195
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Role of lisinopril in the therapeutic management of cardiovascular disease by targeting microtubule affinity regulating kinase 4: molecular docking and molecular dynamics simulation approaches

, , , , , ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 8824-8830 | Received 15 Sep 2022, Accepted 13 Oct 2022, Published online: 14 Nov 2022

References

  • Ahrari, S., Mogharrab, N., & Navapour, L. (2020). Structure and dynamics of inactive and active MARK4: Conformational switching through the activation process. Journal of Biomolecular Structure & Dynamics, 38(8), 2468–2481.
  • Amini, M., Zayeri, F., & Salehi, M. (2021). Trend analysis of cardiovascular disease mortality, incidence, and mortality-to-incidence ratio: Results from global burden of disease study 2017. BMC Public Health, 21(1), 1–12. https://doi.org/10.1186/s12889-021-10429-0
  • Annadurai, N., Agrawal, K., Džubák, P., Hajdúch, M., & Das, V. (2017). Microtubule affinity-regulating kinases are potential druggable targets for Alzheimer’s disease. Cellular and Molecular Life Sciences, 74(22), 4159–4169.
  • Anwar, S., DasGupta, D., Azum, N., Alfaifi, S. Y., Asiri, A. M., Alhumaydhi, F. A., Alsagaby, S. A., Sharaf, S. E., Shahwan, M., & Hassan, M. I. (2022). Inhibition of PDK3 by artemisinin, a repurposed antimalarial drug in cancer therapy. Journal of Molecular Liquids, 355, 118928. https://doi.org/10.1016/j.molliq.2022.118928
  • Anwar, S., DasGupta, D., Shafie, A., Alhumaydhi, F. A., Alsagaby, S. A., Shahwan, M., Anjum, F., Al Abdulmonem, W., Sharaf, S. E., & Hassan, M. I. (2022). Implications of tempol in pyruvate dehydrogenase kinase 3 targeted anticancer therapeutics: Computational, spectroscopic, and calorimetric studies. Journal of Molecular Liquids, 350, 118581. https://doi.org/10.1016/j.molliq.2022.118581
  • Anwar, S., Khan, S., Anjum, F., Shamsi, A., Khan, P., Fatima, H., Shafie, A., Islam, A., & Hassan, M. I. (2022). Myricetin inhibits breast and lung cancer cells proliferation via inhibiting MARK4. Journal of Cellular Biochemistry, 123(2), 359–374.
  • Anwar, S., Khan, S., Shamsi, A., Anjum, F., Shafie, A., Islam, A., Ahmad, F., & Hassan, M. I. (2021). Structure‐based investigation of MARK4 inhibitory potential of Naringenin for therapeutic management of cancer and neurodegenerative diseases. Journal of Cellular Biochemistry, 122(10), 1445–1459.
  • Anwar, S., Shamsi, A., Shahbaaz, M., Queen, A., Khan, P., Hasan, G. M., Islam, A., Alajmi, M. F., Hussain, A., Ahmad, F., & Hassan, M. I. (2020). Rosmarinic acid exhibits anticancer effects via MARK4 inhibition. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-65648-z
  • Clement, M., Chen, X., Chenoweth, H. L., Teng, Z., Thome, S., Newland, S. A., Harrison, J., Yu, X., Finigan, A. J., Mallat, Z., & Li, X. (2019). MARK4 (microtubule affinity-regulating kinase 4)-dependent inflammasome activation promotes atherosclerosis—Brief report. Arteriosclerosis, Thrombosis, and Vascular Biology, 39(8), 1645–1651.
  • Dong, M., Yang, X., Lim, S., Cao, Z., Honek, J., Lu, H., Zhang, C., Seki, T., Hosaka, K., Wahlberg, E., Yang, J., Zhang, L., Länne, T., Sun, B., Li, X., Liu, Y., Zhang, Y., & Cao, Y. (2013). Cold exposure promotes atherosclerotic plaque growth and instability via UCP1-dependent lipolysis. Cell Metabolism, 18(1), 118–129.
  • Drewes, G., Ebneth, A., Preuss, U., Mandelkow, E.-M., & Mandelkow, E. (1997). MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell, 89(2), 297–308.
  • Fu, Y., Zhao, J., & Chen, Z. (2018). Insights into the molecular mechanisms of protein-ligand interactions by molecular docking and molecular dynamics simulation: A case of oligopeptide binding protein. Computational and Mathematical Methods in Medicine, 2018, 3502514. https://doi.org/10.1155/2018/3502514
  • Gisterå, A., & Ketelhuth, D. F. (2018). Lipid-driven immunometabolic responses in atherosclerosis. Current Opinion in Lipidology, 29(5), 375–380.
  • Gordon, J. C., Myers, J. B., Folta, T., Shoja, V., Heath, L. S., & Onufriev, A. (2005). H++: A server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Research, 33(Web Server issue), W368–W371. https://doi.org/10.1093/nar/gki464
  • Götz, A. W., Williamson, M. J., Xu, D., Poole, D., Le Grand, S., & Walker, R. C. (2012). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized Born. Journal of Chemical Theory and Computation, 8(5), 1542–1555. https://doi.org/10.1021/ct200909j
  • Hayden, E. Y., Putman, J., Nunez, S., Shin, W. S., Oberoi, M., Charreton, M., Dutta, S., Li, Z., Komuro, Y., Joy, M. T., Bitan, G., MacKenzie-Graham, A., Jiang, L., & Hinman, J. D. (2019). Ischemic axonal injury up-regulates MARK4 in cortical neurons and primes tau phosphorylation and aggregation. Acta Neuropathologica Communications, 7(1), 1–12. https://doi.org/10.1186/s40478-019-0783-6
  • Hubbard, R. E., & Kamran Haider, M. (2001). Hydrogen bonds in proteins: Role and strength. John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470015902.a0003011.pub2
  • Kaufman, M. B. (2016). Pharmaceutical approval update. Pharmacy and Therapeutics, 41(12), 748–750.
  • Labute, P. (2009). Protonate3D: Assignment of ionization states and hydrogen coordinates to macromolecular structures. Proteins, 75(1), 187–205. https://doi.org/10.1002/prot.22234
  • Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Macalino, S. J. Y., Gosu, V., Hong, S., & Choi, S. (2015). Role of computer-aided drug design in modern drug discovery. Archives of Pharmacal Research, 38(9), 1686–1701.
  • Mohammad, T., Mathur, Y., & Hassan, M. I. (2021). InstaDock: A single-click graphical user interface for molecular docking-based virtual high-throughput screening. Briefings in Bioinformatics, 22(4), bbaa279. https://doi.org/10.1093/bib/bbaa279
  • Mohammad, T., Siddiqui, S., Shamsi, A., Alajmi, M. F., Hussain, A., Islam, A., Ahmad, F., & Hassan, M. I. (2020). Virtual screening approach to identify high-affinity inhibitors of serum and glucocorticoid-regulated kinase 1 among bioactive natural products: Combined molecular docking and simulation studies. Molecules, 25(4), 823. https://doi.org/10.3390/molecules25040823
  • Naz, F., Sami, N., Islam, A., Ahmad, F., & Hassan, M. I. (2016). Ubiquitin-associated domain of MARK4 provides stability at physiological pH. International Journal of Biological Macromolecules, 93(Pt A), 1147–1154.
  • Nazouri, A.-S., Asadpour, O., Dabiri, S., Pourseyedi, B., Lashkarizadeh, M. R., & Zianalinejad, H. (2017). High expression of sphingosine kinase 1 in estrogen and progesterone receptors-negative breast cancer. Iranian Journal of Pathology, 12(3), 218–224.
  • Nichols, G. A., Philip, S., Reynolds, K., Granowitz, C. B., & Fazio, S. (2019). Increased residual cardiovascular risk in patients with diabetes and high versus normal triglycerides despite statin‐controlled LDL cholesterol. Diabetes, Obesity & Metabolism, 21(2), 366–371.
  • Noinaj, N., Easley, N. C., Oke, M., Mizuno, N., Gumbart, J., Boura, E., Steere, A. N., Zak, O., Aisen, P., Tajkhorshid, E., Evans, R. W., Gorringe, A. R., Mason, A. B., Steven, A. C., & Buchanan, S. K. (2012). Structural basis for iron piracy by pathogenic Neisseria. Nature, 483(7387), 53–58. https://doi.org/10.1038/nature10823
  • Polonsky, T. S., Ning, H., Daviglus, M. L., Liu, K., Burke, G. L., Cushman, M., Eng, J., Folsom, A. R., Lutsey, P. L., Nettleton, J. A., Post, W. S., Sacco, R. L., Szklo, M., & Lloyd‐Jones, D. M. (2017). Association of cardiovascular health with subclinical disease and incident events: The multi‐ethnic study of atherosclerosis. Journal of the American Heart Association, 6(3), e004894. https://doi.org/10.1161/JAHA.116.004894
  • Qin, Y. S., Li, H., Wang, S. Z., Wang, Z. B., & Tang, C. K. (2022). Microtubule affinity regulating kinase 4: A promising target in the pathogenesis of atherosclerosis. Journal of Cellular Physiology, 237(1), 86–97.
  • Roth, G. A., Mensah, G. A., Johnson, C. O., Addolorato, G., Ammirati, E., Baddour, L. M., Barengo, N. C., Beaton, A. Z., Benjamin, E. J., & Benziger, C. P. (2020). Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 study. Journal of the American College of Cardiology, 76(25), 2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Shamsi, A., Anwar, S., Mohammad, T., Alajmi, M. F., Hussain, A., Rehman, M., Hasan, G. M., Islam, A., & Hassan, M. (2020). MARK4 inhibited by AChE inhibitors, donepezil and Rivastigmine tartrate: Insights into Alzheimer’s disease therapy. Biomolecules, 10(5), 789. https://doi.org/10.3390/biom10050789
  • Simpson, K., & Jarvis, B. (2000). Lisinopril. Drugs, 59(5), 1149–1167. https://doi.org/10.2165/00003495-200059050-00012
  • Song, C. M., Lim, S. J., & Tong, J. C. (2009). Recent advances in computer-aided drug design. Briefings in Bioinformatics, 10(5), 579–591.
  • Walton, S. M., Schumock, G. T., Lee, K. V., Alexander, G. C., Meltzer, D., & Stafford, R. S. (2008). Prioritizing future research on off‐label prescribing: Results of a quantitative evaluation. Pharmacotherapy, 28(12), 1443–1452. https://doi.org/10.1592/phco.28.12.1443
  • Williams, C. J., Headd, J. J., Moriarty, N. W., Prisant, M. G., Videau, L. L., Deis, L. N., Verma, V., Keedy, D. A., Hintze, B. J., Chen, V. B., Jain, S., Lewis, S. M., Arendall, W. B., 3rd, Snoeyink, J., Adams, P. D., Lovell, S. C., Richardson, J. S., & Richardson, D. C. (2018). MolProbity: More and better reference data for improved all-atom structure validation. Protein Science, 27(1), 293–315. https://doi.org/10.1002/pro.3330
  • Yu, X.-H., Zheng, X.-L., & Tang, C.-K. (2015). Peroxisome proliferator-activated receptor α in lipid metabolism and atherosclerosis. Advances in Clinical Chemistry, 71, 171–203.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.