147
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Structural basis of the key residue W320 responsible for Hsp90 conformational change

, &
Pages 9745-9755 | Received 07 Jul 2022, Accepted 06 Nov 2022, Published online: 14 Nov 2022

References

  • Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C., & Zwart, P. H. (2010). PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallographica. Section D, Biological Crystallography, 66(Pt 2), 213–221. https://doi.org/10.1107/S0907444909052925
  • Ali, M. M., Roe, S. M., Vaughan, C. K., Meyer, P., Panaretou, B., Piper, P. W., Prodromou, C., & Pearl, L. H. (2006). Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature, 440(7087), 1013–1017. https://doi.org/10.1038/nature04716
  • Armstrong, H. K., Koay, Y. C., Irani, S., Das, R., Nassar, Z. D., Australian Prostate Cancer, B., Selth, L. A., Centenera, M. M., McAlpine, S. R., & Butler, L. M, Australian Prostate Cancer BioResource. (2016). A novel class of Hsp90 C-terminal modulators have pre-clinical efficacy in prostate tumor cells without induction of a heat shock response. The Prostate, 76(16), 1546–1559. https://doi.org/10.1002/pros.23239
  • Backe, S. J., Sager, R. A., Woodford, M. R., Makedon, A. M., & Mollapour, M. (2020). Post-translational modifications of Hsp90 and translating the chaperone code. The Journal of Biological Chemistry, 295(32), 11099–11117. https://doi.org/10.1074/jbc.REV120.011833
  • Biebl, M. M., & Buchner, J. (2019). Structure, function, and regulation of the Hsp90 machinery. Cold Spring Harbor Perspectives in Biology, 11(9), a034017. https://doi.org/10.1101/cshperspect.a034017
  • Birbo, B., Madu, E. E., Madu, C. O., Jain, A., & Lu, Y. (2021). Role of HSP90 in cancer. International Journal of Molecular Sciences, 22(19), 10317. https://doi.org/10.3390/ijms221910317
  • Bron, P., Giudice, E., Rolland, J. P., Buey, R. M., Barbier, P., Díaz, J. F., Peyrot, V., Thomas, D., & Garnier, C. (2008). Apo-Hsp90 coexists in two open conformational states in solution. Biology of the Cell, 100(7), 413–425. https://doi.org/10.1042/bc20070149
  • Burlison, J. A., Avila, C., Vielhauer, G., Lubbers, D. J., Holzbeierlein, J., & Blagg, B. S. (2008). Development of novobiocin analogues that manifest anti-proliferative activity against several cancer cell lines. The Journal of Organic Chemistry, 73(6), 2130–2137. https://doi.org/10.1021/jo702191a
  • Didenko, T., Duarte, A. M., Karagöz, G. E., & Rüdiger, S. G. (2012). Hsp90 structure and function studied by NMR spectroscopy. Biochimica et Biophysica Acta, 1823(3), 636–647. https://doi.org/10.1016/j.bbamcr.2011.11.009
  • Emsley, P., & Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallographica. Section D, Biological Crystallography, 60(Pt 12 Pt 1), 2126–2132. https://doi.org/10.1107/S0907444904019158
  • Eskew, J. D., Sadikot, T., Morales, P., Duren, A., Dunwiddie, I., Swink, M., Zhang, X., Hembruff, S., Donnelly, A., Rajewski, R. A., Blagg, B. S., Manjarrez, J. R., Matts, R. L., Holzbeierlein, J. M., & Vielhauer, G. A. (2011). Development and characterization of a novel C-terminal inhibitor of Hsp90 in androgen dependent and independent prostate cancer cells. BMC Cancer, 11, 468. https://doi.org/10.1186/1471-2407-11-468
  • Fleming, P. J., & Fleming, K. G. (2018). HullRad: Fast calculations of folded and disordered protein and nucleic acid hydrodynamic properties. Biophysical Journal, 114(4), 856–869. https://doi.org/10.1016/j.bpj.2018.01.002
  • Goode, K. M., Petrov, D. P., Vickman, R. E., Crist, S. A., Pascuzzi, P. E., Ratliff, T. L., Davisson, V. J., & Hazbun, T. R. (2017). Targeting the Hsp90 C-terminal domain to induce allosteric inhibition and selective client downregulation. Biochimica et Biophysica Acta. General Subjects, 1861(8), 1992–2006. https://doi.org/10.1016/j.bbagen.2017.05.006
  • Hawle, P., Siepmann, M., Harst, A., Siderius, M., Reusch, H. P., & Obermann, W. M. (2006). The middle domain of Hsp90 acts as a discriminator between different types of client proteins. Molecular and Cellular Biology, 26(22), 8385–8395. https://doi.org/10.1128/MCB.02188-05
  • Hong, D. S., Banerji, U., Tavana, B., George, G. C., Aaron, J., & Kurzrock, R. (2013). Targeting the molecular chaperone heat shock protein 90 (HSP90): lessons learned and future directions. Cancer Treatment Reviews, 39(4), 375–387. https://doi.org/10.1016/j.ctrv.2012.10.001
  • Hoter, A., El-Sabban, M. E., & Naim, H. Y. (2018). The HSP90 family: Structure, regulation, function, and implications in health and disease. International Journal of Molecular Sciences, 19(9), 2560. https://doi.org/10.3390/ijms19092560
  • Jakob, U., Meyer, I., Bugl, H., Andre, S., Bardwell, J. C., & Buchner, J. (1995). Structural organization of procaryotic and eucaryotic Hsp90. Influence of divalent cations on structure and function. The Journal of Biological Chemistry, 270(24), 14412–14419. https://doi.org/10.1074/jbc.270.24.14412
  • Kamal, A., Thao, L., Sensintaffar, J., Zhang, L., Boehm, M. F., Fritz, L. C., & Burrows, F. J. (2003). A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature, 425(6956), 407–410. https://doi.org/10.1038/nature01913
  • Khandelwal, A., Crowley, V. M., & Blagg, B. S. J. (2016). Natural product inspired N-terminal Hsp90 inhibitors: From bench to bedside? Medicinal Research Reviews, 36(1), 92–118. https://doi.org/10.1002/med.21351
  • Krissinel, E., & Henrick, K. (2004). Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallographica. Section D, Biological Crystallography, 60(Pt 12 Pt 1), 2256–2268. https://doi.org/10.1107/S0907444904026460
  • Krukenberg, K. A., Förster, F., Rice, L. M., Sali, A., & Agard, D. A. (2008). Multiple conformations of E. coli Hsp90 in solution: insights into the conformational dynamics of Hsp90. Structure (London, England: 1993), 16(5), 755–765. https://doi.org/10.1016/j.str.2008.01.021
  • Lee, C. C., Lin, T. W., Ko, T. P., & Wang, A. H. (2011). The hexameric structures of human heat shock protein 90. PloS One, 6(5), e19961. https://doi.org/10.1371/journal.pone.0019961
  • Lee, K., Thwin, A. C., Nadel, C. M., Tse, E., Gates, S. N., Gestwicki, J. E., & Southworth, D. R. (2021). The structure of an Hsp90-immunophilin complex reveals cochaperone recognition of the client maturation state. Molecular Cell, 81(17), 3496–3508 e3495. https://doi.org/10.1016/j.molcel.2021.07.023
  • Lepvrier, E., Moullintraffort, L., Nigen, M., Goude, R., Allegro, D., Barbier, P., Peyrot, V., Thomas, D., Nazabal, A., & Garnier, C. (2015). Hsp90 oligomers interacting with the Aha1 cochaperone: An Outlook for the Hsp90 chaperone machineries. Analytical Chemistry, 87(14), 7043–7051. https://doi.org/10.1021/acs.analchem.5b00051
  • Lepvrier, E., Nigen, M., Moullintraffort, L., Chat, S., Allegro, D., Barbier, P., Thomas, D., Nazabal, A., & Garnier, C. (2015). Hsp90 oligomerization process: How can p23 drive the chaperone machineries? Biochimica et Biophysica Acta, 1854(10 Pt A), 1412–1424. https://doi.org/10.1016/j.bbapap.2015.07.003
  • Lepvrier, E., Thomas, D., & Garnier, C. (2018). Hsp90 quaternary structures and the chaperone cycle: Highly flexible dimeric and oligomeric structures and their regulation by co-chaperones. Current Proteomics, 16(1), 5–11. https://doi.org/10.2174/1570164615666180522095147
  • Li, J., Soroka, J., & Buchner, J. (2012). The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. Biochimica et Biophysica Acta, 1823(3), 624–635. https://doi.org/10.1016/j.bbamcr.2011.09.003
  • Liu, Y., Sun, M., Myasnikov, A. G., Elnatan, D., Delaeter, N., Nguyenquang, M., & Agard, D. A. (2020). Cryo-EM structures reveal a multistep mechanism of Hsp90 activation by co-chaperone Aha1. bioRxiv.2020.2006.2030.180695, https://doi.org/10.1101/2020.06.30.180695
  • Lopez, A., Dahiya, V., Delhommel, F., Freiburger, L., Stehle, R., Asami, S., Rutz, D., Blair, L., Buchner, J., & Sattler, M. (2021). Client binding shifts the populations of dynamic Hsp90 conformations through an allosteric network. Science Advances, 7(51), eabl7295. https://doi.org/10.1126/sciadv.abl7295
  • Mader, S. L., Lopez, A., Lawatscheck, J., Luo, Q., Rutz, D. A., Gamiz-Hernandez, A. P., Sattler, M., Buchner, J., & Kaila, V. R. I. (2020). Conformational dynamics modulate the catalytic activity of the molecular chaperone Hsp90. Nature Communications, 11(1), 1410. https://doi.org/10.1038/s41467-020-15050-0
  • McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., & Read, R. J. (2007). Phaser crystallographic software. Journal of Applied Crystallography, 40(Pt 4), 658–674. https://doi.org/10.1107/S0021889807021206
  • Meyer, P., Prodromou, C., Hu, B., Vaughan, C., Roe, S. M., Panaretou, B., Piper, P. W., & Pearl, L. H. (2003). Structural and functional analysis of the middle segment of hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions. Molecular Cell, 11(3), 647–658. https://doi.org/10.1016/s1097-2765(03)00065-0.
  • Mielczarek-Lewandowska, A., Hartman, M. L., & Czyz, M. (2020). Inhibitors of HSP90 in melanoma. Apoptosis : An International Journal on Programmed Cell Death, 25(1–2), 12–28. https://doi.org/10.1007/s10495-019-01577-1
  • Minor, W., Cymborowski, M., Otwinowski, Z., & Chruszcz, M. (2006). HKL-3000: the integration of data reduction and structure solution–from diffraction images to an initial model in minutes. Acta Crystallographica. Section D, Biological Crystallography, 62(Pt 8), 859–866. https://doi.org/10.1107/S0907444906019949
  • Moullintraffort, L., Bruneaux, M., Nazabal, A., Allegro, D., Giudice, E., Zal, F., Peyrot, V., Barbier, P., Thomas, D., & Garnier, C. (2010). Biochemical and biophysical characterization of the Mg2+-induced 90-kDa heat shock protein oligomers. The Journal of Biological Chemistry, 285(20), 15100–15110. https://doi.org/10.1074/jbc.M109.094698
  • Neckers, L., Blagg, B., Haystead, T., Trepel, J. B., Whitesell, L., & Picard, D. (2018). Methods to validate Hsp90 inhibitor specificity, to identify off-target effects, and to rethink approaches for further clinical development. Cell Stress & Chaperones, 23(4), 467–482. https://doi.org/10.1007/s12192-018-0877-2
  • Nemoto, T. K., Ono, T., & Tanaka, K. (2001). Substrate-binding characteristics of proteins in the 90 kDa heat shock protein family. The Biochemical Journal, 354(Pt 3), 663–670. https://doi.org/10.1042/0264-6021:3540663
  • Nemoto, T., & Sato, N. (1998). Oligomeric forms of the 90-kDa heat shock protein. Biochemical Journal, 330(2), 989–995. https://doi.org/10.1042/bj3300989
  • Ou, J. R., Tan, M. S., Xie, A. M., Yu, J. T., & Tan, L. (2014). Heat shock protein 90 in Alzheimer’s disease. BioMed Research International, 2014, 796869. https://doi.org/10.1155/2014/796869
  • Painter, J., & Merritt, E. A. (2006). Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallographica. Section D, Biological Crystallography, 62(Pt 4), 439–450. https://doi.org/10.1107/S0907444906005270
  • Pearl, L. H. (2016). Review: The HSP90 molecular chaperone-an enigmatic ATPase. Biopolymers, 105(8), 594–607. https://doi.org/10.1002/bip.22835
  • Peng, S., Woodruff, J., Pathak, P. K., Matts, R. L., & Deng, J. (2022). Crystal structure of the middle and C-terminal domains of Hsp90α labeled with a coumarin derivative reveals a potential allosteric binding site as a drug target. Acta Crystallographica. Section D, Structural Biology, 78(Pt 5), 571–585. https://doi.org/10.1107/s2059798322002261
  • Prodromou, C. (2016). Mechanisms of Hsp90 regulation. The Biochemical Journal, 473(16), 2439–2452. https://doi.org/10.1042/BCJ20160005
  • Prodromou, C., & Bjorklund, D. M. (2022). Advances towards understanding the mechanism of action of the Hsp90 complex. Biomolecules, 12(5), 600. https://doi.org/10.3390/biom12050600
  • Rodina, A., Wang, T., Yan, P., Gomes, E. D., Dunphy, M. P., Pillarsetty, N., Koren, J., Gerecitano, J. F., Taldone, T., Zong, H., Caldas-Lopes, E., Alpaugh, M., Corben, A., Riolo, M., Beattie, B., Pressl, C., Peter, R. I., Xu, C., Trondl, R., … Chiosis, G. (2016). The epichaperome is an integrated chaperome network that facilitates tumour survival. Nature, 538(7625), 397–401. https://doi.org/10.1038/nature19807
  • Rutz, D. A., Luo, Q., Freiburger, L., Madl, T., Kaila, V. R. I., Sattler, M., & Buchner, J. (2018). A switch point in the molecular chaperone Hsp90 responding to client interaction. Nature Communications, 9(1), 1472. https://doi.org/10.1038/s41467-018-03946-x
  • Schopf, F. H., Biebl, M. M., & Buchner, J. (2017). The HSP90 chaperone machinery. Nature Reviews. Molecular Cell Biology, 18(6), 345–360. https://doi.org/10.1038/nrm.2017.20
  • Schrodinger, L. (2018). The PyMOL Molecular Graphics System. Version 2.1.
  • Shiau, A. K., Harris, S. F., Southworth, D. R., & Agard, D. A. (2006). Structural analysis of E. coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell, 127(2), 329–340. https://doi.org/10.1016/j.cell.2006.09.027
  • Sima, S., & Richter, K. (2018). Regulation of the Hsp90 system. Biochimica et Biophysica Acta. Molecular Cell Research, 1865(6), 889–897. https://doi.org/10.1016/j.bbamcr.2018.03.008
  • Southworth, D. R., & Agard, D. A. (2008). Species-dependent ensembles of conserved conformational states define the Hsp90 chaperone ATPase cycle. Molecular Cell, 32(5), 631–640. https://doi.org/10.1016/j.molcel.2008.10.024
  • Trepel, J., Mollapour, M., Giaccone, G., & Neckers, L. (2010). Targeting the dynamic HSP90 complex in cancer. Nature Reviews. Cancer, 10(8), 537–549. https://doi.org/10.1038/nrc2887
  • Verba, K. A., Wang, R. Y., Arakawa, A., Liu, Y., Shirouzu, M., Yokoyama, S., & Agard, D. A. (2016). Atomic structure of Hsp90-Cdc37-Cdk4 reveals that Hsp90 traps and stabilizes an unfolded kinase. Science (New York, N.Y.), 352(6293), 1542–1547. https://doi.org/10.1126/science.aaf5023
  • Verkhivker, G. M. (2022). Exploring mechanisms of allosteric regulation and communication switching in the multiprotein regulatory complexes of the Hsp90 chaperone with cochaperones and client proteins: Atomistic insights from integrative biophysical modeling and network analysis of conformational landscapes. Journal of Molecular Biology. 434(17), 167506. https://doi.org/10.1016/j.jmb.2022.167506
  • Wan, Q., Song, D., Li, H., & He, M. L. (2020). Stress proteins: the biological functions in virus infection, present and challenges for target-based antiviral drug development. Signal Transduction and Targeted Therapy, 5(1), 125. https://doi.org/10.1038/s41392-020-00233-4
  • Wang, R. Y., Noddings, C. M., Kirschke, E., Myasnikov, A. G., Johnson, J. L., & Agard, D. A. (2022). Structure of Hsp90-Hsp70-Hop-GR reveals the Hsp90 client-loading mechanism. Nature, 601(7893), 460–464. https://doi.org/10.1038/s41586-021-04252-1
  • Wolf, S., Sohmen, B., Hellenkamp, B., Thurn, J., Stock, G., & Hugel, T. (2021). Hierarchical dynamics in allostery following ATP hydrolysis monitored by single molecule FRET measurements and MD simulations. Chemical Science, 12(9), 3350–3359. https://doi.org/10.1039/d0sc06134d
  • Yonehara, M., Minami, Y., Kawata, Y., Nagai, J., & Yahara, I. (1996). Heat-induced chaperone activity of HSP90. The Journal of Biological Chemistry, 271(5), 2641–2645. https://doi.org/10.1074/jbc.271.5.2641

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.