204
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Friedelin, a novel inhibitor of CYP17A1 in prostate cancer from Cassia tora

ORCID Icon, ORCID Icon, , ORCID Icon, , & ORCID Icon show all
Pages 9695-9720 | Received 01 Aug 2022, Accepted 04 Nov 2022, Published online: 14 Nov 2022

References

  • Abhimanyu, K. K., Ravindra, C. S., & Avanapu, R. S. (2017). A validated HPTLC method for the quantification of Friedelin in Putranjiva roxburghii Wall extracts and in polyherbal formulations. Bulletin of Faculty of Pharmacy, Cairo University, 55(1), 79–84. https://doi.org/10.1016/j.bfopcu.2016.11.002
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Ageta, H., Shiojima, K., & Arai, Y. (1968). Fern constituents: neohopene, hopene-II, neohopadiene, and fernadiene isolated from Adiantum species. Chemical Communications (London), (18), 1105–1107. https://doi.org/10.1039/c19680001105
  • Bastos, D. A., & Antonarakis, E. S. (2016). Galeterone for the treatment of advanced prostate cancer: the evidence to date. Drug Design, Development and Therapy, 10, 2289–2297. https://doi.org/10.2147/DDDT.S93941
  • Berendsen, H. J., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1-3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
  • Bhandare, V. V., Kumbhar, B. V., & Kunwar, A. (2019). Differential binding affinity of tau repeat region R2 with neuronal-specific β-tubulin isotypes. Scientific Reports, 9(1), 1–12. https://doi.org/10.1038/s41598-019-47249-7
  • Bhandare, V. V., & Ramaswamy, A. (2018). The proteinopathy of D169G and K263E mutants at the RNA recognition motif (RRM) domain of tar DNA-binding protein (tdp43) causing neurological disorders: A computational study. Journal of Biomolecular Structure & Dynamics, 36(4), 1075–1093. https://doi.org/10.1080/07391102.2017.1310670
  • Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 68(6), 394–424. https://doi.org/10.3322/caac.21492
  • Cai, C., Chen, S., Ng, P., Bubley, G. J., Nelson, P. S., Mostaghel, E. A., Marck, B., Matsumoto, A. M., Simon, N. I., Wang, H., Chen, S., & Balk, S. P. (2011). Intratumoral De Novo steroid synthesis activates androgen receptor in castration-resistant prostate cancer and is upregulated by treatment with CYP17A1 inhibitors prostate cancer resistance to CYP17A1 inhibitors. Cancer Research, 71(20), 6503–6513. https://doi.org/10.1158/0008-5472.CAN-11-0532
  • Cavuturu, B. M., Bhandare, V. V., Ramaswamy, A., & Arumugam, N. (2019). Molecular dynamics of interaction of Sesamin and related compounds with the cancer marker β-catenin: an in silico study. Journal of Biomolecular Structure & Dynamics, 37(4), 877–891. https://doi.org/10.1080/07391102.2018.1442250
  • Chandrasekar, T., Yang, J. C., Gao, A. C., & Evans, C. P. (2015). Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Translational Andrology and Urology, 4(3), 365–380.
  • Cheong, E. J. Y., Nair, P. C., Neo, R. W. Y., Tu, H. T., Lin, F., Chiong, E., Esuvaranathan, K., Fan, H., Szmulewitz, R. Z., Peer, C. J., Figg, W. D., Chai, C. L. L., Miners, J. O., & Chan, E. C. Y. (2020). Slow-, tight-binding inhibition of CYP17A1 by abiraterone redefines its kinetic selectivity and dosing regimen. The Journal of Pharmacology and Experimental Therapeutics, 374(3), 438–451. https://doi.org/10.1124/jpet.120.265868
  • Chidume, F. C., Kwanashie, H. O., Adekeye, J. O., Wambebe, C., & Gamaniel, K. S. (2002). Antinociceptive and smooth muscle contracting activities of the methanolic extract of Cassia tora leaf. Journal of Ethnopharmacology, 81(2), 205–209. https://doi.org/10.1016/S0378-8741(02)00079-X
  • Christensen, N. J., & Kepp, K. P. (2013). Stability mechanisms of laccase isoforms using a modified FoldX protocol applicable to widely different proteins. Journal of Chemical Theory and Computation, 9(7), 3210–3223. https://doi.org/10.1021/ct4002152
  • Christenson, M., Song, C.-S., Liu, Y.-G., & Chatterjee, B. (2022). Precision targets for intercepting the lethal progression of prostate cancer: Potential avenues for personalized therapy. Cancers, 14(4), 892. https://doi.org/10.3390/cancers14040892
  • Crucitta, S., Del Re, M., Paolieri, F., Bloise, F., Sbrana, A., Sammarco, E., Mercinelli, C., Cucchiara, F., Fontanelli, L., Galli, L., & Danesi, R. (2020). CYP17A1 polymorphism c.-362T > C predicts clinical outcome in metastatic castration-resistance prostate cancer patients treated with abiraterone. Cancer Chemotherapy and Pharmacology, 86(4), 527–533. https://doi.org/10.1007/s00280-020-04133-w
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717.
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Methods in Molecular Biology (Clifton, N.J.), 1263, 243–250.
  • Edmunds, K., Tuffaha, H., Galvão, D. A., Scuffham, P., & Newton, R. U. (2020). Incidence of the adverse effects of androgen deprivation therapy for prostate cancer: a systematic literature review. Supportive Care in Cancer: Official Journal of the Multinational Association of Supportive Care in Cancer, 28(5), 2079–2093. https://doi.org/10.1007/s00520-019-05255-5
  • Fang, L., Geng, M., Liu, C., Wang, J., Min, W., & Liu, J. (2019). Structural and molecular basis of angiotensin-converting enzyme by computational modeling: Insights into the mechanisms of different inhibitors. PloS One, 14(4), e0215609. https://doi.org/10.1371/journal.pone.0215609
  • Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D. M., Forman, D., & Bray, F. (2015). Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer, 136(5), E359–E386. https://doi.org/10.1002/ijc.29210
  • Fernandez-Cancio, M. (2018). Mechanism of the dual activities of human CYP17A1 and binding to anti-prostate cancer drug abiraterone revealed by a Novel V366M mutation causing 17,20 lyase deficiency. Pharmaceuticals (Basel), 11(2), 37.
  • Fischler, M. A. (1993). Bean germplasm conservation based on seed drying with silica gel and low moisture storage.
  • Fiser, A., Do, R. K., & Sali, A. (2000). Modeling of loops in protein structures. Protein Science : a Publication of the Protein Society, 9(9), 1753–1773. https://doi.org/10.1110/ps.9.9.1753
  • Galli, L., Chiuri, V. E., Di Lorenzo, G., Pisconti, S., Rossetti, S., Sirotova, Z., Muto, A., Petrioli, R., De Tursi, M., Sbrana, A., Francolini, G., Ardizzoia, A., Scavelli, C., Satta, F., Quadrini, S., Airoldi, M., D’Aniello, C., Bonetti, A., Conforti, S., … Fratino, L. (2022). First-line treatment of metastatic castration-resistant prostate cancer: The real-world Italian cohort of the Prostate Cancer Registry. Tumori Journal. https://doi.org/10.1177/03008916221079662
  • Gaulton, A., Hersey, A., Nowotka, M., Bento, A. P., Chambers, J., Mendez, D., Mutowo, P., Atkinson, F., Bellis, L. J., Cibrián-Uhalte, E., Davies, M., Dedman, N., Karlsson, A., Magariños, M. P., Overington, J. P., Papadatos, G., Smit, I., & Leach, A. R. (2017). The ChEMBL database in 2017. Nucleic Acids Research, 45(D1), D945–D954. https://doi.org/10.1093/nar/gkw1074
  • Geller, D. H., Auchus, R. J., & Miller, W. L. (1999). P450c17 mutations R347H and R358Q selectively disrupt 17,20-lyase activity by disrupting interactions with P450 oxidoreductase and cytochrome b5. Molecular Endocrinology (Baltimore, MD.), 13(1), 167–175. https://doi.org/10.1210/mend.13.1.0219
  • Giatromanolaki, A., Fasoulaki, V., Kalamida, D., Mitrakas, A., Kakouratos, C., Lialiaris, T., & Koukourakis, M. I. (2019). CYP17A1 and androgen-receptor expression in prostate carcinoma tissues and cancer cell lines. Current Urology, 13(3), 157–165. https://doi.org/10.1159/000499276
  • Gomez, L., Kovac, J. R., & Lamb, D. J. (2015). CYP17A1 inhibitors in castration-resistant prostate cancer. Steroids, 95, 80–87. https://doi.org/10.1016/j.steroids.2014.12.021
  • Gupta, M. K., Geller, D. H., & Auchus, R. J. (2001). Pitfalls in characterizing P450c17 mutations associated with isolated 17,20-lyase deficiency. The Journal of Clinical Endocrinology and Metabolism, 86(9), 4416–4423. https://doi.org/10.1210/jcem.86.9.7812
  • Handa, S. (2008). An overview of extraction techniques for medicinal and aromatic plants. Extraction Technologies for Medicinal and Aromatic Plants, 1, 21–40.
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: a linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Higano, C. S. (2020). Cardiovascular disease and androgen axis–targeted drugs for prostate cancer. The New England Journal of Medicine, 382(23), 2257–2259. https://doi.org/10.1056/NEJMe2016433
  • Huggins, C., & Hodges, C. V. (1941). Studies on prostatic cancer. I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Research, 1(4), 293–297.
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Jenster, G. (1999). The role of the androgen receptor in the development and progression of prostate cancer in seminars in oncology. Seminars in Oncology, 26(4), 407–421.
  • Jiménez, J., Škalič, M., Martínez-Rosell, G., & De Fabritiis, G. (2018). K deep: protein–ligand absolute binding affinity prediction via 3d-convolutional neural networks. Journal of Chemical Information and Modeling, 58(2), 287–296. https://doi.org/10.1021/acs.jcim.7b00650
  • Joshi, B. P., Bhandare, V. V., Patel, P., Sharma, A., Patel, R., & Krishnamurthy, R. (2022). Molecular modelling studies and identification of novel phytochemical inhibitor of DLL3. Journal of Biomolecular Structure and Dynamics, 1–21. https://doi.org/10.1080/07391102.2022.2045224
  • Jung, Y.-K., & Shin, D. (2021). Imperata cylindrica: A review of phytochemistry, pharmacology, and industrial applications. Molecules, 26(5), 1454. https://doi.org/10.3390/molecules26051454
  • Kan, L.-D., Hu, Q., Chao, Z.-M., Song, X., & Cao, X.-L. (2006). Chemical constituents of unsaponifiable matter from seed oil of Momordica cochinchinensis. Zhongguo Zhong Yao za Zhi = Zhongguo Zhongyao Zazhi [China Journal of Chinese Materia Medica], 31(17), 1441–1444.
  • Kanchanapee, P. (1967). Studies on Medicinal Plants in Thailand-2・3. 生薬学雑誌, 21(1), 65–70.
  • Khan, S., & Mali, P. C. (2017). Reversible antifertility effect of Cassia tora Linn in male rats. International Journal of Life-Sciences Scientific Research, 3(5), 1415–1423. https://doi.org/10.21276/ijlssr.2017.3.5.26
  • Kim, H. J., Park, Y. I., & Dong, M. S. (2006). Comparison of prostate cancer cell lines for androgen receptor-mediated reporter gene assays. Toxicology in Vitro : An International Journal Published in Association with BIBRA, 20(7), 1159–1167. https://doi.org/10.1016/j.tiv.2006.03.003
  • Kmetova, S. M. (2017). The role of CYP17A1 in prostate cancer development: structure, function, mechanism of action, genetic variations and its inhibition. Gen Physiol Biophys, 36(5), 487–499.
  • Krieger, E., & Vriend, G. (2014). YASARA view—molecular graphics for all devices—from smartphones to workstations. Bioinformatics (Oxford, England), 30(20), 2981–2982. https://doi.org/10.1093/bioinformatics/btu426
  • Kumbhar, B. V., & Bhandare, V. V. (2021). Exploring the interaction of Peloruside-A with drug resistant αβII and αβIII tubulin isotypes in human ovarian carcinoma using a molecular modeling approach. Journal of Biomolecular Structure & Dynamics, 39(6), 1990–2002. https://doi.org/10.1080/07391102.2020.1745689
  • Liu, Y., Denisov, I., Gregory, M., Sligar, S. G., & Kincaid, J. R. (2022). Importance of Asparagine 202 in manipulating active site structure and substrate preference for human CYP17A1. Biochemistry, 61(7), 583–594. https://doi.org/10.1021/acs.biochem.2c00023
  • Liu, Y., Denisov, I. G., Grinkova, Y. V., Sligar, S. G., & Kincaid, J. R. (2020). P450 CYP17A1 Variant with a disordered proton shuttle assembly retains peroxo-mediated lyase efficiency. Chemistry (Weinheim an Der Bergstrasse, Germany), 26(70), 16846–16852. https://doi.org/10.1002/chem.202003181
  • Liu, Y., Grinkova, Y., Gregory, M. C., Denisov, I. G., Kincaid, J. R., & Sligar, S. G. (2021). Mechanism of the clinically relevant E305G mutation in human P450 CYP17A1. Biochemistry, 60(43), 3262–3271. https://doi.org/10.1021/acs.biochem.1c00282
  • Loriot, Y., Bianchini, D., Ileana, E., Sandhu, S., Patrikidou, A., Pezaro, C., Albiges, L., Attard, G., Fizazi, K., De Bono, J. S., & Massard, C. (2013). Antitumour activity of abiraterone acetate against metastatic castration-resistant prostate cancer progressing after docetaxel and enzalutamide (MDV3100). Annals of Oncology : official Journal of the European Society for Medical Oncology, 24(7), 1807–1812. https://doi.org/10.1093/annonc/mdt136
  • Mao, Y., Yang, G., Li, Y., Liang, G., Xu, W., & Hu, M. (2022). Advances in the Current Understanding of the Mechanisms Governing the Acquisition of Castration-Resistant Prostate Cancer. Cancers, 14(15), 3744. https://doi.org/10.3390/cancers14153744
  • Merseburger, A. S., Alcaraz, A., & von Klot, C. A. (2016). Androgen deprivation therapy as backbone therapy in the management of prostate cancer. OncoTargets and Therapy, 9, 7263–7274.
  • Mohanraj, K., Karthikeyan, B. S., Vivek-Ananth, R. P., Chand, R. P. B., Aparna, S. R., Mangalapandi, P., & Samal, A. (2018). IMPPAT: A curated database of Indian Medicinal Plants, Phytochemistry And Therapeutics. Scientific Reports, 8(1), 4329. https://doi.org/10.1038/s41598-018-22631-z
  • Moll, J. M., Kumagai, J., van Royen, M. E., Teubel, W. J., van Soest, R. J., French, P. J., Homma, Y., Jenster, G., de Wit, R., & van Weerden, W. M. (2019). A bypass mechanism of abiraterone‐resistant prostate cancer: Accumulating CYP17A1 substrates activate androgen receptor signaling. The Prostate, 79(9), 937–948. https://doi.org/10.1002/pros.23799
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Mostaghel, E. A., Marck, B. T., Plymate, S. R., Vessella, R. L., Balk, S., Matsumoto, A. M., Nelson, P. S., & Montgomery, R. B. (2011). Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: Induction of steroidogenesis and androgen receptor splice variants. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 17(18), 5913–5925. https://doi.org/10.1158/1078-0432.CCR-11-0728
  • Nguyen, N. T., Nguyen, T. H., Pham, T. N. H., Huy, N. T., Bay, M. V., Pham, M. Q., Nam, P. C., Vu, V. V., & Ngo, S. T. (2020). Autodock vina adopts more accurate binding poses but autodock4 forms better binding affinity. Journal of Chemical Information and Modeling, 60(1), 204–211. https://doi.org/10.1021/acs.jcim.9b00778
  • O’Boyle, N. (2011). Open babel: An open chemical toolbox. J Cheminf., 3(1), 33.
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pinto, F., Dibitetto, F., Ragonese, M., & Bassi, P. (2022). Mechanisms of resistance to second-generation antiandrogen therapy for prostate cancer: Actual knowledge and perspectives. Medical Sciences, 10(2), 25. https://doi.org/10.3390/medsci10020025
  • Pires, D. E., Ascher, D. B., & Blundell, T. L. (2014). DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Research, 42(Web Server issue), W314–W319. https://doi.org/10.1093/nar/gku411
  • Pires, D. E., Ascher, D. B., & Blundell, T. L. (2014). mCSM: predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics (Oxford, England), 30(3), 335–342. https://doi.org/10.1093/bioinformatics/btt691
  • Prabhu, A., M. Krishnamoorthy, M. K., Prasad, D. J., & Naik, P, Department of Biosciences, Mangalore University, Mangalagangothri-574 199, Karnataka, India (2011). Anticancer activity of Friedelin isolated from ethanolic leaf extract of Cassia tora on HeLa and HSC-1 cell lines. Indian Journal of Applied Research, 3(10), 1–4. https://doi.org/10.15373/2249555X/OCT2013/121
  • Rebello, R. J., Oing, C., Knudsen, K. E., Loeb, S., Johnson, D. C., Reiter, R. E., Gillessen, S., Van der Kwast, T., & Bristow, R. G. (2021). Prostate cancer. Nature Reviews. Disease Primers, 7(1), 9. https://doi.org/10.1038/s41572-020-00243-0
  • Richards, J., Lim, A. C., Hay, C. W., Taylor, A. E., Wingate, A., Nowakowska, K., Pezaro, C., Carreira, S., Goodall, J., Arlt, W., McEwan, I. J., de Bono, J. S., & Attard, G. (2012). Interactions of abiraterone, eplerenone, and prednisolone with wild-type and mutant androgen receptor: A rationale for increasing abiraterone exposure or combining with MDV3100. Cancer Research, 72(9), 2176–2182. https://doi.org/10.1158/0008-5472.CAN-11-3980
  • Šali, A., & Blundell, T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology, 234(3), 779–815. https://doi.org/10.1006/jmbi.1993.1626
  • Schrodinger, L. L. C. (2015). The PyMOL molecular graphics system (Version 1.8).
  • Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau, F., & Serrano, L. (2005). The FoldX web server: an online force field. Nucleic Acids Research, 33(Web Server issue), W382–W388. https://doi.org/10.1093/nar/gki387
  • Sherbet, D. P., Tiosano, D., Kwist, K. M., Hochberg, Z., & Auchus, R. J. (2003). CYP17 mutation E305G causes isolated 17,20-lyase deficiency by selectively altering substrate binding. The Journal of Biological Chemistry, 278(49), 48563–48569. https://doi.org/10.1074/jbc.M307586200
  • Singh, H., Kumar, R., Mazumder, A., Mazumder, R., Abdullah., & M. M., Salahuddin. (2022). Insights into interactions of human Cytochrome P450 17A1. Current Drug Metabolism, 23(3), 172–187., https://doi.org/10.2174/1389200223666220401093833
  • Soifer, H. S., Souleimanian, N., Wu, S., Voskresenskiy, A. M., Collak, F. K., Cinar, B., & Stein, C. A. (2012). Direct regulation of androgen receptor activity by potent CYP17 inhibitors in prostate cancer cells. The Journal of Biological Chemistry, 287(6), 3777–3787. https://doi.org/10.1074/jbc.M111.261933
  • Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: a Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660
  • Tian, W., Chen, C., Lei, X., Zhao, J., & Liang, J. (2018). CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Research, 46(W1), W363–W367. https://doi.org/10.1093/nar/gky473
  • Tiosano, D., Knopf, C., Koren, I., Levanon, N., Hartmann, M. F., Hochberg, Z., & Wudy, S. A. (2008). Metabolic evidence for impaired 17alpha-hydroxylase activity in a kindred bearing the E305G mutation for isolate 17,20-lyase activity. European Journal of Endocrinology, 158(3), 385–392. https://doi.org/10.1530/EJE-07-0712
  • Tiwari, S. P., Fuglebakk, E., Hollup, S. M., Skjaerven, L., Cragnolini, T., Grindhaug, S. H., Tekle, K. M., & Reuter, N. (2014). WEBnm@ v2.0: Web server and services for comparing protein flexibility. BMC Bioinformatics, 15(1), 427. https://doi.org/10.1186/s12859-014-0427-6
  • Ukiya, M., Akihisa, T., Tokuda, H., Toriumi, M., Mukainaka, T., Banno, N., Kimura, Y., Hasegawa, J.-I., & Nishino, H. (2002). Inhibitory effects of cucurbitane glycosides and other triterpenoids from the fruit of Momordica grosvenori on epstein-barr virus early antigen induced by tumor promoter 12-O-tetradecanoylphorbol-13-acetate. Journal of Agricultural and Food Chemistry, 50(23), 6710–6715. https://doi.org/10.1021/jf0206320
  • Van Den Akker, E. L. T., Koper, J. W., Boehmer, A. L. M., Themmen, A. P. N., Verhoef-Post, M., Timmerman, M. A., Otten, B. J., Drop, S. L. S., & De Jong, F. H. (2002). Differential inhibition of 17alpha-hydroxylase and 17,20-lyase activities by three novel missense CYP17 mutations identified in patients with P450c17 deficiency. The Journal of Clinical Endocrinology and Metabolism, 87(12), 5714–5721. https://doi.org/10.1210/jc.2001-011880
  • Van Durme, J., Delgado, J., Stricher, F., Serrano, L., Schymkowitz, J., & Rousseau, F. (2011). A graphical interface for the FoldX forcefield. Bioinformatics (Oxford, England), 27(12), 1711–1712. https://doi.org/10.1093/bioinformatics/btr254
  • Van Hook, K., Huang, T., & Alumkal, J. J. (2014). Orteronel for the treatment of prostate cancer. Future Oncology (London, England), 10(5), 803–811. https://doi.org/10.2217/fon.14.35
  • Vickman, R. E., Franco, O. E., Moline, D. C., Vander Griend, D. J., Thumbikat, P., & Hayward, S. W. (2020). The role of the androgen receptor in prostate development and benign prostatic hyperplasia: A review. Asian Journal of Urology, 7(3), 191–202. https://doi.org/10.1016/j.ajur.2019.10.003
  • Walker, L. M., & Santos-Iglesias, P. (2020). On the Relationship Between Erectile Function and Sexual Distress in Men with Prostate Cancer. Archives of Sexual Behavior, 49(5), 1575–1588. https://doi.org/10.1007/s10508-019-01603-y
  • Wang, L., Hou, Y., Wang, R., Pan, Q., Li, D., Yan, H., & Sun, Z. (2021). Inhibitory Effect of Astaxanthin on Testosterone-Induced Benign Prostatic Hyperplasia in Rats. Marine Drugs, 19(12), 652. https://doi.org/10.3390/md19120652
  • Wang, Z., Wang, X., Li, Y., Lei, T., Wang, E., Li, D., Kang, Y., Zhu, F., & Hou, T. (2019). farPPI: a webserver for accurate prediction of protein-ligand binding structures for small-molecule PPI inhibitors by MM/PB(GB)SA methods. Bioinformatics (Oxford, England), 35(10), 1777–1779. https://doi.org/10.1093/bioinformatics/bty879
  • Wilding, S., Downing, A., Selby, P., Cross, W., Wright, P., Watson, E. K., Wagland, R., Kind, P., Donnelly, D. W., Hounsome, L., Mottram, R., Allen, M., Kearney, T., Butcher, H., Gavin, A., & Glaser, A. (2020). Decision regret in men living with and beyond nonmetastatic prostate cancer in the United Kingdom: A population‐based patient‐reported outcome study. Psycho-oncology, 29(5), 886–893. https://doi.org/10.1002/pon.5362
  • Wollersheim, B. M., van Stam, M.-A., Bosch, R. J. L. H., Pos, F. J., Tillier, C. N., van der Poel, H. G., & Aaronson, N. K. (2020). Unmet expectations in prostate cancer patients and their association with decision regret. Journal of Cancer Survivorship : research and Practice, 14(5), 731–738. https://doi.org/10.1007/s11764-020-00888-6
  • Worth, C. L., Preissner, R., & Blundell, T. L. (2011). SDM—a server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Research, 39(Web Server issue), W215–W222. https://doi.org/10.1093/nar/gkr363
  • Wright, T. C., Dunne, V. L., Alshehri, A. H. D., Redmond, K. M., Cole, A. J., & Prise, K. M. (2021). Abiraterone in vitro is superior to enzalutamide in response to ionizing radiation. Frontiers in Oncology, 11, 2831. https://doi.org/10.3389/fonc.2021.700543
  • Wróbel, T. M., Rogova, O., Sharma, K., Rojas Velazquez, M. N., Pandey, A. V., Jørgensen, F. S., Arendrup, F. S., Andersen, K. L., & Björkling, F. (2022). Synthesis and structure–activity relationships of novel non-steroidal CYP17A1 inhibitors as potential prostate cancer agents. Biomolecules, 12(2), 165. https://doi.org/10.3390/biom12020165
  • Xi, Y. B., Chao, Z. M., & Wang, J. [ (2007). Chemical constituents in unsaponifiable matter from seeds of Trichosanthes hupehensis. Zhongguo Zhong Yao za Zhi = Zhongguo Zhongyao Zazhi = China Journal of Chinese Materia Medica, 32(21), 2262–2265.
  • Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T., & Cao, D. (2021). ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 49(W1), W5–W14. https://doi.org/10.1093/nar/gkab255
  • Yadav, R., Petrunak, E. M., Estrada, D. F., & Scott, E. E. (2017). Structural insights into the function of steroidogenic cytochrome P450 17A1. Molecular and Cellular Endocrinology, 441, 68–75. https://doi.org/10.1016/j.mce.2016.08.035
  • Ye, D., Ahn, H., Pu, Y.-S., Weiqing, H., Xie, L.-P., Huang, S.-P., Wu, H.-C., Ma, L., Yamada, S., Noda, S., & Sun, Y. (2016). Efficacy and safety of enzalutamide (ENZ) vs placebo (PL) in chemotherapy-naïve patients (pts) with progressive metastatic castration-resistant prostate cancer (mCRPC) following androgen deprivation therapy (ADT): An Asian multinational study. Annals of Oncology, 27, vi254. https://doi.org/10.1093/annonc/mdw372.33
  • Zhao, X., Wang, Q., Qian, Y., & Pang, L. (2013). Cassia tora L.(Jue‑ming‑zi) has anticancer activity in TCA8113 cells in vitro and exerts anti‑metastatic effects in vivo. Oncology Letters, 5(3), 1036–1042. https://doi.org/10.3892/ol.2012.1097
  • Zoete, V. (2016). SwissSimilarity: A web tool for low to ultra high throughput ligand-based virtual screening. ACS Publications.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.