334
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Molecular docking, dynamics simulation and pharmacokinetic studies of Cyperus articulatus essential oil metabolites as inhibitors of Staphylococcus aureus

, , &
Pages 9245-9255 | Received 20 Aug 2022, Accepted 03 Nov 2022, Published online: 14 Nov 2022

References

  • Balg, C., Mieri, M. D., Huot, J. L., Blais, S. P., Lapointe, J., & Chênevert, R. (2010). Inhibition of Helicobacter pylori aminoacyl-tRNA amidotransferase by chloramphenicol analogs. Bioorganic &Medicinal Chemistry, 18(22), 7868–7872. https://doi.org/10.1016/j.bmc.2010.09.045
  • Brooijmans, N., & Kuntz, I. D. (2003). Molecular recognition and docking algorithms. Annual Review of Biophysics and Biomolecular Structure, 32(1), 335–373. https://doi.org/10.1146/annurev.biophys.32.110601.142532
  • Chan, E. W. L., Yee, Z. Y., Raja, I., & Yap, J. K. Y. (2017). Synergistic effect of non-steroidal anti-inflammatory drugs (NSAIDs) on antibacterial activity of cefuroxime and chloramphenicol against methicillin-resistant Staphylococcus aureus. Journal of Global Antimicrobial Resistance, 10, 70–74. https://doi.org/10.1016/j.jgar.2017.03.012
  • da Silva, I. C. M., dos Santos, W. L., Leal, I. C. R., Zoghbi, M., das, G. B., Feirhmann, A. C., Cabral, V. F., Macedo, E. N., & Cardozo-Filho, L. (2014). Extraction of essential oil from Cyperus articulatus L. var. Articulatus (priprioca) with pressurized CO2. The Journal of Supercritical Fluids, 88, 134–141. https://doi.org/10.1016/j.supflu.2014.02.001
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Daum, R. S. (2007). Skin and soft-tissue infections caused by methicillin-resistant Staphylococcus aureus. The New England Journal of Medicine, 357(4), 380–390. https://doi.org/10.1056/NEJMcp070747
  • de Lima, W. E. A., Francisco, A., da Cunha, E. F. F., Radic, Z., Taylor, P., França, T. C. C., & Ramalho, T. C. (2017). Mechanistic studies of new oximes reactivators of human butyryl cholinesterase inhibited by cyclosarin and sarin. Journal of Biomolecular Structure & Dynamics, 35(6), 1272–1282. https://doi.org/10.1080/07391102.2016.1178173
  • Dey, S., & Bishayi, B. (2018). Killing of S. aureus in murine peritoneal macrophages by ascorbic acid along with antibiotics Chloramphenicol or Ofloxacin: Correlation with inflammation. Microbial Pathogenesis, 115, 239–250. https://doi.org/10.1016/j.micpath.2017.12.048
  • Fair, R. J., & Tor, Y. (2014). Antibiotics and bacterial resistance in the 21st century. Perspectives in Medicinal Chemistry, 6, 25–64. https://doi.org/10.4137/PMC.S14459
  • Guimarães, A. C., Meireles, L. M., Lemos, M. F., Guimarães, M. C. C., Endringer, D. C., Fronza, M., & Scherer, R. (2019). Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules, 24(13), 2471. https://doi.org/10.3390/molecules24132471
  • Halperin, I., Ma, B., Wolfson, H., & Nussinov, R. (2002). Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins, 47(4), 409–443. https://doi.org/10.1002/prot.10115
  • Hughes, C. A., Gorabi, V., Escamilla, Y., Dean, F. B., & Bullard, J. M. (2020). Two forms of Tyrosyl-tRNA synthetase from Pseudomonas aeruginosa: Characterization and discovery of inhibitory compounds. SLAS Discovery: Advancing Life Sciences R & D, 25(9), 1072–1086. https://doi.org/10.1177/2472555220934793
  • Kilani, S., Abdelwahed, A., Ammar, R. B., Hayder, N., Ghedira, K., Chraief, I., Hammami, M., & Chekir-Ghedira, L. (2005). Chemical composition, antibacterial and antimutagenic activities of essential oil from (Tunisian) Cyperus rotundus. Journal of Essential Oil Research, 17(6), 695–700. https://doi.org/10.1080/10412905.2005.9699035
  • Kim, D., Kwon, N. H., & Kim, S. (2013). Association of aminoacyl-tRNA synthetases with cancer. Aminoacyl-tRNA Synthetases in Biology and Medicine, 207–245.
  • Kong, E. F., Johnson, J. K., & Jabra-Rizk, M. A. (2016). Community-associated methicillin-resistant Staphylococcus aureus: An enemy amidst us. PLoS Pathogens, 12(10), e1005837. https://doi.org/10.1371/journal.ppat.1005837
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa—A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Mahizan, N. A., Yang, S.-K., Moo, C.-L., Song, A. A.-L., Chong, C.-M., Chong, C.-W., Abushelaibi, A., Lim, S.-H E., & Lai, K.-S. (2019). Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules, 24(14), 2631. https://doi.org/10.3390/molecules24142631
  • Malik, A., Dalal, V., Ankri, S., & Tomar, S. (2019). Structural insights into Entamoeba histolytica arginase and structure‐based identification of novel non‐amino acid based inhibitors as potential antiamoebic molecules. The FEBS Journal, 286(20), 4135–4155. https://doi.org/10.1111/febs.14960
  • Martinez, L. R., Han, G., Chacko, M., Mihu, M. R., Jacobson, M., Gialanella, P., Friedman, A. J., Nosanchuk, J. D., & Friedman, J. M. (2009). Antimicrobial and healing efficacy of sustained release nitric oxide nanoparticles against Staphylococcus aureus skin infection. The Journal of Investigative Dermatology, 129(10), 2463–2469. https://doi.org/10.1038/jid.2009.95
  • Metuge, J. A., Nyongbela, K. D., Mbah, J. A., Samje, M., Fotso, G., Babiaka, S. B., & Cho-Ngwa, F. (2014). Anti-Onchocerca activity and phytochemical analysis of an essential oil from Cyperus articulatus L. BMC Complementary and Alternative Medicine, 14(1), 223. https://doi.org/10.1186/1472-6882-14-223
  • Mongelli, E., Desmarchelier, C., Coussio, J., & Ciccia, G. (1995). Antimicrobial activity and interaction with DNA of medicinal plants from the Peruvian Amazon region. Revista Argentina de Microbiologia, 27(4), 199–203.
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Oladosu, I., Usman, L., & Olawore, N. (2011). Antibacterial activity of rhizomes essential oils of two types of Cyperus articulatus Growing in Nigeria. Advances in Biological Research, 5(3), 179–183.
  • Othman, I. M. M., Gad-Elkareem, M. A. M., Hassane Anouar, E., Aouadi, K., Kadri, A., & Snoussi, M. (2020). Design, synthesis ADMET and molecular docking of new imidazo[4,5-b]pyridine-5-thione derivatives as potential tyrosyl-tRNA synthetase inhibitors. Bioorganic Chemistry, 102, 104105. https://doi.org/10.1016/j.bioorg.2020.104105
  • Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Pisano, M. B., Kumar, A., Medda, R., Gatto, G., Pal, R., Fais, A., Era, B., Cosentino, S., Uriarte, E., Santana, L., Pintus, F., & Matos, M. J. (2019). Antibacterial activity and molecular docking studies of a selected series of hydroxy-3-arylcoumarins. Molecules, 24(15), 2815. https://doi.org/10.3390/molecules24152815
  • Qiu, X., Janson, C. A., Smith, W. W., Green, S. M., McDevitt, P., Johanson, K., Carter, P., Hibbs, M., Lewis, C., Chalker, A., Fosberry, A., Lalonde, J., Berge, J., Brown, P., Houge-Frydrych, C. S., & Jarvest, R. L. (2001). Crystal structure of Staphylococcus aureus tyrosyl-tRNA synthetase in complex with a class of potent and specific inhibitors. Protein Science, 10(10), 2008–2016. https://doi.org/10.1110/ps.18001
  • Rice, L. B. (2008). Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. The Journal of Infectious Diseases, 197(8), 1079–1081. https://doi.org/10.1086/533452
  • Singh, N., Dalal, V., & Kumar, P. (2020). Molecular docking and simulation analysis for elucidation of toxic effects of dicyclohexyl phthalate (DCHP) in glucocorticoid receptor-mediated adipogenesis. Molecular Simulation, 46(1), 9–21. https://doi.org/10.1080/08927022.2019.1662002
  • Skupińska, M., Stępniak, P., Łętowska, I., Rychlewski, L., Barciszewska, M., Barciszewski, J., & Giel-Pietraszuk, M. (2017). Natural compounds as inhibitors of tyrosyl-tRNA synthetase. Microbial Drug Resistance, 23(3), 308–320. https://doi.org/10.1089/mdr.2015.0272
  • Swain, A., Duraivadivel, P., Choudhir, G., & Hariprasad, P. (2022). Chemical composition and antimicrobial properties of the rhizome essential oil of Cyperus articulatus L. grown in Karnataka, India. Indian Journal of Natural Products and Resources, 13(1), 112-118. https://doi.org/10.56042/ijnpr.v13i1.52557
  • Tao, J., & Schimmel, P. (2000). Inhibitors of aminoacyl-tRNA synthetases as novel antiinfectives. Expert opinion on investigational drugs, 9(8), 1767–1775.
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Vondenhoff, G. H. M., & Van Aerschot, A. (2011). Aminoacyl-tRNA synthetase inhibitors as potential antibiotics. European Journal of Medicinal Chemistry, 46(11), 5227–5236. https://doi.org/10.1016/j.ejmech.2011.08.049
  • Xiao, Z.-P., Ma, T.-W., Liao, M.-L., Feng, Y.-T., Peng, X.-C., Li, J.-L., Li, Z.-P., Wu, Y., Luo, Q., Deng, Y., Liang, X., & Zhu, H.-L. (2011). Tyrosyl-tRNA synthetase inhibitors as antibacterial agents: Synthesis, molecular docking and structure–activity relationship analysis of 3-aryl-4-arylaminofuran-2(5H)-ones. European Journal of Medicinal Chemistry, 46(10), 4904–4914. https://doi.org/10.1016/j.ejmech.2011.07.047
  • Zhang, L.-L., Zhang, L.-F., Hu, Q.-P., Hao, D.-L., & Xu, J.-G. (2017). Chemical composition, antibacterial activity of Cyperus rotundus rhizomes essential oil against Staphylococcus aureus via membrane disruption and apoptosis pathway. Food Control. 80, 290–296. https://doi.org/10.1016/j.foodcont.2017.05.016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.