232
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Targeting the omicron variant of SARS-CoV-2 with phytochemicals from Saudi medicinal plants: molecular docking combined with molecular dynamics investigations

& ORCID Icon
Pages 9732-9744 | Received 14 Sep 2022, Accepted 05 Nov 2022, Published online: 11 Nov 2022

References

  • Adegbola, P. I., Semire, B., Fadahunsi, O. S., & Adegoke, A. E. (2021). Molecular docking and ADMET studies of Allium cepa, Azadirachta indica and Xylopia aethiopica isolates as potential anti-viral drugs for Covid-19. Virusdisease, 32(1), 85–97. https://doi.org/10.1007/s13337-021-00682-7
  • Ai, J., Zhang, H., Zhang, Y., Lin, K., Zhang, Y., Wu, J., Wan, Y., Huang, Y., Song, J., Fu, Z., Wang, H., Guo, J., Jiang, N., Fan, M., Zhou, Y., Zhao, Y., Zhang, Q., Liu, Q., Lv, J., … Zhang, W. (2022). Omicron variant showed lower neutralizing sensitivity than other SARS-CoV-2 variants to immune sera elicited by vaccines after boost. Emerging Microbes & Infections, 11(1), 337–343. https://doi.org/10.1080/22221751.2021.2022440
  • Alamri, M. A., Altharawi, A., Alabbas, A. B., Alossaimi, M. A., & Alqahtani, S. M. (2020). Structure-based virtual screening and molecular dynamics of phytochemicals derived from Saudi medicinal plants to identify potential COVID-19 therapeutics. Arabian Journal of Chemistry, 13(9), 7224–7234. https://doi.org/10.1016/j.arabjc.2020.08.004
  • Alqethami, A., & Aldhebiani, A. Y. (2021). Medicinal plants used in Jeddah, Saudi Arabia : Phytochemical screening. Saudi Journal of Biological Sciences, 28(1), 805–812. https://doi.org/10.1016/j.sjbs.2020.11.013
  • Alqethami, A., Aldhebiani, A. Y., & Teixidor-Toneu, I. (2020, April). Medicinal plants used in Jeddah, Saudi Arabia : A gender perspective. Journal of Ethnopharmacology, 257, 112899.
  • Alzaabi, M. M., Hamdy, R., Ashmawy, N. S., Hamoda, A. M., Alkhayat, F., Khademi, N. N., Al Joud, S. M. A., El-Keblawy, A. A., & Soliman, S. S. M. (2022). Flavonoids are promising safe therapy against COVID-19. Phytochemistry Reviews : proceedings of the Phytochemical Society of Europe, 21(1), 291–312. https://doi.org/10.1007/s11101-021-09759-z
  • Alzain, A. A., Elbadwi, F. A., & Alsamani, F. O. (2022). Discovery of novel TMPRSS2 inhibitors for COVID-19 using in silico fragment-based drug design, molecular docking, molecular dynamics, and quantum mechanics studies. Informatics in Medicine Unlocked, 29, 100870. https://doi.org/10.1016/j.imu.2022.100870
  • Banik, P., Majumder, R., Mandal, A., Dey, S., & Mandal, M. (2022). A computational study to assess the polymorphic landscape of matrix metalloproteinase 3 promoter and its effects on transcriptional activity. Computers in Biology and Medicine, 145, 105404. https://doi.org/10.1016/j.compbiomed.2022.105404
  • Basu, D., Chavda, V. P., & Mehta, A. A. (2022). Therapeutics for COVID-19 and post COVID-19 complications: An update. Current Research in Pharmacology and Drug Discovery, 3, 100086.
  • Beigoli, S., Behrouz, S., Memarzia, A., Ghasemi, S. Z., Boskabady, M., Marefati, N., Kianian, F., Khazdair, M. R., El-Seedi, H., & Boskabady, M. H. (2021). Effects of Allium cepa and its constituents on respiratory and allergic disorders: A comprehensive review of experimental and clinical evidence. Evidence-Based Complementary and Alternative Medicine, 2021, 1–22. https://doi.org/10.1155/2021/5554259
  • Bondhon, T. A., Fatima, A., Jannat, K., Hasan, A., Jahan, R., Nissapatorn, V., Wiart, C., Pereira, M. L., & Rahmatullah, M. (2021). In silico screening of Allium cepa phytochemicals for their binding abilities to SARS and SARS-CoV-2 3C-like protease and COVID-19 human receptor ACE-2. Tropical Biomedicine, 38(2), 214–221.
  • Chapman, R. L., & Andurkar, S. V. (2022). A review of natural products, their effects on SARS-CoV-2 and their utility as lead compounds in the discovery of drugs for the treatment of COVID-19. Medicinal Chemistry Research : An International Journal for Rapid Communications on Design and Mechanisms of Action of Biologically Active Agents, 31(1), 40–51. https://doi.org/10.1007/s00044-021-02826-2
  • Dal-Ré, R., Becker, S. L., Bottieau, E., & Holm, S. (2022, March 29). Availability of oral antivirals against SARS-CoV-2 infection and the requirement for an ethical prescribing approach. Lancet Infectious Diseases, 22(8), 231–238.
  • Drożdżal, S., Rosik, J., Lechowicz, K., Machaj, F., Szostak, B., Przybyciński, J., Lorzadeh, S., Kotfis, K., Ghavami, S., & Łos, M. J. (2021). An update on drugs with therapeutic potential for SARS-CoV-2 (COVID-19) treatment. Drug Resistance Updates : reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy, 59, 100794.
  • Ferreira, L. G., Dos Santos, R. N., Oliva, G., & Andricopulo, A. D. (2015). Molecular docking and structure-based drug design strategies. Molecules, 20(7), 13384–13421. https://doi.org/10.3390/molecules200713384
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Fu, T.-T., Tu, G., Ping, M., Zheng, G.-X., Yang, F.-Y., Yang, J.-Y., Zhang, Y., Yao, X.-J., Xue, W.-W., & Zhu, F. (2021). Subtype-selective mechanisms of negative allosteric modulators binding to group I metabotropic glutamate receptors. Acta Pharmacologica Sinica, 42(8), 1354–1367. https://doi.org/10.1038/s41401-020-00541-z
  • Gajjar, N. D., Dhameliya, T. M., & Shah, G. B. (2021). In search of RdRp and Mpro inhibitors against SARS CoV-2: Molecular docking, molecular dynamic simulations and ADMET analysis. Journal of Molecular Structure, 1239, 130488. https://doi.org/10.1016/j.molstruc.2021.130488
  • Greasley, S. E., Noell, S., Plotnikova, O., Ferre, R. A., Liu, W., Bolanos, B., Fennell, K. F., Nicki, J., Craig, T., Zhu, Y., & Stewart, A. E. (2022). Structural basis for Nirmatrelvir in vitro efficacy against SARS-CoV-2 variants. bioRxiv.
  • Günther, S., Reinke, P. Y. A., Fernández-García, Y., Lieske, J., Lane, T. J., Ginn, H. M., Koua, F. H. M., Ehrt, C., Ewert, W., Oberthuer, D., Yefanov, O., Meier, S., Lorenzen, K., Krichel, B., Kopicki, J.-D., Gelisio, L., Brehm, W., Dunkel, I., Seychell, B., … Meents, A. (2021). X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease. Science, 372(6542), 642–646. https://doi.org/10.1126/science.abf7945
  • Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J. Y., Wang, L., Lupyan, D., Dahlgren, M. K., Knight, J. L., Kaus, J. W., Cerutti, D. S., Krilov, G., Jorgensen, W. L., Abel, R., & Friesner, R. A. (2016). OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation, 12(1), 281–296. https://doi.org/10.1021/acs.jctc.5b00864
  • Ishimoto, K., Hatanaka, N., Otani, S., Maeda, S., Xu, B., Yasugi, M., Moore, J. E., Suzuki, M., Nakagawa, S., & Yamasaki, S. (2022, January 1). Tea crude extracts effectively inactivate severe acute respiratory syndrome coronavirus 2. Letters in Applied Microbiology, 74(1), 2–7. https://doi.org/10.1111/lam.13591
  • Kandeel, M., & Al-Nazawi, M. (2020). Virtual screening and repurposing of FDA approved drugs against COVID-19 main protease. Life Sciences, 251, 117627. https://doi.org/10.1016/j.lfs.2020.117627
  • Khalifa, I., Zhu, W., Mohammed, H. H. H., Dutta, K., & Li, C. (2020). Tannins inhibit SARS-CoV-2 through binding with catalytic dyad residues of 3CLpro: An in silico approach with 19 structural different hydrolysable tannins. Journal of Food Biochemistry. 44(10), e13432.
  • Liu, J., Zhai, Y., Liang, L., Zhu, D., Zhao, Q., & Qiu, Y. (2021). Molecular modeling evaluation of the binding effect of five protease inhibitors to COVID-19 main protease. Chemical Physics, 542, 111080. https://doi.org/10.1016/j.chemphys.2020.111080
  • Macchiagodena, M., Pagliai, M., & Procacci, P. (2022). Characterization of the non-covalent interaction between the PF-07321332 inhibitor and the SARS-CoV-2 main protease. Journal of Molecular Graphics & Modelling, 110, 108042.
  • Mahdevar, E., Safavi, A., Abiri, A., Kefayat, A., Hejazi, S. H., Miresmaeili, S. M., & Iranpur Mobarakeh, V. (2020). Exploring the cancer-testis antigen BORIS to design a novel multi-epitope vaccine against breast cancer based on immunoinformatics approaches. Journal of Biomolecular Structure and Dynamics, 40(14), 6363–6380.
  • Majumder, R., Das, C. K., Banerjee, I., Chandra Jena, B., Mandal, A., Das, P., Pradhan, A. K., Das, S., Basak, P., Das, S. K., Emdad, L., Fisher, P. B., & Mandal, M. (2022). Screening of the Prime bioactive compounds from Aloe vera as potential anti-proliferative agents targeting DNA. Computers in Biology and Medicine, 141, 105052. https://doi.org/10.1016/j.compbiomed.2021.105052
  • Majumder, R., & Mandal, M. (2022). Screening of plant-based natural compounds as a potential COVID-19 main protease inhibitor: an in silico docking and molecular dynamics simulation approach. Journal of Biomolecular Structure & Dynamics, 40(2), 696–711. https://doi.org/10.1080/07391102.2020.1817787
  • Mehmood, A., Nawab, S., Wang, Y., Chandra Kaushik, A., & Wei, D. Q. (2022). Discovering potent inhibitors against the Mpro of the SARS-CoV-2. A medicinal chemistry approach. Computers in Biology and Medicine, 143, 105235. https://doi.org/10.1016/j.compbiomed.2022.105235
  • Mhatre, S., Naik, S., & Patravale, V. (2021, February). A molecular docking study of EGCG and theaflavin digallate with the druggable targets of SARS-CoV-2. Computers in Biology and Medicine, 1, 129.
  • Mhatre, S., Srivastava, T., Naik, S., & Patravale, V. (2021). Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: A review. Phytomedicine : international Journal of Phytotherapy and Phytopharmacology, 85, 153286. https://doi.org/10.1016/j.phymed.2020.153286
  • Mohapatra, R. K., Perekhoda, L., Azam, M., Suleiman, M., Sarangi, A. K., Semenets, A., Pintilie, L., & Al-Resayes, S. I. (2021). Computational investigations of three main drugs and their comparison with synthesized compounds as potent inhibitors of SARS-CoV-2 main protease (Mpro): DFT, QSAR, molecular docking, and in silico toxicity analysis. Journal of King Saud University. Science, 33(2), 101315. https://doi.org/10.1016/j.jksus.2020.101315
  • Mosquera-Yuqui, F., Lopez-Guerra, N., & Moncayo-Palacio, E. A. (2022). Targeting the 3CLpro and RdRp of SARS-CoV-2 with phytochemicals from medicinal plants of the Andean Region: molecular docking and molecular dynamics simulations. Journal of Biomolecular Structure & Dynamics, 40(5), 2010–2023. https://doi.org/10.1080/07391102.2020.1835716
  • Omer, S. E., Ibrahim, T. M., Krar, O. A., Ali, A. M., Makki, A. A., Ibraheem, W., & Alzain, A. A. (2022). Drug repurposing for SARS-CoV-2 main protease: Molecular docking and molecular dynamics investigations. Biochemistry and Biophysics Reports, 29, 101225. https://doi.org/10.1016/j.bbrep.2022.101225
  • Owen, D. R., Allerton, C. M. N., Anderson, A. S., Aschenbrenner, L., Avery, M., Berritt, S., Boras, B., Cardin, R. D., Carlo, A., Coffman, K. J., Dantonio, A., Di, L., Eng, H., Ferre, R., Gajiwala, K. S., Gibson, S. A., Greasley, S. E., Hurst, B. L., Kadar, E. P., … Zhu, Y. (2021). An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science, 374(6575), 1586–1593. https://doi.org/10.1126/science.abl4784
  • Rao, P., Shukla, A., Parmar, P., Rawal, R. M., Patel, B., Saraf, M., & Goswami, D. (2020). Reckoning a fungal metabolite, Pyranonigrin A as a potential Main protease (Mpro) inhibitor of novel SARS-CoV-2 virus identified using docking and molecular dynamics simulation. Biophysical Chemistry, 264, 106425. https://doi.org/10.1016/j.bpc.2020.106425
  • Rasool, N., Yasmin, F., Sahai, S., Hussain, W., Inam, H., & Arshad, A. (2021, May 16). Biological perspective of thiazolide derivatives against Mpro and MTase of SARS-CoV-2: Molecular docking, DFT and MD simulation investigations. Chemical Physics Letters, 771, 138463. https://doi.org/10.1016/j.cplett.2021.138463
  • Rauf, A., Imran, M., Abu-Izneid, T., Patel, S., Pan, X., Naz, S., Sanches Silva, A., Saeed, F., Rasul Suleria., & H. A., Iahtisham-Ul-Haq. (2019). Proanthocyanidins: A comprehensive review. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 116, 108999. https://doi.org/10.1016/j.biopha.2019.108999
  • Rudrapal, M., Celik, I., Chinnam, S., Azam Ansari, M., Khan, J., Alghamdi, S., Almehmadi, M., Zothantluanga, J. H., & Khairnar, S. J. (2022). Phytocompounds as potential inhibitors of SARS-CoV-2 Mpro and PLpro through computational studies. Saudi Journal of Biological Sciences, 29(5), 3456–3465.
  • Rudrapal, M., Celik, I., Chinnam, S., Azam Ansari, M., Khan, J., Alghamdi, S., Almehmadi, M., Zothantluanga, J. H., & Khairnar, S. J. (2022). Phytocompounds as potential inhibitors of SARS-CoV-2 Mpro and PLpro through computational studies. Saudi Journal of Biological Sciences, 29(5), 3456–3465. https://doi.org/10.1016/j.sjbs.2022.02.028
  • Sacco, M. D., Hu, Y., Gongora, M. V., Meilleur, F., Kemp, M. T., Zhang, X., Wang, J., & Chen, Y. (2022, March 15). The P132H mutation in the main protease of Omicron SARS-CoV-2 decreases thermal stability without compromising catalysis or small-molecule drug inhibition. Cell Research, 32, 498-500.
  • Safavi, A., Kefayat, A., Abiri, A., Mahdevar, E., Behnia, A. H., & Ghahremani, F. (2019). In silico analysis of transmembrane protein 31 (TMEM31) antigen to design novel multiepitope peptide and DNA cancer vaccines against melanoma. Molecular Immunology, 112, 93–102. https://doi.org/10.1016/j.molimm.2019.04.030
  • Safavi, A., Kefayat, A., Mahdevar, E., Abiri, A., & Ghahremani, F. (2020). Exploring the out of sight antigens of SARS-CoV-2 to design a candidate multi-epitope vaccine by utilizing immunoinformatics approaches. Vaccine, 38(48), 7612–7628.
  • Samy, M. N., Attia, E. Z., Shoman, M. E., Khalil, H. E., Sugimoto, S., Matsunami, K., & Fahim, J. R. (2021). Phytochemical investigation of Amphilophium paniculatum; an underexplored Bignoniaceae species as a source of SARS-CoV-2 Mpro inhibitory metabolites: Isolation, identification, and molecular docking study. South African Journal of Botany, 141, 421–430. https://doi.org/10.1016/j.sajb.2021.05.023
  • Sharma, A., Vora, J., Patel, D., Sinha, S., Jha, P. C., & Shrivastava, N. (2022). Identification of natural inhibitors against prime targets of SARS-CoV-2 using molecular docking, molecular dynamics simulation and MM-PBSA approaches. Journal of Biomolecular Structure & Dynamics, 40(7), 3296–3311. https://doi.org/10.1080/07391102.2020.1846624
  • Ullrich, S., Ekanayake, K. B., Otting, G., & Nitsche, C. (2022, April 15). Main protease mutants of SARS-CoV-2 variants remain susceptible to nirmatrelvir. Bioorganic and Medicinal Chemistry Letters. 62, 128629. https://doi.org/10.1016/j.bmcl.2022.128629
  • Ullrich, S., & Nitsche, C. (2020). The SARS-CoV-2 main protease as drug target. Bioorganic & Medicinal Chemistry Letters, 30(17), 127377.
  • Vandyck, K., & Deval, J. (2021). Considerations for the discovery and development of 3-chymotrypsin-like cysteine protease inhibitors targeting SARS-CoV-2 infection. Current Opinion in Virology, 49, 36–40.
  • Verma, D., Mitra, D., Paul, M., Chaudhary, P., Kamboj, A., Thatoi, H., Janmeda, P., Jain, D., Panneerselvam, P., Shrivastav, R., Pant, K., & Das Mohapatra, P. K. (2021). Potential inhibitors of SARS-CoV-2 (COVID 19) proteases PLpro and Mpro/3CLpro: molecular docking and simulation studies of three pertinent medicinal plant natural components. Current Research in Pharmacology and Drug Discovery, 2, 100038. https://doi.org/10.1016/j.crphar.2021.100038
  • Wang, X., Li, F., Qiu, W., Xu, B., Li, Y., Lian, X., Yu, H., Zhang, Z., Wang, J., Li, Z., Xue, W., & Zhu, F. (2022). SYNBIP: synthetic binding proteins for research, diagnosis and therapy. Nucleic Acids Research, 50(D1), D560–D570. https://doi.org/10.1093/nar/gkab926
  • WHO. (2022, March 30). Weekly operational update on COVID-19 - July 2022. https://www.who.int/publications/m/item/weekly-operational-update-on-covid-19
  • Xue, W., Fu, T., Deng, S., Yang, F., Yang, J., & Zhu, F. (2022). Molecular mechanism for the allosteric inhibition of the human serotonin transporter by antidepressant escitalopram. ACS Chemical Neuroscience, 13(3), 340–351. https://doi.org/10.1021/acschemneuro.1c00694
  • Xue, W., Wang, P., Tu, G., Yang, F., Zheng, G., Li, X., Li, X., Chen, Y., Yao, X., & Zhu, F. (2018). Computational identification of the binding mechanism of a triple reuptake inhibitor amitifadine for the treatment of major depressive disorder. Physical Chemistry Chemical Physics : PCCP, 20(9), 6606–6616. https://doi.org/10.1039/c7cp07869b
  • Xue, W., Yang, F., Wang, P., Zheng, G., Chen, Y., Yao, X., & Zhu, F. (2018, May 16). What contributes to serotonin-norepinephrine reuptake inhibitors’ dual-targeting mechanism? The key role of transmembrane domain 6 in human serotonin and norepinephrine transporters revealed by molecular dynamics simulation. ACS Chemical Neuroscience, 9(5), 1128–1140. https://doi.org/10.1021/acschemneuro.7b00490
  • Yang, J., Lin, X., Xing, N., Zhang, Z., Zhang, H., Wu, H., & Xue, W. (2021). Structure-based discovery of novel nonpeptide inhibitors targeting SARS-CoV-2 Mpro. Journal of Chemical Information and Modeling, 61(8), 3917–3926. https://doi.org/10.1021/acs.jcim.1c00355
  • Yang, J., Zhang, Z., Yang, F., Zhang, H., Wu, H., Zhu, F., & Xue, W. (2021). Computational design and modeling of nanobodies toward SARS-CoV-2 receptor binding domain. Chemical Biology & Drug Design, 98(1), 1–18. https://doi.org/10.1111/cbdd.13847
  • Yin, J., Li, C., Ye, C., Ruan, Z., Liang, Y., Li, Y., Wu, J., & Luo, Z. (2022). Advances in the development of therapeutic strategies against COVID-19 and perspectives in the drug design for emerging SARS-CoV-2 variants. Computational and Structural Biotechnology Journal, 20, 824–837.
  • Zhang, D., Hai, Wu, K., Lun, Zhang, X., Deng, S., Qiong., & Peng, B. (2020). In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. Journal of Integrative Medicine, 18(2), 152–158. https://doi.org/10.1016/j.joim.2020.02.005
  • Zhu, Y., & Xie, D. Y. (2020, November 30). Docking characterization and in vitro inhibitory activity of flavan-3-ols and dimeric proanthocyanidins against the main protease activity of SARS-Cov-2. Frontiers in Plant Science, 11, 1884.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.