147
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Molecular modelling, synthesis and in vitro evaluation of quinazolinone hybrid analogues as potential pancreatic lipase inhibitors

ORCID Icon, , &
Pages 9583-9601 | Received 29 Apr 2022, Accepted 30 Oct 2022, Published online: 09 Nov 2022

References

  • Ajeet, K., Reddy, P. V., Kumar, T. R., Singh, M., Singh, K., Shukla, M., Yadav, A., Dogra, S., Sona, C., Umrao, D., Jaiswal, S., Ahmad, H., Rashid, M., Singh, S. K., Wahajuddin, M., Dwivedi, A. K., Siddiqi, M. I., Lal, J., Tripathi, R. P., & Yadav, P. N. (2019). Novel tetrahydroquinazolinamines as selective histamine 3 receptor antagonists for the treatment of obesity. Journal of Medicinal Chemistry, 62(9), 4638–4655. https://doi.org/10.1021/acs.jmedchem.9b00241
  • Asundaria, S. T., Patel, N. S., & Patel, K. C. (2012). Synthesis, characterization, and antimicrobial studies of novel 1,3,4-thiadiazolium-5-thiolates. Medicinal Chemistry Research, 21(7), 1199–1206. https://doi.org/10.1007/s00044-011-9632-2
  • Balaji, M., Ganjayi, M. S., Hanuma Kumar, G. E. N., Parim, B. N., Mopuri, R., & Dasari, S. (2016). A review on possible therapeutic targets to contain obesity: The role of phytochemicals. Obesity Research & Clinical Practice, 10(4), 363–380. https://doi.org/10.1016/J.ORCP.2015.12.004
  • Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263. https://doi.org/10.1093/NAR/GKY318
  • Bhat, S. P., & Sharma, A. (2017). Current drug targets in obesity pharmacotherapy—A review. Current Drug Targets, 18(8), 983–993. https://doi.org/10.2174/1389450118666170227153940
  • Burlingham, B. T., & Widlanski, T. S. (2003). An intuitive look at the relationship of Ki and IC50: A more general use for the Dixon plot. Journal of Chemical Education, 80(2), 214. https://doi.org/10.1021/ed080p214
  • Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., Lee, P. W., & Tang, Y. (2012). AdmetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. Journal of Chemical Information and Modeling, 52(11), 3099–3105. https://doi.org/10.1021/CI300367A
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717–42713. https://doi.org/10.1038/srep42717
  • Daneschvar, H. L., Aronson, M. D., & Smetana, G. W. (2016). FDA-approved anti-obesity drugs in the United States. The American Journal of Medicine, 129(8), 879.e1-879–e6. https://doi.org/10.1016/j.amjmed.2016.02.009
  • Egloff, M. P., Marguet, F., Buono, G., Verger, R., Cambillau, C., & van Tilbeurgh, H. (1995). The 2.46 Å resolution structure of the pancreatic lipase-colipase complex inhibited by a C11 alkyl phosphonate. Biochemistry, 34(9), 2751–2762. https://doi.org/10.1021/bi00009a003
  • Filippatos, T. D., Derdemezis, C. S., Gazi, I. F., Nakou, E. S., Mikhailidis, D. P., & Elisaf, M. S. (2008). Orlistat-associated adverse effects and drug interactions: A critical review. Drug Safety, 31(1), 53–65. https://doi.org/10.2165/00002018-200831010-00005
  • George, G., Auti, P., & Paul, A. T. (2021). Design, synthesis, in silico molecular modelling studies and biological evaluation of novel indole-thiazolidinedione hybrid analogues as potential pancreatic lipase inhibitors. New Journal of Chemistry, 45(3), 1381–1394. https://doi.org/10.1039/D0NJ05649A
  • George, G., Auti, P. S., & Paul, A. T. (2021). Design, synthesis and biological evaluation of N-substituted indole-thiazolidinedione analogues as potential pancreatic lipase inhibitors. Chemical Biology & Drug Design, 98(1), 49–59. https://doi.org/10.1111/CBDD.13846
  • George, G., Sengupta, P., & Paul, A. T. (2020). Optimisation of an extraction conditions for Rumex nepalensis anthraquinones and its correlation with Pancreatic Lipase inhibitory activity. Journal of Food Composition and Analysis, 92, 103575. https://doi.org/10.1016/j.jfca.2020.103575
  • Hadvary, P., Lengsfeld, H., & Wolfer, H. (1988). Inhibition of pancreatic lipase in vitro by the covalent inhibitor tetrahydrolipstatin. The Biochemical Journal, 256(2), 357–361. https://doi.org/10.1042/bj2560357
  • Hadvary, P., Sidler, W., Meister, W., Vetter, W., & Wolfer, H. (1991). The lipase inhibitor tetrahydrolipstatin binds covalently to the putative active site serine of pancreatic lipase. Journal of Biological Chemistry, 266(4), 2021–2027. https://doi.org/10.1016/S0021-9258(18)52203-1
  • Hruby, A., & Hu, F. B. (2015). The epidemiology of obesity: A big picture. PharmacoEconomics, 33(7), 673–689. https://doi.org/10.1007/S40273-014-0243-X
  • Kalibaeva, G., Ferrario, M., & Ciccotti, G. (2003). Constant pressure-constant temperature molecular dynamics: A correct constrained NPT ensemble using the molecular virial. Molecular Physics, 101(6), 765–778. https://doi.org/10.1080/0026897021000044025
  • Kumar, A., & Chauhan, S. (2021). Pancreatic lipase inhibitors: The road voyaged and successes. Life Sciences, 271, 119115. https://doi.org/10.1016/J.LFS.2021.119115
  • Lineweaver, H., & Burk, D. (1934). The determination of enzyme dissociation constants. Journal of the American Chemical Society, 56(3), 658–666. https://doi.org/10.1021/ja01318a036
  • Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341. https://doi.org/10.1016/J.DDTEC.2004.11.007
  • Liu, T. T., Liu, X. T., Chen, Q. X., & Shi, Y. (2020). Lipase inhibitors for obesity: A review. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 128, 110314. https://doi.org/10.1016/j.biopha.2020.110314
  • Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. The Journal of Physical Chemistry A, 105(43), 9954–9960. https://doi.org/10.1021/jp003020w
  • Markham, A. (2021). Setmelanotide: First approval. Drugs, 81(3), 397–403. https://doi.org/10.1007/S40265-021-01470-9
  • Menteşe, E., Karaali, N., Akyüz, G., Yılmaz, F., Ülker, S., & Kahveci, B. (2016). Synthesis and evaluation of α-glucosidase and pancreatic lipase inhibition by quinazolinone-coumarin hybrids. Chemistry of Heterocyclic Compounds, 52(12), 1017–1024. https://doi.org/10.1007/s10593-017-2002-3
  • Modanwal, S., & Mishra, N. (2021). Identification of common genes in obesity and cancer through network interaction and targeting those genes by virtual screening approach. Journal of Biomolecular Structure and Dynamics, 1–19. https://doi.org/10.1080/07391102.2021.2020169
  • Modh, P. G., & Patel, L. J. (2021). Synthesis, drug likeness and in-vitro screening of some novel quinazolinone derivatives for anti-obesity activity. Journal of Pharmaceutical Research International, 33(28B), 81–92. https://doi.org/10.9734/jpri/2021/v33i28B31541
  • Montero, J. L., Muntané, J., Fraga, E., Delgado, M., Costán, G., Serrano, M., Padillo, J., de la Mata, M., & Miño, G. (2001). Orlistat associated subacute hepatic failure. Journal of Hepatology, 34(1), 173. https://doi.org/10.1016/S0168-8278(00)00042-8
  • Pedgaonkar, G. S., Sridevi, J. P., Jeankumar, V. U., Saxena, S., Devi, P. B., Renuka, J., Yogeeswari, P., & Sriram, D. (2014). Development of 2-(4-oxoquinazolin-3(4H)-yl)acetamide derivatives as novel enoyl-acyl carrier protein reductase (InhA) inhibitors for the treatment of tuberculosis. European Journal of Medicinal Chemistry, 86, 613–627. https://doi.org/10.1016/J.EJMECH.2014.09.028
  • Rajan, L., Palaniswamy, D., & Mohankumar, S. K. (2020). Targeting obesity with plant-derived pancreatic lipase inhibitors: A comprehensive review. Pharmacological Research, 155, 104681. https://doi.org/10.1016/j.phrs.2020.104681
  • Riadi, Y., Alamri, M. A., Geesi, M. H., Anouar, E. H., Ouerghi, O., Alabbas, A. B., Alossaimi, M. A., Altharawi, A., Dehbi, O., & Alqahtani, S. M. (2022). Synthesis, characterization, biological evaluation and molecular docking of a new quinazolinone-based derivative as a potent dual inhibitor for VEGFR-2 and EGFR tyrosine kinases. Journal of Biomolecular Structure and Dynamics, 1–7, 40(15), 6810–6816. https://doi.org/10.1080/07391102.2021.1890221
  • Rim, K. T. (2020). In silico prediction of toxicity and its applications for chemicals at work. Toxicology and Environmental Health Sciences, 12(3), 191–202. https://doi.org/10.1007/s13530-020-00056-4
  • Rudolph, J., Esler, W. P., O’connor, S., Coish, P. D. G., Wickens, P. L., Brands, M., Bierer, D. E., Bloomquist, B. T., Bondar, G., Chen, L., Chuang, C.-Y., Claus, T. H., Fathi, Z., Fu, W., Khire, U. R., Kristie, J. A., Liu, X.-G., Lowe, D. B., Mcclure, A. C., … Bullock, W. H. (2007). Quinazolinone derivatives as orally available ghrelin receptor antagonists for the treatment of diabetes and obesity. Journal of Medicinal Chemistry, 50(21), 5202-5216. https://doi.org/10.1021/JM070071
  • Sridhar, S. N. C., Sengupta, P., Palawat, S., Dileep, P. S., George, G., & Paul, A. T. (2021). Synthesis, molecular modelling, in vitro and in vivo evaluation of conophylline inspired novel benzyloxy substituted indole glyoxylamides as potent pancreatic lipase inhibitors. Journal of Biomolecular Structure and Dynamics, 1–13. https://doi.org/10.1080/07391102.2021.1930168
  • Sasmal, S., Balaji, G., Kanna Reddy, H. R., Balasubrahmanyam, D., Srinivas, G., Kyasa, S., Sasmal, P. K., Khanna, I., Talwar, R., Suresh, J., Jadhav, V. P., Muzeeb, S., Shashikumar, D., Harinder Reddy, K., Sebastian, V. J., Frimurer, T. M., Rist, Ø., Elster, L., & Högberg, T. (2012). Design and optimization of quinazoline derivatives as melanin concentrating hormone receptor 1 (MCHR1) antagonists. Bioorganic & Medicinal Chemistry Letters, 22(9), 3157–3162. https://doi.org/10.1016/j.bmcl.2012.03.050
  • Schenkel, L. B., Olivieri, P. R., Boezio, A. A., Deak, H. L., Emkey, R., Graceffa, R. F., Gunaydin, H., Guzman-Perez, A., Lee, J. H., Teffera, Y., Wang, W., Youngblood, B. D., Yu, V. L., Zhang, M., Gavva, N. R., Lehto, S. G., & Geuns-Meyer, S. (2016). Optimization of a novel quinazolinone-based series of transient receptor potential A1 (TRPA1) antagonists demonstrating potent in vivo activity. Journal of Medicinal Chemistry, 59(6), 2794–2809. https://doi.org/10.1021/acs.jmedchem.6b00039
  • Sridhar, S. N. C., George, G., Verma, A., & Paul, A. T. (2019). Natural products-based pancreatic lipase inhibitors for obesity treatment. In Natural Bio-active Compounds (pp. 149–191). Springer. https://doi.org/10.1007/978-981-13-7154-7_6
  • Sun, J., Tao, T., Xu, D., Cao, H., Kong, Q., Wang, X., Liu, Y., Zhao, J., Wang, Y., & Pan, Y. (2018). Metal-free oxidative cyclization of 2-amino-benzamides, 2-aminobenzenesulfonamide or 2-(aminomethyl)anilines with primary alcohols for the synthesis of quinazolinones and their analogues. Tetrahedron Letters, 59(21), 2099–2102. https://doi.org/10.1016/j.tetlet.2018.04.054
  • Thomsen, R., & Christensen, M. H. (2006). MolDock: A new technique for high-accuracy molecular docking. Journal of Medicinal Chemistry, 49(11), 3315–3321. https://doi.org/10.1021/jm051197e
  • U.S. Food and Drug Administration (2021). FDA Approves New Drug Treatment for Chronic Weight Management
  • Valsamakis, G., Konstantakou, P., & Mastorakos, G. (2017). New targets for drug treatment of obesity. Annual Review of Pharmacology and Toxicology, 57(1), 585–605. https://doi.org/10.1146/annurev-pharmtox-010716-104735
  • van Tilbeurgh, H., Egloff, M.-P., Martinez, C., Rugani, N., Verger, R., & Cambillau, C. (1993). Interfacial activation of the lipase–procolipase complex by mixed micelles revealed by X-ray crystallography. Nature, 362(6423), 814–820. https://doi.org/10.1038/362814a0
  • World Health Organization (WHO) (2018). Obesity and overweight. Fact Sheets.
  • World Health Organization (WHO) (2020). Cancer.
  • Yang, H., Lou, C., Sun, L., Li, J., Cai, Y., Wang, Z., Li, W., Liu, G., & Tang, Y. (2019). AdmetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics (Oxford, England), 35(6), 1067–1069. https://doi.org/10.1093/BIOINFORMATICS/BTY707
  • Zang, Q., Mansouri, K., Williams, A. J., Judson, R. S., Allen, D. G., Casey, W. M., & Kleinstreuer, N. C. (2017). In silico prediction of physicochemical properties of environmental chemicals using molecular fingerprints and machine learning. Journal of Chemical Information and Modeling, 57(1), 36–49. https://doi.org/10.1021/acs.jcim.6b00625

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.