parameters for molecular dynamics simulation using smooth particle‐mesh Ewald in GROMACS 4.5. Journal of Computational Chemistry, 32(9), 2031–2040. https://doi.org/10.1002/jcc.21773
  • Alagesan, K., Thennarasu, P., Kumar, V., Sankarnarayanan, S., & Balsamy, T. (2012). Identification of α-glucosidase inhibitors from Psidium guajava leaves and Syzygium cumini Linn. seeds. International Journal of Pharma Sciences and Research, 3(2), 316–322.
  • Andallu, B., & Radhika, B. (2000). Hypoglycemic, diuretic and hypocholesterolemic effect of winter cherry (Withania somnifera, Dunal) root. Indian Journal of Experimental Biology, 38(6), 607–609.
  • Asif, M. (2014). The prevention and control the type-2 diabetes by changing lifestyle and dietary pattern. Journal of Education and Health Promotion, 3, 1. https://doi.org/10.4103/2277-9531.127541
  • Bachhawat, J. A., Shihabudeen, M. S., & Thirumurugan, K. (2011). Screening of fifteen Indian ayurvedic plants for alpha-glucosidase inhibitory activity and enzyme kinetics. International Journal of Pharmacy and Pharmaceutical Sciences, 3(4), 267–274.
  • Baker, N. A., Sept, D., Joseph, S., Holst, M. J., & McCammon, J. A. (2001). Electrostatics of nanosystems: application to microtubules and the ribosome. Proceedings of the National Academy of Sciences of the United States of America, 98(18), 10037–10041. https://doi.org/10.1073/11517324
  • Belhekar, S. N., Chaudhari, P. D., Saryawanshi, J. S., Mali, K. K., & Pandhare, R. B. (2013). Antidiabetic and antihyperlipidemic effects of Thespesia populnea fruit pulp extracts on alloxan-induced diabetic rats. Indian Journal of Pharmaceutical Sciences, 75(2), 217–221.
  • Bell, D. S. (2001). Importance of post-prandial glucose control. Southern Medical Journal, 94(8), 804–809.
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Berendsen, H., Van Der Spoel, D., & Van Drunen, R. (1995). GROMACS: a message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1–3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
  • Bharatham, K., Bharatham, N., Park, K. H., & Lee, K. W. (2008). Binding mode analyses and pharmacophore model development for sulfonamide chalcone derivatives, a new class of α-glucosidase inhibitors. Journal of Molecular Graphics & Modelling, 26(8), 1202–1212. https://doi.org/10.1016/j.jmgm.2007.11.002
  • Brás, N. F., Santos-Martins, D., Fernandes, P. A., & Ramos, M. J. (2018). Mechanistic pathway on human α-glucosidase maltase-glucoamylase unveiled by QM/MM calculations. The Journal of Physical Chemistry. B, 122(14), 3889–3899. https://doi.org/10.1021/acs.jpcb.8b01321
  • Brooks, B. R., Brooks, C. L., Mackerell, A. D., Nilsson, L., Petrella, R. J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A. R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., … Karplus, M. (2009). CHARMM: the biomolecular simulation program. Journal of Computational Chemistry, 30(10), 1545–1614. https://doi.org/10.1002/jcc.21287.
  • Brower, V. (2008). Back to Nature: Extinction of Medicinal Plants Threatens Drug Discovery. Journal of the National Cancer Institute, 100(12), 838–839. https://doi.org/10.1093/jnci/djn199
  • Casqueiro, J., Casqueiro, J., & Alves, C. (2012). Infections in patients with diabetes mellitus: A review of pathogenesis. Indian Journal of Endocrinology and Metabolism, 16(7), 27. https://doi.org/10.4103/2230-8210.94253
  • Cheng, M.-W., Chegeni, M., Kim, K.-H., Zhang, G., Benmoussa, M., Quezada-Calvillo, R., Nichols, B. L., & Hamaker, B. R. (2014). Different sucrose-isomaltase response of Caco-2 cells to glucose and maltose suggests dietary maltose sensing. Journal of Clinical Biochemistry and Nutrition, 54(1), 55–60. https://doi.org/10.3164/jcbn.13-59
  • Chiba, S. (1997). Molecular mechanism in α-glucosidase and glucoamylase. Bioscience, Biotechnology, and Biochemistry, 61(8), 1233–1239. https://doi.org/10.1271/bbb.61.1233
  • Choudhury, H., Pandey, M., Kui Hua, C., Shi Mun, C., Koh Jing, J., Kong, L., Yee Ern, L., Ahmad Ashraf, N., Wai Kit, S., Sin Yee, T., Rao Pichika, M., Gorain, B., & Kesharwani, P. (2018). An update on natural compounds in the remedy of diabetes mellitus: A systematic review. Journal of Traditional and Complementary Medicine, 8(3), 361–376. https://doi.org/10.1016/j.jtcme.2017.08.012
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • Daura, X., Gademann, K., Jaun, B., Seebach, D., Van Gunsteren, W. F., & Mark, A. E. (1999). Peptide folding: when simulation meets experiment. Angewandte Chemie International Edition, 38(1–2), 236–240. https://doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2<236::AID-ANIE236>3.0.CO;2-M
  • Derosa, G., & Maffioli, P. (2012). α-Glucosidase inhibitors and their use in clinical practice. Archives of Medical Science: AMS, 8(5), 899–906. https://doi.org/10.5114/aoms.2012.31621
  • Egede, L.E., Hull, B.J., Williams, J.S. (2018). Infections Associated With Diabetes. In Cowie CC, Casagrande SS, Menke A, Cissell MA, Eberhardt MS, Meigs JB, Gregg EW, Knowler WC, Barrett-Connor E, Becker DJ, Brancati FL, Boyko EJ, Herman WH, Howard BV, Narayan KMV, Rewers M, Fradkin JE (Eds.), Diabetes in America. 3rd ed, Ch 30. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases (US). PMID: 33651550.
  • Elya, B., Basah, K., Mun’im, A., Yuliastuti, W., Bangun, A., & Septiana, E. K. (2012). Screening of α-glucosidase inhibitory activity from some plants of Apocynaceae, Clusiaceae, Euphorbiaceae, and Rubiaceae. Journal of Biomedicine & Biotechnology, 2012, 281078. https://doi.org/10.1155/2012/281078
  • FDA. (2008). Guidance for industry diabetes mellitus — evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 diabetes.
  • Feingold, K. R. (2021). Oral and injectable (non-insulin) pharmacological agents for the treatment of type 2 diabetes. Endotext [Internet].
  • Flores-Bocanegra, L., Torres-Colín, R., González-Andrade, M., Calderón, J. S., & Mata, R. (2019). In vivo and in vitro α-glucosidase inhibitory activity of perfoliatin a from Melampodium Perfoliatum. Natural Product Communications, 14(1), 1934578X1901400. https://doi.org/10.1177/1934578X1901400102
  • Fonseca, V. A., Grunberger, G., Anhalt, H., Bailey, T. S., Blevins, T., Garg, S. K., Handelsman, Y., Hirsch, I. B., Orzeck, E. A., Roberts, V. L., & Tamborlane, W., Consensus Conference Writing Committee. Consensus Conference Writing Committee. (2016). Continuous glucose monitoring: a consensus conference of the American Association of Clinical Endocrinologists and American College of Endocrinology. Endocrine Practice: Official Journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists, 22(8), 1008–1021. https://doi.org/10.4158/EP161392.CS.
  • Fowler, M. J. (2011). Microvascular and macrovascular complications of diabetes. Clinical Diabetes, 29(3), 116–122. https://doi.org/10.2337/diaclin.29.3.116
  • Ganesan, K., Rana, M. B. M., Sultan, S. (2022). Oral Hypoglycemic Medications. In StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. PMID: 29494008.
  • Genovese, M., Nesi, I., Caselli, A., & Paoli, P. (2021). Natural α-glucosidase and protein tyrosine phosphatase 1B inhibitors: A source of scaffold molecules for synthesis of new multitarget antidiabetic drugs. Molecules, 26(16), 4818. https://doi.org/10.3390/molecules26164818
  • Gericke, B., Amiri, M., & Naim, H. Y. (2016). The multiple roles of sucrase-isomaltase in the intestinal physiology. Molecular and Cellular Pediatrics, 3(1), 2–6. https://doi.org/10.1186/s40348-016-0033-y
  • Gorelick, J., Rosenberg, R., Smotrich, A., Hanuš, L., & Bernstein, N. (2015). Hypoglycemic activity of withanolides and elicitated Withania somnifera. Phytochemistry, 116, 283–289. https://doi.org/10.1016/j.phytochem.2015.02.029
  • Gou, S. H., Liu, J., He, M., Qiang, Y., & Ni, J. M. (2016). Quantification and bio-assay of α-glucosidase inhibitors from the roots of Glycyrrhiza uralensis Fisch. Natural Product Research, 30(18), 2130–2134. https://doi.org/10.1080/14786419.2015.1114940
  • Gourgari, E., Wilhelm, E. E., Hassanzadeh, H., Aroda, V. R., & Shoulson, I. (2017). A comprehensive review of the FDA-approved labels of diabetes drugs: Indications, safety, and emerging cardiovascular safety data. Journal of Diabetes and Its Complications, 31(12), 1719–1727. https://doi.org/10.1016/j.jdiacomp.2017.08.005.
  • Hediger, M. A., & Rhoads, D. B. (1994). Molecular physiology of sodium-glucose cotransporters. Physiological Reviews, 74(4), 993–1026. https://doi.org/10.1152/physrev.1994.74.4.993
  • Hemalatha, S., Wahi, A. K., Singh, P. N., & Chansouria, J. P. N. (2006). Hypolipidemic activity of aqueous extract of Withania coagulans Dunal in albino rats. Phytotherapy Research: PTR, 20(7), 614–617. https://doi.org/10.1002/ptr.1916
  • Hess, B. (2008). P-LINCS: a Parallel linear constraint solver for molecular simulation. Journal of Chemical Theory and Computation, 4(1), 116–122. https://doi.org/10.1021/ct700200b
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: a linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:123.0.CO;2-H
  • International Diabetes Federation. (2019). IDF diabetes atlas. 2013. International Diabetes Federation. https://doi.org/10.1289/image.ehp.v119.i03
  • Kahn, R. (2001). Postprandial blood glucose. Diabetes Care, 24(4), 775–778. https://doi.org/10.2337/diacare.24.4.775
  • Khan, M. H., & Yadava, P. S. (2010). Antidiabetic plants used in Thoubal district of Manipur, Northeast India. Indian Journal of Traditional Knowledge, 9, 510–514.
  • King, K. D., Jones, J. D., & Warthen, J. (2005). Microvascular and macrovascular complications of diabetes mellitus. American Journal of Pharmaceutical Education, 69(5), 87. https://doi.org/10.5688/aj690587
  • Krasikov, V. V., Karelov, D. V., & Firsov, L. M. (2001). α-Glucosidases. Biochemistry (Moscow), 66(3), 267–281. https://doi.org/10.1023/A:1010243611814
  • Kumari, K., Mathew, B. C., & Augusti, K.T. (1995). Antidiabetic and hypolipidemic effects of S-methyl cysteine sulfoxide isolated from Allium cepa Linn. Indian Journal of Biochemistry & Biophysics, 32(1), 49–54.
  • Kumari, R., Kumar, R., & Lynn, A., Open Source Drug Discovery Consortium. (2014). C. Open source drug discovery and A. Lynn. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m.
  • Lee, Y., Kim, S., Kim, J. Y., Arooj, M., Kim, S., Hwang, S., Kim, B.-W., Park, K. H., & Lee, K. W. (2014). Binding mode analyses and pharmacophore model development for stilbene derivatives as a novel and competitive class of α-glucosidase inhibitors. PloS One, 9(1), e85827. https://doi.org/10.1371/journal.pone.0085827
  • Luo, H., Imoto, T., & Hiji, Y. (2001). Inhibitory effect of voglibose and gymnemic acid on maltose absorption in vivo. World Journal of Gastroenterology, 7(2), 270–274. https://doi.org/10.3748/wjg.v7.i2.270
  • Maher, S., Choudhary, M. I., Saleem, F., Rasheed, S., Waheed, I., Halim, S. A., Azeem, M., Abdullah, I. B., Froeyen, M., Mirza, M. U., & Ahmad, S. (2020). Isolation of antidiabetic withanolides from Withania coagulans Dunal and their in vitro and in silico validation. Biology, 9(8), 197. https://doi.org/10.3390/biology9080197
  • Marín-Peñalver, J. J., Martín-Timón, I., Sevillano-Collantes, C., & Del Cañizo-Gómez, F. J. (2016). Update on the treatment of type 2 diabetes mellitus. World Journal of Diabetes, 7(17), 354–395. https://doi.org/10.4239/wjd.v7.i17.354
  • Mirjalili, M. H., Moyano, E., Bonfill, M., Cusido, R. M., & Palazón, J. (2009). Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules (Basel, Switzerland), 14(7), 2373–2393. https://doi.org/10.3390/molecules14072373.
  • Modak, M., Dixit, P., Londhe, J., Ghaskadbi, S., & Devasagayam, T. P. A. (2007). Indian herbs and herbal drugs used for the treatment of diabetes. Journal of Clinical Biochemistry and Nutrition, 40(3), 163–173. https://doi.org/10.3164/jcbn.40.163
  • Mukherjee, P. K., Kar, A., Banerjee, S., & Katiyar, C. K. (2020). Antidiabetic natural products. In Annual reports in medicinal chemistry (Vol. 55, pp. 373–409). Academic Press. https://doi.org/10.1016/bs.armc.2020.06.002
  • Muller, L. M. A. J., Gorter, K. J., Hak, E., Goudzwaard, W. L., Schellevis, F. G., Hoepelman, A. I. M., & Rutten, G. E. H. M. (2005). Increased risk of common infections in patients with type 1 and type 2 diabetes mellitus. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 41(3), 281–288. https://doi.org/10.1086/431587
  • Mustafa, S., Elbashir, I., Devkota, H. P., Wada, M., Kishimoto, N., Moriuchi, M., Shuto, T., Misumi, S., Kai, H., & Watanabe, T. (2018). Free radical scavenging, α-glucosidase inhibitory and lipase inhibitory activities of eighteen Sudanese medicinal plants. BMC Complementary and Alternative Medicine, 18(1), 1–12. https://doi.org/10.1186/s12906-018-2346-y
  • Newman, D. J., & Cragg, G. M. (2012). Natural products as sources of new drugs over the 30 years from 1981 to 2010. Journal of Natural Products, 75(3), 311–335. https://doi.org/10.1021/np200906s
  • Nguyen, V. B., Nguyen, Q. V., Nguyen, A. D., & Wang, S. L. (2017). Screening and evaluation of α-glucosidase inhibitors from indigenous medicinal plants in Dak Lak Province. Research on Chemical Intermediates, 43(6), 3599–3612. https://doi.org/10.1007/s11164-016-2434-x
  • Nyenwe, E. A., Jerkins, T. W., Umpierrez, G. E., & Kitabchi, A. E. (2011). Management of type 2 diabetes: evolving strategies for the treatment of patients with type 2 diabetes. Metabolism: Clinical and Experimental, 60(1), 1–23. https://doi.org/10.1016/j.metabol.2010.09.010.
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Patil, R., Patil, R., Ahirwar, B., & Ahirwar, D. (2011). Current status of Indian medicinal plants with antidiabetic potential: a review. Asian Pacific Journal of Tropical Biomedicine, 1(2), S291–S298. https://doi.org/10.1016/S2221-1691(11)60175-5
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104.
  • Rizvi, S. I., & Mishra, N. (2013). Traditional Indian medicines used for the management of diabetes mellitus. Journal of Diabetes Research, 2013, 712092. https://doi.org/10.1155/2013/712092
  • Roig-Zamboni, V., Cobucci-Ponzano, B., Iacono, R., Ferrara, M. C., Germany, S., Bourne, Y., Parenti, G., Moracci, M., & Sulzenbacher, G. (2017). Structure of human lysosomal acid α-glucosidase–a guide for the treatment of Pompe disease. Nature Communications, 8(1), 1–10. https://doi.org/10.1038/s41467-017-01263-3
  • Sahoo, P.K., Padhy, K.M., Pradhan, D., Tripathy, G., Bhoi, R.K., Pattanayak, S.P., & Sahoo, S. (2010). Antidiabetic and Antioxidant Activity of Ethanolic Extract of Sapindus Trifoliatus Linn. International journal of pharma and bio sciences, 1(2), PS45.
  • Scarfiotti, C., Fabris, F., Cestaro, B., & Giuliani, A. (1997). Free radicals, atherosclerosis, ageing, and related dysmetabolic pathologies: pathological and clinical aspects. European Journal of Cancer Prevention: The Official Journal of the European Cancer Prevention Organisation (ECP), 6, S31–S6. https://doi.org/10.1097/00008469-199703001-00007
  • Schrödinger, L., & DeLano, W. (2020). PyMOL. The PyMOL molecular graphics system. Version, 2.
  • Shivanagoudra, S. R., Perera, W. H., Perez, J. L., Athrey, G., Sun, Y., Jayaprakasha, G. K., & Patil, B. S. (2019). Cucurbitane-type compounds from Momordica charantia: Isolation, in vitro antidiabetic, anti-inflammatory activities and in silico modeling approaches. Bioorganic Chemistry, 87, 31–42. https://doi.org/10.1016/j.bioorg.2019.02.040
  • Thorens, B. (1996). Glucose transporters in the regulation of intestinal, renal, and liver glucose fluxes. The American Journal of Physiology, 270(4 Pt 1), G541–G553. https://doi.org/10.1152/ajpgi.1996.270.4.G541.
  • Tian, W., Chen, C., Lei, X., Zhao, J., & Liang, J. (2018). CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Research, 46(W1), W363–W367. https://doi.org/10.1093/nar/gky473.
  • Valencia, W. M., & Florez, H. (2017). How to prevent the microvascular complications of type 2 diabetes beyond glucose control. BMJ (Clinical Research ed.), 356, i6505. https://doi.org/10.1136/bmj.i6505
  • Vallee, B. L., Stein, E. A., Sumerwell, W. N., & Fischer, E. H. (1959). Metal content of a-amylases of various origins. Journal of Biological Chemistry, 234(11), 2901–2905. https://doi.org/10.1016/S0021-9258(18)69691-7
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • WHO report. (2011). WHO report on Diabetes. https://www.who.int/health-topics/diabetes
  • Yamamoto, K., Miyake, H., Kusunoki, M., & Osaki, S. (2010). Crystal structures of isomaltase from Saccharomyces cerevisiae and in complex with its competitive inhibitor maltose. The FEBS Journal, 277(20), 4205–4214. https://doi.org/10.1111/j.1742-4658.2010.07810.x
  • Zengin, G., Sarikurkcu, C., Aktumsek, A., & Ceylan, R. (2014). Sideritis galatica Bornm.: a source of multifunctional agents for the management of oxidative damage, ’Alzheimer’s’s and diabetes mellitus. Journal of Functional Foods, 11, 538–547. https://doi.org/10.1016/j.jff.2014.08.011
  • Zoete, V., Cuendet, M. A., Grosdidier, A., & Michielin, O. (2011). SwissParam: a fast force field generation tool for small organic molecules. Journal of Computational Chemistry, 32(11), 2359–2368. https://doi.org/10.1002/jcc.21816

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.